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Abstract: A matheuristic approach based on a reduced two-stage Stochastic Integer Linear Pro-
gramming (SILP) model is presented. The proposed approach is suitable for obtaining a policy
constructed dynamically on the go during the rollout algorithm. The rollout algorithm is part of the
Approximate Dynamic Programming (ADP) lookahead solution approach for a Markov Decision
Processes (MDP) framed Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Ca-
pacity (MDDVRPSRC). First, a Deterministic Multi-Depot VRP with Road Capacity (D-MDVRPRC)
is presented. Then an extension, MDVRPSRC-2S, is presented as an offline two-stage SILP model of
the MDDVRPSRC. These models are validated using small simulated instances with CPLEX. Next,
two reduced versions of the MDVRPSRC-2S model (MDVRPSRC-2S1 and MDVRPSRC-2S2) are
derived. They have a specific task in routing: replenishment and delivering supplies. These reduced
models are to be utilised interchangeably depending on the capacity of the vehicle, and repeatedly
during the execution of rollout in reinforcement learning. As a result, it is shown that a base policy
consisting of an exact optimal decision at each decision epoch can be obtained constructively through
these reduced two-stage stochastic integer linear programming models. The results obtained from
the resulting rollout policy with CPLEX execution during rollout are also presented to validate the re-
duced model and the matheuristic algorithm. This approach is proposed as a simple implementation
when performing rollout for the lookahead approach in ADP.

Keywords: reinforcement learning; approximate dynamic programming; rollout algorithm; matheuris-
tic; two-stage stochastic programming; vehicle routing problem

1. Introduction

Realistic modelling goes a long way in supporting effective relief operation in disasters.
Such models allow uncertainties and dynamic updates with richer characteristics to be in-
corporated along with the model objectives. Most importantly, such models can be applied
to various humanitarian operations during a disaster, such as the 2015 Nepal earthquake.

In this event, a 7.8 magnitude earthquake was registered, followed by several after-
shocks resulting in the loss of roughly nine thousand lives. The remainder of the survivors
were in dire need of relief aid [1] and were depending on the efficient delivery of relief
supplies for their survival. Among the critical relief aid is medical supplies [2,3]. Adding
to the challenges is the fact that Nepal is a landlocked country without any sea access,
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as the country is bordered by both China and India. As such, the only access to receive
international aid is through the Tribhuvan Airport, which was flooded with relief aid. This
caused a severe bottleneck, hampering efficient humanitarian operations [4]. On top of
that, efficient relief operations were also hindered by landslides and tremors dismantling
the transportation network, especially the access to remote places where medical supplies
are scarce [5,6]. These challenges can be summarised as a bottleneck problem due to
a single collection point and uncertainties in the road network, further constrained by
limited transport vehicles. Multi-depots, instead of one single distribution point, could
help alleviate the bottleneck problem. Limited vehicles could be made to perform split
delivery and multi-trip operations as a means of compensating for the small number of
vehicles available. After all, according to [7], 50% cost savings could be achieved through
split delivery operations. In addition to the cost incurred by the operation, uncertainties
in the road network had to be addressed and travel time was a concern. Given all these
observations, the Multi-Depot Vehicle Routing Problem with Stochastic Road Capacity
is proposed.

For this case, such a model is considered offline as defined by [8]. From the results
presented in this paper, the offline computation gives a very optimistic solution given
no dynamic elements are accounted for. For the online computation, changes towards
parameters could be observed and re-computation can also be performed such that more
accurate actions or decisions can be made efficiently and optimally, or at least close to
optimality. An exact solution approach, such as the two-stage Stochastic Integer Linear Pro-
gramming (SILP) model, is considered an offline computation approach. In this approach,
an optimal route is computed prior to executing it in real life or real time. Alternatively,
this exact approach could be used multiple times consecutively such that any new changes
of parameter in real life could be adapted and re-computation could be conducted. Hence,
the routing decision could be made in segments. For example, one may compute offline
the whole route from the start of the mission to the end. However, one can also perform
such computations at every node by making small adjustments to the previous parameters
and constraints. Although this method is costly, as a complete route needs to be computed
iteratively exactly, one can reduce the following model such that the computation would
not be so punitive. A better reduction can lead to the separation of the goal of the reduced
model after the initial computation is performed on the original main model. Furthermore,
one may also incorporate the whole strategy within a larger solution framework such
as Approximate Dynamic Programming (ADP) to allow for a more systematic update
of the parameter at each decision point of time. This method is adopted in this work to
incorporate dynamic elements of the problem, such as a deteriorating road capacity.

The curse of dimensionality [9] has been the moving factor in the development of
ADP when solving the Bellman equation [10]. The key has always been about computing
the values of the state sk in the vast explosion of state space S or the value of the action
ak ∈ A(sk) given the state an agent is in. In ADP, these values are approximated to counter
the curse of dimensionality. One of the non-parametric approaches of ADP includes the
lookahead approach, which simulates the uncertain parameters through Monte Carlo
simulation. The lookahead approach can be conducted through the rollout algorithm,
where possible future events unfold from the point of decision onwards. The idea of a one
step lookahead can be made analogous to a chess player that simulates a series of future
events before making the best move. A two step lookahead would then mean that a chess
player is thinking for two consecutive moves instead from the current state of the game.
Any uncertain parameters are sampled instead via Monte Carlo simulation, typically based
on a known stochastic distribution.

Besides uncertain parameter sampling, a future lookahead can only occur via a transi-
tioning of states from the point of making decision sk onwards. This series of transitioning
states is enabled by taking a set of actions according to a certain base policy throughout
the lookahead. In a Vehicle Routing Problem (VRP), the base policy is the complete or
partial route computed to allow the vehicle to perform humanitarian operations. This
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policy can be computed by using a construction heuristic, other specialised heuristics and
even metaheuristics. Moreover, for cases of deterministic lookahead, an exact complete
route could be computed through an Integer Linear Programming (ILP) approach.

In this study, the means to enable the computation of a base policy via an ILP approach
for a Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity (MD-
DVRPSRC) dynamically is proposed by performing ILP iteratively at every decision point.
Without such an approach, computing a complete route from the current state would lead
to a non viable route as the road capacity might change when the next state is observed.
This will prevent the vehicle from passing through certain roads on the pre-computed
route. Here, the Deterministic Multi-Depot VRP with Road Capacity (D-MDVRPRC) and
the two-stage Stochastic Integer Liner Programing (SILP) model, (MDVRPSRC-2S) for
offline computation are presented and validated. The MDVRPSRC-2S is then reduced into
two models that function separately based on the status of the operation for each vehicle:
delivery (MDVRPSRC-2S1) or replenishment (MDVRPSRC-2S2). It is shown that these
models could be used for MDDVRPSRC in the lookahead approach to construct the base
policy on the go, while performing rollout. This is done by iteratively solving the reduced
problem models.

The contribution of this paper is threefold. First, both deterministic and two-stage
SILP models are presented along with two reduced models of the latter. Additionally,
it is also shown that these models can be applied in the rollout setting. Next, it is also
shown that the tremor progression of a disaster’s epicenter can be simulated, influencing
the damage to the road network and thus the capacity of the road. Finally, the base policy
for the rollout can be constructed dynamically on the go by solving the reduced models.

This paper is organised as follows: Section 2 describes the literature review focusing
on the proposed models and rollout method in VRP. Section 3 describes the D-MDVRPRC
and MDVRPSRC-2S problems, where the considerations for the time delay, road damage
and random road capacity are elaborated. The two reduced models (MDVRPSRC-2S1 and
MDVRPSRC-2S2) derived from MDVRPSRC-2S are presented in Section 4 with explana-
tions of how they can be utilised in the rollout. Section 5 shows the numerical validation of
D-MDVRPRC and MDVRPSRC-2S computed offline. MDVRPSRC-2S1 and MDVRPSRC-
2S2 are validated through the rollout application and computational results are discussed.
The research concludes in Section 6.

2. Literature Review

The MDVRPSRC describes the operation of split delivery throughout multi-trip op-
erations from multi-depots while having to consider the stochastic road capacity within
the network.

Different combinations and variations of these problem characteristics are especially
addressed by the humanitarian operations applications. The review paper [11] had shown
that those addressing split delivery VRP would also typically incorporate a multi-trip
operation as a means to address the vehicle limitation problem during such a chaotic time.
This could also be seen in [12–16]. Furthermore, a multi-depot problem is also adopted by
several works to address a more realistic problem. Work that addresses both multi-depot
and split delivery in the humanitarian operations setting can be found in [16–18]. As for
works that addressed both multi-depot and multi-trip operations, this is seen in [19]. For a
more in-depth, rich VRP that incorporates multi-depot, split delivery, multi-trip and road
capacity for the application of humanitarian operations, refer to the work in [11].

