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1. Introduction

The study of positive linear operators is an important research area in approximation
theory. The problem of Weierstrass [1,2] to approximate continuous functions using a
sequence of polynomials initiated this research field, but the systematic study of these op-
erators began only in the 1960s with the books of Korovkin [3,4] and Lorentz [5]. Korovkin
has discovered simple conditions to verify if a sequence of positive linear operators forms
an approximation process, and since then, there have been constructed many operators.
One such example is the sequence of operators defined for β ∈ (0, 1) by

R[β]
n ( f , x) =

1
(1 + nβ−1x)n

n

∑
k=0

(
n
k

)
(nβ−1x)k · f

(
k

nβ

)
, for n ≥ 1, x ∈ [0, ∞). (1)

They were introduced in 1975 by K. Balázs [6]. She proved some pointwise approxi-
mation results for the particular value β = 2/3. In 1982, Balázs and Szabados [7] extended
the study for β ∈ (0, 2/3] and investigated both the pointwise and the uniform approxi-
mation. In 1984, Totik [8] considered β ∈ (0, 1) and provided the saturation properties of
these operators. Many more articles [9–43] have appeared since then, presenting different
new properties and generalizing the form of the operators. The vast majority refer to the
operators defined by (1) as the Balázs–Szabados operators.

In this paper, we first present a new approximation result on compact intervals,
extending the space of functions to be approximated. Balázs [6] showed that operators (1)
approximate, on compact intervals, continuous functions with exponential growth. We
prove that for certain values of β, operators (1) approximate even functions with super-
exponential growth. This fact is surprising for two reasons. Many classical operators
approximate only functions with an exponential growth or some other fixed growth of
exponential type. In our case, the growth can be enlarged indefinitely, in some sense, and
this is correlated with the proper choice of the parameter β. Another interesting thing about
the Balázs–Szabados operators is that they are built using only a finite sum and not a series
and, so, the possibility of approximating functions with such a high growth comes as a
surprise. This result is presented in Theorem 1 of Section 2. The key ingredient of its proof
is Lemma 1, which contains an inequality similar to the tail inequalities for the probability
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distributions. We also present, in Remark 3, an example of a super-exponential function
which cannot be approximated by the operators (1) and, thus, we correct the recent result
of ([39], Theorem 1), which gave the impression that every continuous function defined
on [0, ∞) can be approximated on compacts by the operators R[β]

n , although the author
mentions at the beginning of the article, when he defines the operators, that “continuous
functions defined on R+ satisfying a certain growth condition” are considered.

In Section 3, we present a new estimate of the rate of approximation by using a suitable
modulus of continuity. In the literature, there are some estimations of this rate, but they
are valid only for some values of β. We have obtained an estimation that is valid for every
choice of β ∈ (0, 1). In addition, this estimation of the rate is uniform, uses only one
modulus of continuity, and the constant in front of the modulus is explicit. We have used
a modulus of continuity which is appropriate for continuous functions with a finite limit
at infinity because it is known that these are precisely the functions that can be uniformly
approximated by R[β]

n (see [7,8]). We must remark that better estimations can be obtained
for specific values of the parameter β and the value β = 1/2 gives the best rate (see also
the paper of Totik [8] which has arrived at the same conclusion).

In Section 4, we give a characterization of the functions which can be uniformly
approximated in polynomial weight spaces. It is known that polynomial functions of degree
m are mapped by Rβ

n into rational functions with a growth not larger than a polynomial
function of degree m (see [16]), but I could not find a result in the literature that specifies the
functions that can be uniformly approximated in the polynomial weight space. Recently,
by considering a generalization of the operators (1), Agratini ([39], Theorem 5) has given a
negative result by presenting an example of a function which cannot be approximated in
the weighted norm. He has estimated the error of approximation, too, but only pointwise.
Our results from Lemma 3 and Theorem 3 complete Agratini’s results, characterizing the
functions that can be uniformly approximated in the weighted norm.