Meanwhile, outside the field of humanitarian operations, the same trend could be ob-
served where problem characteristics such as split delivery are usually addressed together
with multi-trip operations [20]. In their work [20], the authors expand the Mixed Integer
Linear Programming (MILP) model of VRP with multiple trips and split the delivery with
time windows as well as heterogeneity of the vehicle fleet for optimised waste collection
operations. A simple rule is applied to the heterogeneous vehicle fleet, where the largest
vehicle should attend the largest collection point of waste.
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In [21], similar considerations of split delivery, multiple trips and heterogeneous
vehicles are addressed for the Fuel Replenishment Problem (FRP) with different types of
fuel. The problem is formulated as an MILP model, where the solutions are compared with
exact computations through a lower bound computed by column generation. Another FRP
is addressed by [22], which considers split delivery, multiple trips, multi products and
time windows as well as a heterogeneous fleet. The loads of vehicle and travel times are
balanced and the model is solved with the sequential insertion heuristic methods. Ref. [23]
resembles our proposed model the most, with the exclusion of road capacity consideration.
Their work consists of solving problems involving split delivery and multi-trip as well as
multi-depot operations for rice distribution among the poor using a homogeneous fleet
of vehicles. Finally, [24] proposed an integer multi commodity flow model based on time
network space planning for both the vehicle and product planning. Through this model,
a split delivery, multi-trip and soft time windows problem is considered to replenish
inventory in the supply chain. Other combinations of different problem characteristics
could be observed from [25], which modeled a distribution problem considering multi-trip
time windows as well as multi-products. Meanwhile, [26] addressed the usage of multi-
depot to ease the travel times, multi-trip as well as time windows with a release date in
the last mile of the distribution operation. In their work, [27] addressed the multi-trip
with time windows for Pickup and Delivery VRP (PDVRP). Here, the roll containers are
delivered while the emptied roll containers are collected according to the availability of the
nurses in multiple hospitals as well as the work time of the drivers. This problem seeks to
minimise the cost of travel as well as the usage of vehicles. This is solved using a Genetic
Algorithm (GA) and the route-first cluster-second approach.

A standalone problem characteristic model can be seen in [28], which deals with
delivery and packaging optimisation amidst the Corona Virus Disease (2019) (COVID-19).
The proposed model addressed the difficulties of supply and demand while managing
social isolation and movement control. Although the sole focus from the perspective
of VRP is split delivery, an interesting consideration is given to reducing the number of
split deliveries as to reduce the risk of infection by multiple contacts, in the event that a
demand point hosted an infected person. Ref. [29] instead focused on the optimisation
of production as well as delivery by incorporating the job scheduling problem and VRP
into the proposed model. The VRP portion of the problem addresses the uncertain travel
time where historical data might be lacking as well as multiple trips with time window
operations. On the other hand, [30] proposed a split delivery VRP that aims to minimise
the total distance travelled. For this problem, customers are separated into two groups
depending on which is more suitable for a split delivery, which leads to an optimised route.
In the humanitarian settings, more standalone problem characteristics of VRP in terms of
split delivery, multi-trip and multi-depot can be observed in [11].

While still rarely addressed within the field of study, road capacity is highlighted in
several works with deterministic and binary road capacity. Integer considerations, as well
as deterministic to dynamic or stochastic road capacity, are also seen. In humanitarian
operation settings, the characteristics of the road are a crucial factor albeit rarely addressed.
As mentioned in [11] the flow model could be the best approach when incorporating road
conditions such as road flow, road capacity and road impedance in a VRP. Such work can
be seen in [31–35]. Moreover [36] associated road conditions by levels through circle-based
areas of disaster from the point of disaster. Disaster affected roads are implied in [37] by
restricting the number of vehicles on a specific arc through a constraint based on the travel
time along the arc that is affected by disaster. On the other hand, [38,39] assumed a binary
road capacity in their problem model. Uncertain road capacity is observed in [40]. Ref. [41]
on the other hand implicitly incorporated road capacity by efficiently providing a rescue
path during disaster through the three objectives that are optimised. Factors, such as the
travel time and the reliability of the road, as well as the safety of the road, are optimised
considering the road congestion and road capacity. Meanwhile, a crude binary form of road
capacity is considered in [42]. In this particular problem, road capacity is rather exclusive
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to the type of vehicle used, namely vans and motorcycles for delivering goods. Narrow
alleys are exclusive to motorcycles and some roads may prohibit the motorcycles but could
be used by the vans. Through the model, the carbon emissions and the cost of replanning
are reduced despite the addition of travel distance. All flow models utilised to describe
a VRP often address road capacity either explicitly or implicitly. Ref. [43], for example,
computes the optimal path for rescue emergency vehicles, taking into consideration the
traffic congestion and the road capacity. Here, the road capacity is implicitly taken into
consideration when the travel time and reliability of a path is computed and optimised.
A dynamic road capacity is considered in [44] under the dynamic constraint for the flow of
a vehicle and capacity of the road. This work addressed the flow of emergency materials
problem where the decision of the dynamic origin of vehicles and the vehicle path are
computed. In [45], the deterministic road capacity is incorporated within the lower level
model to compute the time travel of a link. The optimised path consists of chosen links
acting as the input to the upper model.

In terms of reflecting the damage on the road network due to the disaster, only the
work of [36] can be considered. Here, the region of the network is superimposed on a
circular region with the disaster point as the center. The outer ring network has less damage
and thus less delay while the inner ring, which is closer to the disaster, suffered from more
damage which would cause more delays. Our work differs from [36] as we denote the
damage on each individual road based on the number of intersections of the circular radius
dispersion from the epicenter of the earthquake. This circular radius dispersion is meant to
represent the earthquake tremor radius through its wave-like motion and eruption. While
a circular-based region might seem more natural to reflect the damage on the road network,
ours has the ability to discern individual road damage (at the expense of computation time)
should there be more than one epicenter, as was the case with the Nepal 2015 Earthquake.

The Reinforcement Learning (RL) adoption for stochastic VRP is seen in the work
of [46], which provided the fundamentals or a framework for modelling a single stochastic
VRP via Markov Decision Processes (MDP). This work is extended and modified by the
same author in [47]. The former and latter are without computational results as the
complex Operations Research problem then tends to prohibit an exact solution through
dynamic programming. This necessitates the ADP approach for solving it. The need to
approximate stems from the curse of dimensionality that plagues the framework of RL or
Neuro Dynamic Programming (NDP) [48,49]. Among the ADP approaches is the lookahead
approach for approximating the value of states rather than approximating the function
for the value function itself. The rollout algorithm is one of the lookahead approaches
proposed by [48], applied as part of the policy iteration scheme. In RL application for
Operations Research, such a method was used from as early as 1998, where [50] developed
a rollout algorithm specialised for sequencing problems and also for single VRP [51].
Furthermore, [49] compared the policy obtained from two policy iteration approaches,
namely the optimistic approximate policy iteration and rollout policy where the latter
outperformed the former for the single VRP. In [52], the rollout with a cyclic heuristic is
applied for the application of the Travelling Salesman Problem with stochastic travel time
and single VRP with Stochastic Demand.

Ref. [53] presented both the two-stage stochastic programming approach and the
RL approach to solve for the single VRP with Stochastic Demand, the same as in [51].
However, [54] applied the Monte Carlo simulation instead of going through all the outcome
spaces when performing the single stage and two-stage rollout, respectively. Such methods
reduce computation by up to 65% as compared to [51]. Furthermore, [54] investigated a
different approach with different base policies and different methods for estimating the
value of state.

Ref. [55] eventually emerged with a multi-vehicle VRP with Stochastic Demand by
employing the strategy in clustering the customers first for each respective vehicle. A
deterministic a priori solution is computed for each vehicle for their respective customers.
Should a failure occur, re-optimising through rollout is achieved due to the smaller parti-
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tioned customer nodes. Ref. [56] extends the idea by introducing a dynamic decomposition
mechanism that adapts the clusters at each decision point in the Dynamic and Stochastic
VRP for the problem of VRP with Stochastic Demand and Duration Limit. Furthermore, [56]
proposed families of rollout algorithms including post decision rollout and pre decision
rollout as well as hybrid rollout based on the extension of the MDP framework. The roll-
outs stem from the pre and post decision states as advocated by [57] to tackle the curse
of dimensionality for larger and practical instances. Ref. [58] then went on to extend
the work by addressing the problem of pre-emptive replenishment where the fixed route
heuristic is adapted into a restocking fixed route heuristic. This was assisted by dynamic
programming in evaluating the iterated policies within the local search process. Using
this computed policy, the rollout is performed producing restocking-based rollout policies
for the problem of VRP with Stochastic Demand and Duration Limit with pre-emptive
replenishment. The same idea of applying dynamic programming to evaluating policies
or routes computed by heuristics is highlighted by [59] for a single VRP with Stochastic
Demand with restocking, this time with the hybrid of backward and forward recursion
dynamic programming.

The first to deviate from the stochastic demand problem is [60], which addressed the
VRP with stochastic customer requests, albeit only for a single vehicle. The post decision
rollout algorithm is applied via the cheapest insertion heuristic and the result is compared
using a value function approximation method as well as a greedy heuristic. This was later
combined with the offline ADP through Value Function Approximation (VFA) and the
online lookahead with Post Decision Rollout (PDS-RA) in [61]. Here, the VFA lookup table,
which incorporates the temporal aspect of a customer request as state variables, forms a
base policy to execute rollout that looks ahead through the transition of a detailed state
that includes the spatial aspect of a customer request. Thus, both the temporal and spatial
aspect of a stochastic customer request is addressed.

Finally, we direct the readers to [62–64], who made use of mathematical programming
to obtain a base policy for the rollout of the problem involving a scheduling or inventory
routing problem. For the scheduling problem, [64] applied a deterministic quadratic
programming solution approach to obtain a feasible base heuristic for the rollout in solving
the constrained MDP model. Meanwhile, [62] made use of an MILP rather than any
heuristic to obtain a base policy for the rollout trajectories in order to estimate the value of
the possible next state such that the rollout policy could be obtained for the single vehicle
inventory routing problem. The same approach is applied in [63,65].

Although we too include the mathematical programming approach within the rollout
structure, we differ from the previous mentioned works by constructing the base policy iter-
atively and dynamically using mathematical programming for every transition within the
horizon of rollout. This resulted in a complete base policy for every rollout episode. To the
best of our knowledge, such a method has not been published within the scholarly field.

3. Multi-Depot Vehicle Routing Problem with Stochastic Road Capacity
3.1. Problem Description

In the event of an earthquake, such as those in 2015 in Nepal, emergency shelters are
set up at strategic locations to accommodate as many victims who are seeking medical help
as possible.

To assist in the humanitarian logistic operations of medical supply delivery, homo-
geneous capacitated transport vehicles must travel from their respective depots to these
emergency shelters to deliver medical supplies. Each of them are assigned to deliver
medical supplies to these shelters and travels through connecting nodes and return back to
any depot (not necessarily the depot from which it departed from).

During this operation, a vehicle is allowed to visit both the node and shelter as many
times as possible if it is more efficient to do so. Emergency shelters that have been satisfied
may serve as connecting nodes for vehicles to pass, en-route, to perform its task. Split
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delivery and multiple trips are allowed in order to satisfy all demands given the limited
numbers of vehicles.

The decision maker must also take into account the road capacity along the routes that
lead to the emergency shelters. These road capacities depend on whether the respective
road is a highway, city road or a normal road. Thus the number of vehicles passing a road
must be limited to that road capacity. Each road capacity within the network is stochastic,
following the Poisson distribution representing the uncertain condition of the road when
the disaster strikes. Moreover, each road’s capacity varies over the distribution whose
mean value reflects the damage sustained by the road respectively. These damages are
reflected by the intersection of an earthquake radial tremor circle and the road.

Each distance covered along the roads is proportional to the cost of the operation which
is to be minimised so that the saved cost could be allocated to other critical humanitarian
aid supplies. Additionally, the time travel along the road has an additional delay time
depending on the damage sustained by the road.

The objective is to minimise the total travel time as well as the distance which repre-
sents the cost. Here, it is assumed that the highway road has the highest capacity, followed
by the normal road and finally the city road in general. However, this is assuming no
damage has been sustained by these roads. Otherwise, the capacity would reflect the
damage sustained accordingly. Additionally, all vehicles are assumed to be travelling at a
constant speed of 90 km per hour or per 60 min. From this assumption, the time travel or
the delayed time travelled Ti,j is computed. Finally, it is also assumed that the sampled
road capacities and delayed time travel remained at the same value (non dynamic) despite
multiple trips for offline computation. The problem is modelled as an undirected, incom-
plete graph GG = (N, E). For both D-MDVRPRC and MDVRPSRC-2S, the parameters and
variables are presented in Table 1.

Table 1. Parameters and Variables for D-MDVRPRC and MDVRPSRC-2S.

Parameters

N connecting node set
D depot set
S shelter set
H N

⋃
S
⋃

D
E set of edges E = {(i, j) : i, j ∈ N

⋃
S
⋃

D, i 6= j}
wi demand of emergency shelter i
M set of vehicles
G set of trips
U order index of edge (i, j) in a route
Q maximum capacity of vehicles after replenishment at depot
Ci,j cost incurred if edge (i, j) is travelled
Ti,j time travelled of edge (i, j)
ri,j deterministic road capacity ri,j ∈ Z?, where Z? = Z+ ⋃{0}
ˆri,j stochastic road capacity ˆri,j ∈ Z?

Z random event set where Z = {0, 1} = {z0, z1}: z0 → ˆri,j = 0 and z1 →
ˆri,j > 0

Ω penalty incurred when staying at current node (i) due to random event z0
Pz Probability of edge (i, j) with random event z

Variables

xi,j,u,m,g 1, if vehicle m travel the edge (i, j) ∈ E in the order of u in a route of trip
g ∈ G
0, otherwise

qi,m,g quantity served where qi,m,g ∈ Z? at shelter i by vehicle m on the trip g
yi,j,u,m,g,z 1, if m stays at i on trip g due to z0

0, otherwise
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3.2. Deterministic Integer Linear Programming Model (D-MDVRPRC)

In the deterministic model, the road capacity is deterministic. However, the road
capacity is subjected to damages sustained by the road. Furthermore, the travel time
along the damaged road is extended, representing difficulties when travelling along the
damaged road.

The index u is introduced to represent the consecutive order of edges travelled,
forming a route in trip g such that any nodes in the network could be visited many
times while ignoring the subtour restriction.

The objective is to minimise the total travel cost and total travel time:

min ∑
(i,j)∈E

∑
u∈U

∑
m∈M

∑
g∈G

xi,j,u,m,gCi,j + xi,j,u,m,gTi,j. (1)

The constraints are formulated as follows:

∑
i∈D

∑
j∈S

⋃
N

xi,j,0,m,g = 1 ∀m ∈ M, ∀g ∈ G, (2)

with Constraint (2) ensuring one vehicle m departs only from one depot to other destina-
tions for every one trip, if more than one trip is involved.

∑
i∈S

⋃
N

∑
j∈D

∑
u∈U

xi,j,u,m,g ≤ 1 ∀m ∈ M, ∀g ∈ G. (3)

Constraint (3) ensures vehicle m returns to only (any) one depot for every one trip,
if more than one trip is involved.

∑
i∈S

⋃
N
⋃

D
xi,j,u,m,g − ∑

i∈S
⋃

N
⋃

D
xj,i,u+1,m,g = 0 ∀j ∈ S

⋃
N, ∀u ∈ U, ∀m ∈ M, ∀g ∈ G. (4)

Constraint (4) ensures the vehicle that reaches a node, besides a depot, also comes out
from that node (flow conservation).

∑
m∈M

xi,j,u,m,g ≤ ri,j ∀(i, j) ∈ E, ∀u ∈ U, ∀g ∈ G. (5)

Constraint (5) is the road capacity constraint, which should be valid for each one of
the trips g, not the collective of all trips.

Additionally, constraints (6)–(8) are adopted from [66] to expand the delivery among
shelters in |G| trips. With this formulation, the split delivery is also addressed:

∑
m∈M

∑
g∈G

qi,m,g = wi ∀i ∈ S. (6)
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Constraint (6) ensures that the demand at each of the shelters is satisfied through the
course of all trips.

∑
i∈S

qi,m,g ≤ Q ∀m ∈ M, ∀g ∈ G. (7)

Constraint (7) states that each vehicle can only deliver its maximum capacity Q during
one trip.

(
∑

u∈U
∑
i∈H

xi,j,u,m,g ·Q
)
− qj,m,g ≥ 0 ∀j ∈ S, ∀m ∈ M, ∀g ∈ G. (8)

Constraint (8) links the routing decision variable to the quantity served decision
variable with the possibility of multiple visits to one shelter in one trip, if it is optimal to
do so.

∑
i∈D

∑
j∈N

xi,j,1,m,g = 0 ∀m ∈ M, ∀g ∈ G. (9)

Meanwhile, Constraint (9) prevents a premature return to the depot in case the shelter
is not one step away from the depot.