We present now some notations. Let I = [0, ∞). A function w : I → (0, ∞) will be
called weight. The space of all functions f : I → R with the property that there is M > 0
such that

| f (x)| ≤ M · w(x), for every x ∈ I

is called weight space or weighted space and is denoted by Bw(I). Some authors prefer
the “big O” notation to express the growth rate of a function. In this case, f ∈ Bw(I) is
equivalent to f (x) = O(w(x)). The space Bw(I) is a normed space, endowed with the
w-norm

‖ f ‖w = sup
x∈I

| f (x)|
w(x)

.

We will denote by Cw(I) the space of functions from Bw(I) which are continuous on I.

2. Approximation on Compact Intervals of Super-Exponential Functions

The following lemma is very important in proving approximation results for the
operators of Balázs and Szabados for functions with a high growth. For yn = 1, this is
in fact a tail inequality for the probability distribution attached to the operators (1). We
improve the idea used by Cernoff [44] to prove such inequalities (see also [45]).

Lemma 1. Let β ∈ (0, 1), x ∈ [0, ∞) and δ > 0 be given and consider yn > 0 such that

yn(1− xnβ−1) ≤ e
1

δnβ , for all n ≥ n0, for some n0 ∈ N. Then, for all n ≥ n0, we have

n

∑
k≥(x+δ)nβ

(
n
k

)
(xynnβ−1)k

(1 + xnβ−1)n ≤ C(x, δ) · y(x+δ)nβ

n

nβ
· e−xδ·n2β−1

, (2)

where C(x, δ) = xe
1−x−δ+xe1/δ

δ

δ2

(
xe

1
δ

δ2 + 1
)

.
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Proof. For x = 0, the inequality (2) holds true. Let x > 0 and denote sn = xnβ−1. If sn ≥ 1,
we have k ≥ nsn + δnβ > n, so the sum from (2) reduces to 0 and (2) is true. Consider now
the case sn < 1. We have for every tn ≥ 0

n

∑
k≥(x+δ)nβ

(
n
k

)
(ynsn)k

(1 + sn)n ≤
n

∑
k≥(x+δ)nβ

(
n
k

)
(ynsn)k

(1 + sn)n · e
tn(k−xnβ−δnβ) ·

(
k− xnβ

δnβ

)2

≤ e−tnnsn−tnδnβ

δ2(1 + sn)n

n

∑
k=0

(
n
k

)(
ynsnetn

)k
(

k
nβ
− x
)2

.

Using the same reasoning as in ([6], Lemma 2.1), we have for every a, b > 0:

n

∑
k=0

(
n
k

)
ak
(

k
b
− x
)2

=
1
b2

n

∑
k=0

k2
(

n
k

)
ak − 2x

b

n

∑
k=0

k
(

n
k

)
ak + x2

n

∑
k=0

(
n
k

)
ak

=
a2n2 + an

b2 (1 + a)n−2 − 2xan
b

(1 + a)n−1 + x2(1 + a)n

= (1 + a)n

[(
x− an

b(1 + a)

)2
+

an
b2(1 + a)2

]
.

This implies that

n

∑
k≥(x+δ)nβ

(
n
k

)
(ynsn)k

(1 + sn)n

≤
e−tn(nsn+δnβ)

(
1 + ynsnetn

)n

δ2(1 + sn)n

[
x2
(

ynetn

1 + ynsnetn
− 1
)2

+
n1−2βynsnetn

(1 + ynsnetn)2

]
,

for all tn ≥ 0. We choose tn = 1
δnβ − ln[yn(1− sn)]. Let us observe that for all n ≥ n0 we

have tn ≥ 0 and

e−tn = yn(1− sn)e
− 1

δnβ

e−tn(nsn+δnβ) = y(x+δ)nβ

n · (1− sn)
nsn+δnβ · e−

x+δ
δ

(
1 + ynsnetn

)n
=

(
1 + sne

1
δnβ − sn

)n

(1− sn)n ≤ e
nsn

(
e

1
δnβ −1

)

(1− sn)n ≤ e
xe

1
δ

δ

(1− sn)n

n1−2βynsnetn

(1 + ynsnetn)2 =
n1−2βsne

1
δnβ (1− sn)(

1 + sn

(
e

1
δnβ − 1

))2 ≤ n1−2βsne
1

δnβ ≤ xe
1
δ

nβ

x2
(

ynetn

1 + ynsnetn
− 1
)2

≤ x2(yn(1− sn)etn − 1
)2

= x2
(

e
1

δnβ − 1
)2
≤ x2e

2
δ

δ2n2β
.