∑
u∈U

xi,j,u,m,g = 1 ∀(i, j) ∈ E, ∀m ∈ M, ∀g ∈ G. (10)

Furthermore, Constraint (10) ensures only one variable xi,j,u,m,g would carry the value
of one at a specific order u. Lastly, Constraints (10) and (11) ensure that a vehicle can serve
as many shelters provided that it does not violate its maximum capacity when departing
from a depot at each trip. This also leads to the following trips (after the first trip) utilizing
just enough vehicles to serve the remaining demands.

∑
i∈D

∑
j∈(N+S)

xi,j,0,m,g ·Q−∑
i∈S

qi,m,g ≥ 0 ∀m ∈ M, ∀g ∈ G. (11)

3.3. Time Delay and Damage Determination

The delayed travel time for travelling along a damaged road or edge is determined
based on the damage sustained by the road (i, j). The damage sustained by an edge or road
on the other hand is determined by the interception of the radial circle of an earthquake
tremor and the edge. For example, an edge (i, j), having a damage of pi,j = 4, would have
four interceptions from the dispersion radial circle of different radius. Figure 1 illustrates
the earthquake tremor radial dispersion originating from an epicenter affecting the road
network based on the interceptions of the radial circle lines and the edges. Edge (9, 2),
for example, sustained damage of p9,2 = 4.
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Figure 1. Damage Determination based on Interception on Edge due to Dispersion Radial Circle
Representing Earthquake Tremor.

Algorithm 1 shows how the radial dispersion could be simulated using Fibonacci’s numbers.

Algorithm 1 Pseudocode for determining damages on all edges in road network instance.

Require: Instance files
Ensure: edges : damages← sum of intensity or interception

1: create graph network GG = (N, E) using Networkx library (Python):
2: add edges (i, j) ∈ E to the network
3: extracting list undirected edges (i, j) ∈ E from the GG
4: Create even outward radial radius apart by 5 unit up to outermost node in GG
5: extracting Fibonacci sequence up to max radius of tremor
6: propagation tremor’s radius = radius ∈ Fibonacci sequence ⊂ the radius list
7: initialise intensity list and damages dictionary
8: for line i, j in undirected edges list E do
9: reset intensity list

10: for epicenter in list of selected epicenter in Online Python GUI do
11: for radius ∈ radius propagation of earthquake do
12: create 2D line between 2 nodes i and j of undirected line (i, j) using sympify

library
13: create 2D circle line of radius using sympify library from epicenter
14: Obtain list of intersection coordinates using sympify library Python
15: intensity list← length of list of intersection coordinates
16: end for
17: end for
18: pi,j = sum(intensity list)
19: damages : line i, j← pi,j
20: end for
21: return damages
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As mentioned earlier, a constant speed 90 km/hour is assumed for all vehicles. Based
on the distance, which gives the cost Ci,j, the time Ti,j without considering damage, pi,j is
computed in minutes as:

Ti,j =
Ci,j × 60

90
. (12)

For each edge (i, j) ∈ E sustaining damages of pi,j, the time is updated, with delay,
as below:

Ti,j =


Ci,j×60

90 , pi,j = 0
.

Ci,j×60
90 +

(Ci,j×60
90 × pi,j

10
)
, pi,j 6= 0

(13)

3.4. Two-Stage Stochastic Integer Linear Programming Model (MDVRPSRC-2S)

The deterministic problem model can be extended into a two-stage SILP model.
The solution computed based on the two-stage SILP model would result in routes for all
vehicles for all trips, along with a recourse decision should random event z ∈ Z occur due
to random road capacity ˆri,j, ∀(i, j) ∈ E. Here, the variable yi,j,u,m,g,z is introduced as the
recourse rule should a failure of a computed route occur due to road capacity ˆri,j = 0 for
edge (i, j) in the computed route.

Two random events are considered where Z = {0, 1} = {z0, z1}, with z0 → ri,j = 0
and z1 → ri,j > 0. Here, the recourse rule is such that:

yi,j,u,m,g,z =

{
1, stay at i, if z = z0 : ri,j = 0
0, otherwise proceed along a priori route,

(14)

where the variable addresses vehicle m ∈ M journeying a computed route if it should stop
at current nodes i in the event of z on the trip g ∈ G. For example, the route: (0–7–4–7–0)
in Figure 1 for one trip is computed for vehicle m that is currently at a depot (node 0).
This vehicle is assigned to serve node 4, which is the shelter. If random event z0 occurred
where r0,7 = 0, a recourse rule would prevent m from moving. Instead, m remains at the
depot (node 0). Otherwise, if z1 is observed where r0,7 > 0, m should proceed according
to the pre computed route to node 7. Therefore, part of the solution computed by the
two-stage programming would be as such: (0[0,7]–7[7,4]–4[4,7]–7[7,0]–0). Although such
a rule is rather obvious, the aim is to compute the best route for all trips. This is done
while taking into consideration the random events z (as is done in objective (15)) that might
happen once the route is computed as well as incorporating the defined recourse rule
yi,j,u,m,g,z. The route computed by this approach is thus different than the route computed
deterministically where logical rules or decisions could be applied later in real time practice
when a route failure occurs.

Here, the objective is to minimise the total travel cost and total travel time, taking into
consideration of the probability of event z and the recourse variable y:

min ∑
(i,j)∈E

∑
u∈U

∑
g∈G

∑
m∈M

xi,j,u,m,gCi,j + xi,j,u,m,gTi,j + 2 ∑
(i,j)∈E

∑
u∈U

∑
m∈M

∑
g∈G

∑
z∈Z

Pzyi,j,u,m,g,zΩ. (15)

The Constraints (1)–(11) hold true for the two-stage SILP model except for Constraint (5).
Furthermore, Constraint (16) links the recourse rule to the routing decision variable xi,j,u,m,g
and the stochastic decision variable yi,j,u,m,g,z. Here, if random event z0 occurs, a recourse
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decision rule would dictate that vehicle m remains at i despite binary xi,j,u,m,g computed
as “True”:

xi,j,u,m,g − yi,j,u,m,g,0 = 0 ∀i, j ∈ E, ∀u ∈ U, ∀m ∈ M, ∀g ∈ G. (16)

Meanwhile, Constraint (17) ensures that vehicle m proceeds with path (i, j) for random
event z1:

yi,j,u,m,g,1 = 0 ∀i, j ∈ E, ∀u ∈ U, ∀m ∈ M, ∀g ∈ G, (17)

and finally constraint (5) is adapted for random road capacity:

∑
m∈M

xi,j,u,m,g ≤ ˆri,j ∀(i, j) ∈ E, ∀u ∈ U, ∀g ∈ G. (18)

3.5. Random Road Capacity

Among the many random distributions chosen, Poisson distribution suits the MDVRPSRC-
2S well as it is applied for a discrete random distribution for online computation. The Pois-
son distribution denotes the probability distribution of a random value at a given interval
that is given by Equation (19) as:

P(x) =
µx × e−µ

x!
. (19)

The general formulation of Poisson distribution is adapted for the case of random
road capacity ˆri,j in Equation (20):

P( ˆri,j) =
µ

ˆri,j
i,j,k × e−µi,j,k

ˆri,j!
. (20)

The updated random road capacity ˆri,j for all edges (i, j) ∈ E is observed during
the triggered event (for online computation, this is when any vehicle arrives at their
destination). This updated random road capacity consists of all road capacities for each
of the edges that are observed by the agent in the online simulation. These random
road capacities are assumed to remain unchanged throughout the duration onwards
until the next triggered event. For the offline computation, a suitable interval is chosen
by considering when a delivery mission is normally executed in the aftermath of the
earthquake disaster.

In the online computation, the applied duration in updating the random road capaci-
ties is the duration between two consecutive decision points (Tk − Tk−1). At both decision
points, one or multiple vehicles first arrive at the destination that was previously assigned
in decision point (k− 1).

Based on Equation (20), it is clear that the task is to find a suitable mean value µi,j,k
in order to obtain the probabilities of the stochastic road capacity for all edges at time k.
In this distribution model, a suitable mean value µi,j,k is the road capacity over an interval
of time. µi,j,k is computed by considering the dynamic updated maximum road capacity of
the said edge (i, j), ri,j,max,Tk minus the deteriorating capacity of the road, (δi,j).