We deduce that

n

∑
k≥(x+δ)nβ

(
n
k

)
(ynsn)k

(1 + sn)n ≤ C(x, δ) · y(x+δ)nβ

n

nβ
· (1− sn)nsn+δnβ−n

(1 + sn)n .

With the notation c = δ/x > 0, it remains to prove that

(1− sn)δnβ+nsn−n

(1 + sn)n = en(csn+sn−1) ln(1−sn)−n ln(1+sn) < e−ncs2
n .
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Consider the function H(u) = (cu + u − 1) ln(1− u) − ln(1 + u) + cu2 and let us
show that H(u) < 0, for every u ∈ (0, 1). Indeed,

H′(u) = (c + 1) ln(1− u) +
cu + u− 1

u− 1
− 1

u + 1
+ 2cu,

H′′(u) = − c + 1
1− u

− c
(1− u)2 +

1
(u + 1)2 + 2c

H(3)(u) = − c + 1
(1− u)2 −

2c
(1− u)3 −

2
(u + 1)3 < 0.

Because H′′(0) = H′(0) = H(0) = 0, we deduce H(u) < 0, for every u ∈ (0, 1).

Lemma 2. Consider w(x) = eαxa
for α ≥ 0, a ≥ 1 and 1 > β ≥ a

a+1 . For every compact interval
K ⊂ [0, ∞), we have

lim
n→∞

R[β]
n (w, x) = w(x), uniformly on K.

Proof. Let K = [m, M] be a compact interval included in [0, ∞). Consider δ > 0 such that
α ≤ 1/δ and define

p(x) =
{

w(x), x ≤ M + δ
w(M + δ), x > M + δ

and r(x) =
{

0, x ≤ M + δ
w(x)− w(M + δ), x > M + δ

.

The function w can be decomposed into w(x) = p(x) + r(x) and so∣∣∣R[β]
n (w, x)− w(x)

∣∣∣ ≤ ∣∣∣R[β]
n (p, x)− p(x)

∣∣∣+ ∣∣∣R[β]
n (r, x)− r(x)

∣∣∣.
We prove that both p and r can be uniformly approximated on K. Formula ([6], (2.2))

proves that R[β]
n (1, x) = 1, and using an idea of Shisha-Mond [46], the error of approxima-

tion of p can be estimated using the modulus of continuity by

|R[β]
n (p, x)− p(x)| ≤ 2 ·ω

(
p,
√

R[β]
n (|t− x|2, x)

)
.

Formula (2.4) from [6] gives

R[β]
n (|t− x|2, x) =

x4n2β−2 + xn−β

(1 + xnβ−1)2 ≤ M4n2β−2 + Mn−β,

for every x ∈ K and β ∈ (0, 1) and proves that R[β]
n (|t− x|2, x) converges to 0 uniformly

on K. Because p has finite limit at infinity, it is uniformly continuous on [0, ∞) and, so

ω

(
p,
√

R[β]
n (|t− x|2, x)

)
tends uniformly to 0 on K. This proves the uniform convergence

of R[β]
n p toward p on K.
Now, for every x ∈ K

|R[β]
n (r, x)− r(x)| = R[β]

n (r, x) ≤
n

∑
k

nβ >M+δ

(
n
k

)
(nβ−1x)k

(1 + nβ−1x)n · e
α
(

k
nβ

)a

≤
n

∑
k

nβ ≥x+δ

(
n
k

)
(nβ−1x)k

(1 + nβ−1x)n · e
αkna−1−aβ

.
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We apply Lemma 1 for yn = eαna−1−aβ
. The inequality yn(1− xnβ−1) ≤ e

1
δnβ is equiva-

lent to n1−β

(
1− e

1
δnβ −αna−1−aβ

)
≤ x. However, this is true for sufficiently large n, since

lim
n→∞

n1−β

(
1− e

1
δnβ −αna−1−aβ

)
= lim

n→∞
n1−β ·

(
αna−1−aβ − n−β

δ

)
= lim

n→∞

(
α · na−(a+1)β − 1

δ
· n1−2β

)
≤ 0.