Given the severity of a disaster such as an earthquake, the road capacity tends to
degrade over time for the online and dynamic cases. Taking that into consideration,
the random Poisson distribution at time Tk is said to have a mean road capacity µi,j,k
of edge (i, j) over the interval of Tk − Tk−1. In the offline computation case, such as the
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two-stage SILP approach, a suitable interval value is chosen and Tk is considered as the
time at which the road capacity is at its full capacity ri,j,max. Mean road capacity µi,j,k is
then computed as:

µi,j,k = ri,j,max,Tk − δi,j,N , (21)

where the value of δi,j,N is a normalised value of δi,j in the range [0, ri,j,max,Tk ] ∈ R.
Furthermore, the mean road capacity of an edge (i, j), µi,j,k computed in Equation (21)

is also the maximum capacity of the edge when sampling is made at time Tk. This means
an assumption is made that the edge has an average of the maximum road or edge capacity
during the interval of Tk − Tk−1. Therefore, in the dynamic and online operation, the maxi-
mum road capacity in the next observation k + 1 is updated in Equation (22). This is also
the reason why the sampled random road capacity is bounded by the value of the average
road capacity.

ri,j,max,Tk+1
= µi,j,k. (22)

The random Poisson distribution mean µi,j,k is thus translated as the mean road capac-
ity observed over the interval of Tk − Tk−1 at the time Tk, following the two assumptions of
Poisson distribution:

• The mean does not change over observed duration Tk − Tk−1.
• The events remain independent of each other.

The value of δi,j is determined by the maximum road capacity of the edge at time
Tk, a constant damage parameter from the interception of the edge and the radial line
of tremor dispersion of the earthquake, pi,j. This also includes the interval between the
current decision point and previous decision point Tk − Tk−1. Here, δi,j is assumed to be
proportional to the damage rate pi,j ∈ R:

δi,j ∝ pi,j. (23)

It makes sense to relate that the more damage an edge sustained, the more likely that
the road capacity of the edges deteriorates from its maximum capacity.

At the same time, δi,j is proportional to the time interval between the current and
previous decision points given as:

δi,j ∝ (Tk − Tk−1). (24)

Equation (24) is proposed based on the assumption that should the interval between
two decision points be fairly small, such as five minutes, it would not make sense that the
road capacity would change so much from its previous road capacity. However, if the time
interval is large, such as 100 min, it stands to reason that the road capacity might have
reduced over time. As such, the relationship between δi,j and the damages of the respective
edges pi,j, as well as the interval, can be formulated as found in Equation (25):

δi,j ∝ pi,j × (Tk − Tk−1), (25)

or

δi,j = P× (pi,j)× (Tk − Tk−1), (26)
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where P is a constant. The value of µi,j,k in Equation (20) should remain a positive value
within the capacity of the edges. Thus, the value of δi,j is normalised in range (0, ri,j,max,Tk ].
Furthermore, the value obtained in Equation (26) should be normalised, given by the
general normalisation equation:

normalised δi,j,N =
δi,j −min range
δi,j,max − δi,j,min

× (max range + min range), (27)

where both the minimum range and minimum value of δi,j are 0, and the maximum value
of δi,j is given as:

δi,j,max = P× pi,j,max × (Tk − Tk−1)max

= P×maximum number of intersections in dictionary× 2

× (maximum value of time matrix),

(28)

where an extreme interval time assumes that the decision is next triggered after a vehicle
arrives at the farthest destination. This is denoted by the maximum value in the time
matrix. To account for any delay associated by the arrival time, the maximum value of the
time matrix is multiplied by two.

Once the value of µi,j,k is obtained from Equation (21), the random stochastic road
capacity ˆri,j can be computed using the numpy library in Python:

ˆri,j = np.random.poisson(mean = µi,j,k ).

Finally, the random road capacity is bounded by µi,j,k as the upper limit:

ˆri,j =

{
ˆri,j, ˆri,j < µi,j,k

µi,j,k, ˆri,j > µi,j,k.

4. Reduced Two-Stage Stochastic Integer Linear Programming Model for
Rollout Algorithm
4.1. Online MDP MDDVRPSRC Lookahead Approach

In the online, stochastic and dynamic versions of the problem, the MDDVRPSRC is
modelled in MDP with a PDS structure [57]. The ADP solution approach is adopted to
compute for a near optimal policy. In this paper, the solution approach is briefly explained
instead of the MDP model formulation as the MDP model is not the focus of this paper.

The stochastic and dynamic problems (formulated in MDP) seek an optimal policy
π? that maximises the total rewards R(sk, Aπ?

(sk)). The total rewards are obtained upon
making a decision, starting from the initial state s0 to the next state s1 until the end state
sK. Based on the principle of optimality [10], a policy is optimal if the decision or action
taken at every decision point is optimal (a?) such that π? : sk → a?k , where a?k = Aπ?

(sk).
The Bellman equation [10] can be rewritten such that a? is computed in Equation (29) as:

a?k = arg max
ak∈A(sk)

(R(sk, ak) + λkE{Vk+1(sk+1)}), (29)

where the conventional approach is to estimate the next state value in order to compute for
the optimal decision or action as in Equation (30):

a?k = arg max
ak∈A(sk)

(R(sk, ak) + λkE{Vk+1(sk+1)}). (30)

However, such an approach leads to the computation of expectation, where the out-
come space needs to be included. By introducing the PDS structure [57], as in Equation (31):

Vak
k (sak

k ) = E{Vk+1(sk+1)}, (31)
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the exhaustive computation can be reduced as in Equation (32):

a?k = arg max
ak∈A(sk)

(R(sk, ak) + λkVak
k (sak

k )). (32)

The task is then to first approximate the value of post decision state instead and then
compute the optimal action as in Equation (33):

a?k = arg max
ak∈A(sk)

(R(sk, ak) + λkVak
k (sak

k )). (33)

The approximated value of the post decision state seen in Equation (33) could be
obtained through the averaged rollout return after the N number of the Monte Carlo simu-
lation for each PDS following the basic pseudo Algorithm 2 (see [8]). Here, the expected
rollout return B(πB(sak

k )
, k + 1, K) [67] is obtained per rollout episode until the end horizon

K following a policy πB(sak
k )

, which is obtained by B given the current state sk:

B(πB(sak
k )

, k + 1, K) = E
π
B(s

ak
k )

{
K−1

∑
i=k+1

λi−k+1R(si, AπB(sk+1)(si))|sk, ak

}
.

In this approach, B is typically a heuristic. However, recent advancements of the
rollout show that B could also be by any method to obtain policy πB(sk+1)

, including
mathematical programming.

Algorithm 2 Compute Va
k (s

a
k) (as shown in [8] based on PDS-RA proposed by [67])

Require: sk, λ, ak
Ensure: Va

k (s
a
k)

1: Intialise n, k, R(sk, ak), Bn

2: sak
k = SM,a(sk, ak)

3: πB(sa
k)
← B(sak

k )

4: while n ≤ N do
5: sa ← sa

k
6: while k 6= K do
7: R(sk, ak) = R(sk, ak) + λkR(sk, ak)
8: sk = SM,W(sa, Wk+1(ω(k + 1)))
9: ak ← A

πB(sa
k )(sk)

10: sa = SM,a(sk, ak)
11: k = k + 1
12: end while
13: B̂n(πB(sa

k)
, k + 1, K)← R(sk, ak)

14: Va
k

n
(sa

k) = Va
k

n−1
(sa

k) +
1
n
(

B̂n(πB(sa
k)

, k + 1, K)−Va
k

n−1
(sa

k)
)

15: n = n + 1
16: end while
17: return Va

k
N
(sa

k)

In the online MDDVRPSRC, the decision ak is a vector in a decision space A(sk) at
state sk. The decision is to assign the next destination for all vehicles at every decision
point k,

ak = a ∈ H|M| = [a1, a2, ....a|M|] ∈ A(sk),

where A(sk) is defined as:
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A(Sk) = {ak ∈ H|M| :

am = j, ∀{m ∈ M′ : i = lm, j 6= i, ri,j > 0, wj 6= 0, qm 6= 0, j ∈ Om : Om = S}
am = j, ∀{m ∈ M′ : i = lm, j 6= i, ri,j > 0, ∑

h∈H
wh 6= 0, qm 6= 0, j ∈ Om : Om = H ∩ S}

am = j, ∀{m ∈ M′ : i = lm, j 6= i, ri,j > 0, ∑
h∈H

wh 6= 0, qm = 0, j ∈ Om : Om = D}

am = j, ∀{m ∈ M′ : i = lm, j 6= i, ri,j > 0, ∑
h∈H

wh 6= 0, qm = 0, j ∈ Om : Om = H ∩ D}

am = j, ∀{m ∈ M′ : i = lm, j 6= i, ri,j > 0, ∑
h∈H

wh = 0, i 6∈ D, j ∈ Om : Om = D}

am = i, ∀{m ∈ M′ : i = lm, j 6= i, ri,j = 0 ∀(i, j) ∈ E, ∑
h∈H

wh 6= 0, qm = 0}

am = j, ∀{m ∈ M′ : i = lm, j = i, ∑
h∈H

wh = 0, i ∈ D}

am = lm, ∀{m ∈ M \M′, }
}

where M′ is a set of arrived vehicles and qm is the dynamic capacity of vehicle m. Fur-
thermore, Om is defined as the set of immediate locations a vehicle can go to next based
on the road network. From this set, an optimal ã?m is selected via computation as seen in
Equation (34).