The error of approximation of the function r is bounded by

|R[β]
n (r, x)− r(x)| ≤ x

δ2nβ
· y(x+δ)nβ

n · e−xδ·n2β−1 ≤ C(M, δ)

nβ
· eα(M+δ)nβ+a−1−aβ−mδ·n2β−1

.

Because β ≥ 1/2 and β+ a− 1− aβ ≤ 2β− 1 we obtain that R[β]
n r converges uniformly

to r on K, and the proof of the lemma is complete.

Remark 1. For a = 1 the result of Lemma 2 is true for every β ∈ (0, 1). Indeed, we have

R[β]
n (eαt, x) =

(
1 + xnβ−1e

α

nβ

1 + xnβ−1

)n

.

For every x ∈ [m, M], using (1 + u)n ≤ enu and eu − 1 ≤ ueu, we get(
1 + xnβ−1e

α

nβ

1 + xnβ−1

)n

≤
(

1 + Mnβ−1e
α

nβ

1 + Mnβ−1

)n

≤ e
Mnβ(eα/nβ

−1)
1+Mnβ−1 ≤ eαMeα

.

Now, using |u− v| ≤ | ln u− ln v| ·max(u, v) we evaluate the error in approximating the
exponential function

∣∣∣R[β]
n (eαt, x)− eαx

∣∣∣ ≤ ∣∣∣∣∣n ln

(
1 + xnβ−1e

α

nβ

1 + xnβ−1

)
− αx

∣∣∣∣∣ ·max

(1 + xnβ−1e
α

nβ

1 + xnβ−1

)n

, eαx


≤
∣∣∣∣∣n ln

(
1 + xnβ−1e

α

nβ

1 + xnβ−1

)
− αx

∣∣∣∣∣ · eαMeα

For the logarithm we use u
1+u ≤ ln(1 + u) ≤ u and we obtain

xnβ
(

e
α

nβ − 1
)

1 + xnβ−1e
α

nβ

≤ n ln

(
1 + xnβ−1e

α

nβ

1 + xnβ−1

)
≤

xnβ
(

e
α

nβ − 1
)

1 + xnβ−1 .

Using the inequalities u ≤ eu − 1 ≤ ueu we have

xnβ
(

e
α

nβ − 1
)

1 + xnβ−1 − αx ≤ αxe
α

nβ

1 + xnβ−1 − αx ≤
αx
(

e
α

nβ − 1
)

1 + xnβ−1 ≤ α2x
nβ
≤ α2M

nβ

and

xnβ
(

e
α

nβ − 1
)

1 + xnβ−1e
α

nβ

− αx ≥ αx

1 + xnβ−1e
α

nβ

− αx ≥ − αx2nβ−1e
α

nβ

1 + xnβ−1e
α

nβ

≥ −αM2nβ−1eα.
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Finally, for every x ∈ [m, M] we obtain∣∣∣R[β]
n (eαt, x)− eαx

∣∣∣ ≤ αM max
(

αn−β, Mnβ−1eα
)
· eαMeα

.

Theorem 1. Consider w(x) = eαxa
with α ≥ 0, a ≥ 1 and 1 > β ≥ a

a+1 . For every compact
interval K ⊂ [0, ∞) and for every f ∈ Cw(I) we have

lim
n→∞

R[β]
n ( f , x) = f (x), uniformly on K.

Proof. Let ε > 0. Consider the compact interval J = [min K − ε, max K + ε] ∩ [0, ∞).
Because f /w and w are continuous on the compact J, there is η > 0 such that for every
t, x ∈ J with |t− x| < η we have |( f /w)(t)− ( f /w)(x)| < ε and |w(t)−w(x)| < ε. Let us
define δ = min(η, ε). For every x ∈ K and t ∈ I such that |t− x| < δ, we have t, x ∈ J. So∣∣∣∣ f (t)

w(t)
− f (x)

w(x)

∣∣∣∣ < ε and |w(t)− w(x)| < ε.

For every x ∈ K and t ∈ I such that |t− x| ≥ δ, we can write∣∣∣∣ f (t)
w(t)

− f (x)
w(x)

∣∣∣∣ ≤ 2‖ f ‖w ≤ 2‖ f ‖w ·
|t− x|2

δ2

and

|w(t)− w(x)| ≤ w(t) + w(x) ≤ w(t)− w(x) + 2w(x) ≤ w(t)− w(x) + 2w(x) · |t− x|2
δ2 .

We have proved that, for every t ∈ I and x ∈ K, we have∣∣∣∣ f (t)
w(t)

− f (x)
w(x)

∣∣∣∣ < ε + 2‖ f ‖w ·
|t− x|2

δ2

and

|w(t)− w(x)| < ε + w(t)− w(x) + 2w(x) · |t− x|2
δ2 .

Using the above inequalities and

| f (t)− f (x)| ≤ | f (t)|
w(t)

· |w(t)− w(x)|+ w(x) ·
∣∣∣∣ f (t)
w(t)

− f (x)
w(x)

∣∣∣∣
and applying the operators R[β]

n we deduce that∣∣∣R[β]
n ( f , x)− f (x)

∣∣∣ ≤ ‖ f ‖w

(
ε +

∣∣∣R[β]
n (w, x)− w(x)

∣∣∣+ 2w(x)
δ2 · R[β]

n (|t− x|2, x)
)

+ w(x) ·
(

ε +
2‖ f ‖w

δ2 R[β]
n (|t− x|2, x)

)
.

Using Lemma 2 and the inequality w(x) ≤ w(max K) for every x ∈ K and the fact that
R[β]

n (|t− x|2, x) converges uniformly on K, we obtain that R[β]
n f converges uniformly to f

on K.

Remark 2. The result of Theorem 1 is valid for β ≥ 1/2. For a given β ∈ [1/2, 1), the growth of
the functions cannot be greater than w(x) = eαxa

with α ≥ 0 and a ≤ β
1−β < 1

1−β .
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For a = 1 the result is valid for every β ∈ (0, 1). For β = 2
3 and a = 1 the result is known

from [6]. In [7], the authors proved the approximation property of the operators (1) for β ∈ (0, 2/3]
and the subspace of uniformly continuous functions on I.

Remark 3. There are super-exponential functions which cannot be approximated. Take for example

g(x) = ex
1

1−β
+ε

, with an arbitrary ε > 0. Considering only the last term of the sum which defines
the operators R[β]

n , we have

R[β]
n (g, x) ≥ (nβ−1x)n

(1 + nβ−1x)n · g
(

n1−β
)
= (nβ−1x)n · (1 + nβ−1x)−n · en·n(1−β)ε

.

Using the inequality 1 + nβ−1x ≤ exnβ−1
we deduce that

R[β]
n (g, x) ≥ (nβ−1x)n · e−xnβ · en·n(1−β)ε

= en ln x−(1−β)n ln n−xnβ+n·n(1−β)ε
.

Now, it is not difficult to see that lim
n→∞

R[β]
n (g, x) = +∞, for every x > 0 and β ∈ (0, 1).

Theorem 1 from [39] asserts that the sequence (R[β]
n f ) converges to f on compact sets for every

f ∈ C[0, ∞). However, the example given above proves that an approximation result cannot be true
for continuous functions with an arbitrary growth. In order to be valid, such a result must impose
some limitation on the growth of the function f .