To solve Equation (33) however, the decision space A(sk) could be too large for
obtaining good solution within reasonable computation efforts. We thus propose that for
every decision point k:

a?k ≈ ã?k ∈ H|M| = [ã?1 , ã?2 , ....ã?|M|] ∀k,

and thus for every k and for every vehicle m ∈ M′:

ã?m = arg max
am∈Om

(R(sk, am) + λkVam
k (sam

k )) ∀(k, m). (34)

Although ã?m is computed for each vehicle by performing the rollout, it is observed for
a short horizon and moderate or small Monte Carlo simulations; this proposed approach
yields good results for the MDDVRPSRC. This is seen in the online computation results
presented in Section 5.

Furthermore, matheuristic is applied where the base policy πβ(sa
k)

obtained is con-
structed on the go, based on the iterative computation of the reduced two-stage SILP
problems (MDVRPSRC-2S1 and MDVRPSRC-2S1 in Section 4.2). As such, the proposed al-
gorithm deviates from the PDS–RA algorithm in Algorithm 2 as illustrated in Algorithm 3.
Algorithm 3 is then extended to Algorithm 4 to compute for ã?m.

Here, the base policy πβ(sa
k)

is constructed on the go based on every first decision of the
mathematical programming solution policy at the lookahead rollout decision time k, which
is iterated over K decision points in one Monte Carlo episode. Ideally, the rollout would be
performed to lookahead until the end decision point, which is the end horizon of the MDP
problem. However, K in the rollout algorithm could mean any determined horizon as far
as how one wished to lookahead in future subject to computation constraint. At every
rollout decision point k, CPLEX is called in the Python program to compute πCPk(sk)

given
the rollout current state sk (Figure 2). The policy πCPk(sk)

is simply a route with the goal
to either replenish at a depot (MDVRPSRC-2S2) or to serve a shelter (MDVRPSRC-2S1)
depending on the capacity of the vehicle in the rollout lookahead state sk. Depending
on the capacity of the vehicle, one of the two reduced two-stage SILP model is solved
(Figure 2). The first decision within the computed policy is the action or decision for the
lookahead rollout state at which CPLEX is executed for, πCPk (sk).
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Randomly changing road capacity at every decision point may disrupt a route com-
puted offline. Hence the policy computed by CPLEX could not be applied directly through-
out the one episode rollout (πβ(sa

k)
6= πCPk(sk)

). Instead, the first decision of the policy
πCPk(sk)

is taken as part of the base policy for the lookahead state k. The process continues
until horizon K where the base policy πβ(sa

k)
would then be fully constructed for one Monte

Carlo simulation episode. This lookahead simulated episode is constructed based on the
policy computed on the go to transition to the next lookahead rollout state sk+1 as well
as by the sampled random information Wk+1 of episode n observed during the rollout
decision point k which in this work is the road capacities: ˆri,j, ∀(i, j) ∈ E←Wk+1(n(k + 1)).
In Algorithms 2–4, the post decision state during lookahead episode sa is differentiated
from sa

k to avoid confusion.

Figure 2. Proposed Matheuristic Rollout Concept for One Monte Carlo Episode.

The post decision state value which the rollout is executed for in Equation (34),
Vam

k (sam
k ) is then approximated towards the end of Algorithm 3. For every potential

decision am ∈ Om, the respective post decision state value Vam
k

N
(sam

k ) is computed from
Algorithm 4 to solve Equation (34). This holds true for |Om| 6= 1, otherwise the value of ã?m
is obvious. Based on the approximated post decision state value for every approximated
ã?m obtained in Algorithm 4, the optimal decision a?k is then approximated and applied in
the MDP at decision point k.
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Algorithm 3 Rollout Algorithm to Compute Vam
k (sam

k )

Require: sk, λ, am

Ensure: Vam
k (sam

k )
1: Intialise n, k, R(sk, am), Bn

2: sam
k = SM,a(sk, am)

3: while n ≤ N do
4: sa ← sam

k
5: while k 6= K do
6: R(sk, am) = R(sk, am) + λkR(sk, am)
7: sk = SM,W(sa, Wk+1(n(k + 1)))
8: πCPk(sk)

← CPLEXk(sk)

9: πBsa
k
(sk)← πCPk(sk)

(sk)

10: am ← A
πB(sa

k )(sk)
11: sa = SM,a(sk, am)
12: k = k + 1
13: end while
14: B̂n(πB(sa

k)
, k + 1, K)← R(sk, am)

15: Vam
k

n
(sam

k ) = Vam
k

n−1
(sam

k ) +
1
n
(

B̂n(πB(sa
k)

, k + 1, K)−Vam
k

n−1
(sam

k )
)

16: n = n + 1
17: end while
18: return Vam

k
N
(sam

k )

Algorithm 4 Extended from Algorithm 3 to Compute ã?m
Require: sk, λ, ak
Ensure: a?m

1: for am ∈ Om at decision point k do
2: Initialise n, k, R(sk, ak), Bn

3: while n ≤ N do
4: sam

k = SM,a(sk, am)

5: sa ← sam
k

6: while k 6= K do
7: R(sk, am) = R(sk, am) + λkR(sk, am)
8: sk = SM,W(sa, Wk+1(n(k + 1)))
9: πCPk(sk)

← CPLEXk(sk)

10: πBsa
k
(sk)← πCPk(sk)

(sk)

11: am ← A
πB(sa

k )(sk)
12: sa = SM,a(sk, am)
13: k = k + 1
14: end while
15: B̂n(πB(sa

k)
, k + 1, K)← R(sk, am)

16: Vam
k

n
(sam

k ) = Vam
k

n−1
(sam

k ) +
1
n
(

B̂n(πB(sa
k)

, k + 1, K)−Vam
k

n−1
(sam

k )
)

17: n = n + 1
18: end while
19: f : Vam

k
N
(sam

k )→ am
20: end for
21: ã?m = arg max

am∈Om

f

22: return ã?m
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4.2. Reduced Two-Stage Stochastic Integer Linear Programming Model

In order to execute CPLEX in the rollout algorithm iteratively with multiple Monte
Carlo episodes and a suitable horizon of lookahead, the ILP model of the MDVRPSRC-
2S needed to be substantially reduced. Since it is a lookahead approach, the setup of
the problem should retain the same characteristics, such as the uncertain road capacity.
However, the problem task is separated into two and reduced substantially due to the
online solution that is required instead of the offline solution.

Since the rollout is executed only for a single vehicle, the problem in Section 3.4 is
reduced to a single vehicle version of the problem. In this reduced version, the vehicle has
only a single task, which is to either reach one emergency shelter (MDVRPSRC-2S1) and
deliver the medical supply or to replenish its capacity if the total demand is still not fully
satisfied (MDVRPSRC-2S2). These two tasks eliminate the requirement for both multi-trip
and split delivery. Therefore, both the decision variable qi,m,g and parameter or index g ∈ G
are no longer required. Due to flexibility needed in reusing edges within a completed
route, index u is still needed to arrange the edges forming the route and for allowing
some subtour.

The same approach is taken when considering the random road capacities as well as
their probability values from the random distribution as in Section 3.5. The online approach
is taken where the interval is taken as the dynamic Tk − Tk−1. Therefore, the deterioration
factor changes dynamically as in Equation (26). Furthermore, the mean µi,j,k of the distri-
bution of all edges changes accordingly based on the dynamic maximum road capacity
ri,j,max,Tk due to Equation (22). The road capacity observed at the point of decision in the
lookahead episode n is: ˆri,j∀(i, j) ∈ E←Wk+1(n(k + 1)), where Wk+1 is obtained from the
random distribution. Finally, the time delay for a damaged road is considered as elaborated
in Section 3.3.

For both MDVRPSRC-2S1 and MDVRPSRC-2S2, the parameters and variables in
Table 2 are applied.

Table 2. Parameters and Variables for MDVRPSRC-2S1 and MDVRPSRC-2S2.

Parameters

N connecting nodes set
D depot set
S shelter set
S′ unserved shelter set S′ ⊂ S
H N

⋃
S
⋃

D
E set of edges E = {(i, j) : i, j ∈ N

⋃
S
⋃

D, i 6= j}
wi demand of emergency shelter i
M set of vehicles
U order index of edge (i, j) in a route
lm current position of arrived vehicle m
Q maximum capacity of vehicles after replenishment at depot
Ci,j cost incurred if edge (i, j) is travelled
Ti,j time travelled of edge (i, j)
ˆri,j stochastic road capacity ˆri,j ∈ Z?

Z random event set where Z = {0, 1} = {z0, z1}: z0 → ˆri,j = 0 and z1 →
ˆri,j > 0

Ω penalty incurred when staying at current node (i) due to ˆri,j = 0
Pz Probability of edge (i, j) with random event z

Variables

xi,j,u,m 1, if vehicle m travel the edge(i, j) ∈ E in the order of u in a route
0, otherwise

yi,j,u,m,z 1, if m stays at i due to z0
0, otherwise



Mathematics 2021, 9, 1572 20 of 44

4.2.1. Model for Delivery (MDVRPSRC-2S1)

The model where the vehicle is en-route for delivery (if the vehicle capacity is not
empty) will have the objective of minimising the total travel cost and total travel time,
taking into consideration the probability of event z and the recourse variable y:

min ∑
(i,j)∈E

∑
u∈U

∑
m∈M

xi,j,u,mCi,j + xi,j,u,mTi,j + 2 ∑
(i,j)∈E

∑
u∈U

∑
m∈M

∑
z∈Z

Pzyi,j,u,m,zΩ. (35)

∑
j 6=lm

j∈S
⋃

N

xi,j,0,m = 1 ∀m ∈ M, i = lm, (36)

Constraint (36) ensures only one vehicle m departs from its current location at decision
point k. Vehicle m is not allowed to travel to depot since it still has capacity and there is
still an unserved shelter.

∑
i∈S

⋃
N
⋃

D
⋂

S′
∑
j∈S′

∑
u∈U

xi,j,u,m = 1 ∀m ∈ M. (37)

Constraint (37) ensures one vehicle m arrives at an unserved shelter.

∑
i∈S

⋃
N
⋃

D
⋂

S′
xi,j,u,m − ∑

i∈S
⋃

N
xj,i,u+1,m = 0 ∀j ∈ S

⋃
N
⋂

S′, ∀u ∈ U, ∀m ∈ M. (38)

Constraint (38) ensures the vehicle that reaches a node (besides any unserved shelters
and depot) also comes out from that node (flow conservation).

xi,j,u,m − yi,j,u,m,0 = 0 ∀i, j ∈ E, ∀u ∈ U, ∀m ∈ M. (39)

Meanwhile Constraint (39) links the recourse variable to the decision variable x.

yi,j,u,m,1 = 0 ∀i, j ∈ E, ∀u ∈ U, ∀m ∈ M (40)

and finally constraint (5) is adapted to form the random road capacity constraint (41):

∑
m∈M

xi,j,u,m ≤ ˆri,j ∀(i, j) ∈ E, ∀u ∈ U. (41)

4.2.2. Model for Replenishment (MDVRPSRC-2S2)

This model has a vehicle en-route for replenishment (if the vehicle capacity empty)
with the objective to minimise the total travel cost and total travel time, taking into consid-
eration of the probability of event z and the recourse variable y:

min ∑
(i,j)∈E

∑
u∈U

∑
m∈M

xi,j,u,mCi,j + xi,j,u,mTi,j + 2 ∑
(i,j)∈E

∑
u∈U

∑
m∈M

∑
z∈Z

Pzyi,j,u,m,zΩ. (42)

∑
j 6=lm

j∈S
⋃

N
⋃

D

xi,j,0,m = 1 ∀m ∈ M, i = lm. (43)
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Constraint (43) ensures one vehicle m departs only from its current location at decision
point k.

∑
i∈S

⋃
N

∑
j∈D

∑
u∈U

xi,j,u,m = 1 ∀m ∈ M. (44)

Constraint (44) ensures one vehicle m arrived at a depot.

∑
i∈S

⋃
N

xi,j,u,m − ∑
i∈S

⋃
N
⋃

D
xj,i,u+1,m = 0 ∀j ∈ S

⋃
N
⋂

D, ∀u ∈ U, ∀m ∈ M. (45)

Constraint (45) ensures the vehicle that reaches a node (besides depot) also comes out
from that node (flow conservation). Furthermore, Constraints (39)–(41) are also applied for
this model.

5. Computational Results and Discussions

The computational results obtained here are geared towards:

• The validation of the deterministic and stochastic (D-MDVRPRC and MDVRPSRC-2S)
models;

• The validation and application of the reduced models (MDVRPSRC-2S1 and MDVRPSRC-
2S2) in the MDDVRPSRC MDP model, and

• The application of the matheuristic proposed in the MDDVRPSRC.

While performing the validation test, comparative results are obtained between the
proposed D-MDVRPRC and MDVRPSRC-2S models. To some degree, the offline and
online computation are evaluated together. Where the online computation is concerned,
the functionality of the reduced (MDVRPSRC-2S1 and MDVRPSRC-2S2) models applied
in PDS–RA are shown. Since different behaviors of the vehicles are modelled in MDP,
different results are to be expected.

The offline deterministic and stochastic models (D-MDVRPRC and MDVRPSRC-2S)
are developed in Python 2.7 where CPLEX is executed through the DOCPLEX API for
Python. Furthermore, the laptop computer used is running on IntelR CoreTM i7-7500U
CPU at 2.70–2.90 GHz with 20 GB RAM. In Table 3, the relevant parameters configured to
run both the offline and online models are shown.

Table 3. Parameter Configuration.

Parameter Value

Deterioration Propotional Constant P 0.1
Ω 200
Vehicle Speed 90 km/h
Vehicle Capacity, Q 50
Monte Carlo Simulation 3
Lookahead Horizon K 7

To illustrate the scenario of a disaster, the disaster in Nepal 2015 is referred to, and the
simulated test instances are developed. The road network forms the undirected, incomplete
graph. Since the purpose of the test is to validate a problem with a road capacity issue,
typical benchmarks, such as Perl, Gaskell, and Christofides, are not considered suitable.
Therefore, new simulated test instances are created to highlight some issues with the road
capacities and the delivery process. Among the instances created, 18 were applied and the
characteristics are shown in Table 4.
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Table 4. Parameter Configuration.

Instance Depot Shelter Nodes Vehicle Total Demand Road Capacity

D3N8S3_678_4 3 3 8 4 550 6, 7, 8
D3N8S3_678_8 3 3 8 8 550 6, 7, 8

D3N8S3_678_15 3 3 8 15 550 6, 7, 8
D3N8S3_234_4 3 3 8 4 550 2, 3, 4
D3N8S3_234_8 3 3 8 8 550 2, 3, 4

D3N8S3_234_15 3 3 8 15 550 2, 3, 4
D4N11S4_678_4 4 4 11 4 550 6, 7, 8
D4N11S4_678_8 4 4 11 8 550 6, 7, 8
D4N11S4_678_15 4 4 11 15 550 6, 7, 8
D4N11S4_234_4 4 4 11 4 550 2, 3, 4
D4N11S4_234_8 4 4 11 8 550 2, 3, 4
D4N11S4_234_15 4 4 11 15 550 2, 3, 4
D5N13S5_678_4 5 5 13 4 650 6, 7, 8
D5N13S5_678_8 5 5 13 8 650 6, 7, 8
D5N13S5_678_15 5 5 13 15 650 6, 7, 8
D5N13S5_234_4 5 5 13 4 650 2, 3, 4
D5N13S5_234_8 5 5 13 8 650 2, 3, 4
D5N13S5_234_15 5 5 13 15 650 2, 3, 4

More difficult instances are available for future work, which can be applied for online
computation. Computation within reasonable time for both deterministic and stochastic
model proved to be prohibitive for instance D6N16S6 (with 6 depots, 16 connecting nodes
and 6 shelters) onwards. As such, only the results with listed instances are presented in
this paper.

Three road networks that were tested can be seen in Figures A1–A3 with an epicenter
of an earthquake roughly at the lower center part of all the road networks in the test
instances (specific coordinates: (460, 180)). The blue, brown and yellow nodes are the
depots, connecting nodes and emergency shelters respectively. The problem is modelled as
the undirected, incomplete graph, where no node is completely connected to all other nodes
and the distance is computed based on the Euclidean distance formulation. The number at
the center of the edge represents the capacity of the road. The tuple (6, 7, 8) represents the
maximum road capacity of a highway city road, a normal road, and a highway respectively
without taking the damage factor into consideration. A tighter maximum road capacity
tuple (2, 3, 4) is also introduced in some of the instances tested to study the difference in
results as compared to the original maximum road capacity setting (6, 7, 8). In the road
network, the inner part edges are city roads while the outer part of the edges is the highway.
In between the outer and inner regions are the normal roads. In the D-MDVRPRC model,
the road capacity does not change after computing the maximum road capacity with respect
to the damages at the initial stage. Meanwhile, in the MDVRPSRC-2S model, the capacity
of the road is sampled randomly as described in Section 3.5 for offline computation. In the
online simulation (rollout using MDVRPSRC-2S21 and MDVRPSRC-2S2), the road capacity
changes, as can be seen in Figure A4 as compared to Figure A1. In Figure A4, it could be
seen that shelters are all served and the vehicles are en-route back to the depot. At the
simulated time (1152 min), which translated into an almost full day (19 hours and 12 min),
the edges near the epicenter show a decrease in road capacity as compared to other edges
although the setting for road capacity applied is (6, 7, 8). In particular, edge (9, 2) or (2, 9)
has zero capacity since the remaining capacity is used by the vehicles en-route to depot 2.
Furthermore, the vehicle travelling along the damaged road experienced longer travel time
than usual as described in Section 3.3. What can be also observed is that the road capacity
of the edges, which experienced no damage (no interception on the edge), is still stochastic
with the upper bound of the maximum computed road capacity. Finally, in all figures,
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the vehicle is denoted in either blue and green colors, differentiating the en-route vehicle
and the arrived vehicle respectively with a capacity status shown within the square marker.