3. Estimation of the Rate of Uniform Approximation

It is known from [7], that R[β]
n f approximate uniformly the continuous function f on

I = [0, ∞) if, and only if, f has a finite limit at infinity. In the same paper, an estimate
of the rate of convergence was given using the modulus of continuity and a modulus
at infinity. We will provide an estimate of the rate of convergence using the following
modulus of continuity

ω∗( f , δ) = sup
x,t∈I

|e−t−e−x|≤δ

| f (t)− f (x)|,

introduced and studied in [47] (a particular case of the modulus introduced in [48–50]). This
modulus is suitable for the uniform approximation of functions by the Balázs–Szabados
operators, since ω∗( f , ·) tends to zero when its argument tends to zero and the function f
has a finite limit at infinity.

Theorem 2. Consider β ∈ (0, 1) and f a bounded and continuous function defined on I having a
finite limit at infinity. Then,∥∥∥R[β]

n f − f
∥∥∥ ≤ (1 + e) ·ω∗

(
f ,
√

max
(
nβ−1, n−β

))
, for every n ∈ N.

Proof. Using the properties of the modulus ω∗ (see the proof of ([47], Theorem 2.1)),
we obtain ∣∣∣R[β]

n ( f , x)− f (x)
∣∣∣ ≤ (1 +

1
δ2

n
· R[β]

n

(∣∣e−t − e−x∣∣2, x
))
·ω∗( f , δn).

It remains to estimate in the uniform norm the following expression:

R[β]
n

(∣∣e−t − e−x∣∣2, x
)
= R[β]

n (e−2t, x)− e2x − 2e−x
[

R[β]
n (e−t, x)− ex

]
.



Mathematics 2021, 9, 1588 8 of 12

Because e−x is a convex function, applying Jensen inequality, we obtain

R[β]
n (e−t, x) ≥ e−R[β]

n (e1,x) = e
−x

1+xnβ−1 ≥ e−x.

As a consequence, we have

R[β]
n

(∣∣e−t − e−x∣∣2, x
)
≤ R[β]

n (e−2t, x)− e−2x.

Let us denote

∆n(x) = R[β]
n (e−2t, x)− e−2x =

1 + xnβ−1e
− 2

nβ

1 + xnβ−1

n

− e−2x, x ≥ 0.

Because the limit
lim

x→∞
∆n(x) = e−2n1−β

is finite and ∆n(x) ≥ 0, there is a sequence (xn) of positive numbers such that

max
x≥0

∆n(x) = ∆n(xn).

This implies that ∆′n(xn) = 0, which is equivalent to

1 + xnnβ−1e
− 2

nβ

1 + xnnβ−1

n

=

2e−2xn

(
1 + xnnβ−1e

− 2
nβ

)(
1 + xnnβ−1)

nβ

(
1− e

− 2
nβ

) .

It follows that

∆n(x) ≤
2
(

1 + xnnβ−1e
− 2

nβ

)(
1 + xnnβ−1)− nβ

(
1− e

− 2
nβ

)
e2xn nβ

(
1− e

− 2
nβ

) .

Using 1− e−u > u− u2

2 for u = 2n−β > 0, we obtain

∆n(x) ≤
2xnnβ−1

(
e
− 2

nβ + 1
)
+ 2x2

nn2β−2e
− 2

nβ + 2n−β

e2xn nβ

(
1− e

− 2
nβ

) .

Finally, using the inequality u
1−e−u < e, for u = 2n−β ≤ 2 and (1+u)2

e2u ≤ 1, for
u = xn > 0, we have

∆n(x) ≤ e max
(

nβ−1, n−β
)
·
(

2xn + x2
n + 1

e2xn

)
< e max

(
nβ−1, n−β

)
.

We choose δn =
√

max
(
nβ−1, n−β

)
in the first inequality of the proof.

Remark 4. The maximum rate of approximation is obtained for β = 1
2 .
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4. Weighted Approximation in Polynomial Weight Spaces

It is known from [16] that operators R[β]
n map a polynomial function of degree m into a

function with a growth not larger than a polynomial function of degree m. In the following
lemma, we extend this result.

Lemma 3. For every β ∈ (0, 1), α ≥ 0, n ∈ N and every x ≥ 0 we have

R[β]
n (1 + tα, x) ≤ Cα(1 + xα),

for some constant Cα > 0 independent of n, β and x.

Proof. For α = 0, we have equality with C0 = 1. For α > 0, let m = dαe ≥ 1. In ([16],
Lemma 2) it was proved that

R[β]
n (tm, x) ≤ Cm(1 + xm), for every x ≥ 0,

where Cm = m ·max1≤j≤m S(m, j) and S(m, j) are the Stirling numbers of the second kind
(see ([51], 24.1.4)).

Applying Hölder inequality we get

R[β]
n (1 + tα, x) = 1 + R[β]

n (tα, x) ≤ 1 +
(

R[β]
n (tm, x)

) α
m ≤ 1 + (Cm)

α
m · (1 + xm)

α
m .

However, it is known that ua − va ≤ (u− v)a, for u ≥ v and a ∈ (0, 1] (see for example
([52], Example 1.1.3)). We deduce that

(1 + xm)
α
m − (xm)

α
m ≤ 1

and
R[β]

n (1 + tα, x) ≤ 1 + (Cm)
α
m (1 + xα) ≤ [1 + (Cm)

α
m ](1 + xα).

Lemma 3 proves that Rβ
nw belongs to the space Cw(I), for w(x) = 1 + xα with α ≥ 0.

We give now a complete characterization of the functions which can be approximated in
the w-norm.

Theorem 3. Let β ∈ (0, 1). Consider α > 0 and w(x) = 1 + xα, x ∈ I. If f ∈ Cw(I), then

lim
n→∞

∥∥∥R[β]
n f − f

∥∥∥
w
= 0

if and only if

lim
x→∞

f (x)
1 + xα

= 0.

Proof. Using the definition of the operators, we deduce that

lim
x→∞

R[β]
n ( f , x)
(1 + x)α

= 0.

For the “if” part, we suppose that

lim
x→∞

f (x)
(1 + x)α

= 0.
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We obtain

lim
x→∞

∣∣∣R[β]
n ( f , x)− f (x)

∣∣∣
(1 + x)α

= lim
x→∞

| f (x)|
(1 + x)α

= 0.

Hence, for ε > 0 there is δ > 0 such that for every x > δ and every n ∈ N

(1 + x)−α|R[β]
n ( f , x)− f (x)| < ε.

For the compact interval K = [0, δ], we apply ([16], Theorem 2) or our Theorem 1 and
deduce the existence of n0 ∈ N such that∣∣∣R[β]

n ( f , x)− f (x)
∣∣∣ < ε,

for every n ≥ n0 and every x ∈ K. This proves that

sup
x≥0

(1 + x)−α
∣∣∣R[β]

n ( f , x)− f (x)
∣∣∣ < ε.

For the “only if” part, let us observe that

∥∥∥R[β]
n f − f

∥∥∥
w
= sup

x≥0

|R[β]
n ( f , x)− f (x)|

(1 + x)α
≥ lim

x→∞

|R[β]
n ( f , x)− f (x)|

(1 + x)α
= lim

x→∞

| f (x)|
(1 + x)α

.

Applying the limit when n tends to infinity, we obtain that limx→∞
| f (x)|
(1+x)α = 0.

Remark 5. As Agratini [39] has remarked, we cannot approximate uniformly in the w-norm all
the functions from the space Cw(I), where w(x) = 1 + xα and I = [0, ∞), α > 0. For α = 2,
Agratini gave as an example the function f (x) = x2, which cannot be uniformly approximated in
the weighted w-norm by R[β]

n f . Our result says that only those functions for which we have

lim
x→∞

f (x)
w(x)

= 0

can be uniformly approximated.
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38. Özkan, E.Y. Approximation Properties of Kantorovich type q-Balázs-Szabados Operators. Demonstr. Math. 2019, 52, 10–19.

[CrossRef]
39. Agratini, O. On a Class of Bernstein-Type Rational Functions. Numer. Funct. Anal. Optim. 2019, 41, 483–494. [CrossRef]
40. Hamal, H.; Sabancigil, P. Some approximation properties of new Kantorovich type q-analogue of Balázs–Szabados operators.

J. Inequal. Appl. 2020, 2020, 159. [CrossRef]
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