Based on these simulated test instances, the validation results for both the deterministic
(D) and stochastic (S) MDVRPSRC-2S models are presented in Tables 5–13. Furthermore,
the application of the matheuristic rollout (using the MDVRPSRC-2S1 and MDVRPSRC-2S2
models) is also included in the tables addressing both the stochastic and dynamic (SDY)
MDP version of the problem. Trend of the results could be observed in Figures A5–A22.
The abbreviation used in the tables is listed in Table 14.

Table 5. Results of Total Distance Travelled with (Maximum) 15 Vehicles.

Instance Mode Mean (km) Variance Std. Dev. (km) CV Best (km)

D3N8S3_678_15
D 9099.94 0.00 0.00 0.00 9099.94
S 9207.96 2.33 × 104 1.53 × 102 1.66 × 10−2 9099.94

SDY 22,530.46 2.73 × 106 1.65 × 103 7.33 × 10−2 20,142.97

D3N8S3_234_15
D 9928.93 0.00 0.00 0.00 9928.93
S 11,096.01 1.04 × 105 3.23 × 102 2.91 × 10−2 10,696.04

SDY 24,590.97 3.45 × 106 1.86 × 103 7.56 × 10−2 21,910.79

D4N11S4_678_15
D 6601.66 0.00 0.00 0.00 6601.66
S 6685.14 6.58 × 103 8.11 × 101 1.21 × 10−2 6601.66

SDY 16,682.46 3.92 × 106 1.98 × 103 1.19 × 10−1 14,943.58

D4N11S4_234_15
D 6698.36 0.00 0.00 0.00 6698.36
S 8090.86 5.67 × 103 7.53 × 101 0.93 × 10−2 7993.87

SDY 18,992.70 3.04 × 106 1.74 × 103 9.18 × 10−2 17,426.28

D5N13S5_678_15
D 7406.06 0.00 0.00 0.00 7406.06
S 7425.07 7.23 × 102 2.69 × 101 0.36 × 10−2 7406.06

SDY 23,777.44 1.34 × 107 3.66 × 103 1.54 × 10−1 16,847.04

D5N13S5_234_15
D 7502.76 0.00 0.00 0.00 7502.76
S 8098.67 1.50 × 104 1.23 × 102 1.51 × 10−2 8010.88

SDY 23,403.58 1.23 × 107 3.51 × 103 1.50 × 10−1 17,486.9

Table 6. Results of Total Travel Time with (Maximum) 15 Vehicles.

Instance Mode Mean (min) Variance Std. Dev. (min) CV Best (min)

D3N8S3_678_15
D 707.36 0.00 0.00 0.00 707.36
S 707.36 0.00 0.00 0.00 707.36

SDY 1389.42 3.18 × 104 1.78 × 102 1.28 × 10−1 1250.56

D3N8S3_234_15
D 834.20 0.00 0.00 0.00 834.20
S 962.78 1.39 × 104 1.18 × 102 1.22 × 10−1 845.40

SDY 1583.61 2.15 × 104 1.47 × 102 9.26 × 10−2 1322.54

D4N11S4_678_15
D 560.82 0.00 0.00 0.00 560.82
S 568.96 1.33 × 102 1.15 × 101 2.02 × 10−2 560.82

SDY 1015.37 9.60 × 103 9.80 × 101 9.65 × 10−2 932.44

D4N11S4_234_15
D 585.25 0.00 0.00 0.00 585.25
S 803.45 7.54 × 103 8.69 × 101 1.08 × 10−1 742.03

SDY 1264.77 1.45 × 104 1.20 × 102 9.52 × 10−2 1094.74

D5N13S5_678_15
D 560.82 0.00 0.00 0.00 560.82
S 560.82 0.00 0.00 0.00 560.82

SDY 1388.28 2.86 × 104 1.69 × 102 1.22 × 10−1 1131.31

D5N13S5_234_15
D 585.25 0.00 0.00 0.00 585.25
S 663.88 3.74 × 103 6.12 × 101 9.22 × 10−2 585.25

SDY 1456.50 3.68 × 104 1.92 × 102 1.32 × 10−1 1131.31
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Table 7. Results of Computation Time with (Maximum) 15 Vehicles.

Instance Mode Mean (s) Variance Std. Dev. (s) CV Best (s)

D3N8S3_678_15
D 7.07 2.14 × 10−2 1.46 × 10−1 2.07 × 10−2 6.94
S 17.12 1.26 × 101 3.55 2.07 × 10−1 14.54

SDY 1526.52 6.65 × 104 2.58 × 102 1.69 × 10−1 1019.83

D3N8S3_234_15
D 138.57 3.02 × 101 5.49 3.96 × 10−2 134.40
S 244.79 1.50 × 104 1.23 × 102 5.01 × 10−1 144.18

SDY 1507.52 1.73 × 105 4.15 × 102 2.76 × 10−1 942.88

D4N11S4_678_15
D 14.57 5.76 × 10−1 7.59 × 10−1 5.21 × 10−2 13.57
S 74.22 2.04 × 103 4.51 × 101 6.08 × 10−1 41.97

SDY 2031.02 6.39 × 105 8.00 × 102 3.94 × 10−1 972.02

D4N11S4_234_15
D 65.01 3.36 × 101 5.79 8.91 × 10−2 60.20
S 396.72 1.33 × 104 1.15 × 102 2.91 × 10−1 298.70

SDY 1514.74 4.66 × 104 2.16 × 102 1.43 × 10−1 1298.40

D5N13S5_678_15
D 118.52 5.4 × 101 7.35 6.20 × 10−2 108.17
S 116.47 8.08 × 102 2.84 × 101 2.44 × 10−1 87.79

SDY 4941.58 2.58× 106 1.61× 103 3.25× 10−1 2826.50

D5N13S5_234_15
D 88.20 1.94 1.39 1.58 × 10−2 86.25
S 288.98 1.22 × 104 1.10 × 102 3.82 × 10−1 133.09

SDY 3146.13 4.42 × 105 6.65 × 102 2.11 × 10−1 2414.39

Table 8. Results of Total Distance Travelled with (Maximum) 8 Vehicles.

Instance Mode Mean (km) Variance Std. Dev. (km) CV Best (km)

D3N8S3_678_8
D 9099.94 0.00 0.00 0.00 9099.94
S 9099.94 0.00 0.00 0.00 9099.94

SDY 19,573.79 4.88 × 106 2.21 × 103 1.13 × 10−1 16,310.17

D3N8S3_234_8
D 9099.94 0.00 0.00 0.00 9099.94
S 10,365.37 4.95 × 105 7.03 × 102 6.79 × 10−2 9748.06

SDY 19,965.72 2.55 × 106 1.60 × 103 8.01 × 10−2 18,042.19

D4N11S4_678_8
D 6601.66 0.00 0.00 0.00 6601.66
S 6601.66 0.00 0.00 0.00 6601.66

SDY 12,769.48 2.90 × 106 1.70 × 103 1.33 × 10−1 10,868.74

D4N11S4_234_8
D 6601.66 0.00 0.00 0.00 6601.66
S 6704.15 6.30 × 103 7.94 × 101 1.18 × 10−2 6601.66

SDY 14,558.10 1.95 × 106 1.40 × 103 9.59 × 10−2 12,502.33

D5N13S5_678_8
D 7406.06 0.00 0.00 0.00 7406.06
S 7406.06 0.00 0.00 0.00 7406.06

SDY 17,302.35 1.68 × 106 1.29 × 103 7.48 × 10−2 14,553.92

D5N13S5_234_8
D 7406.06 0.00 0.00 0.00 7406.06
S 7508.55 2.68 × 102 1.64 × 101 2.18 × 10−3 7485.40

SDY 18,303.25 3.71 × 106 1.93 × 103 1.05 × 10−1 13,672.40
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Table 9. Results of Total Travel Time with (Maximum) 8 Vehicles.

Instance Mode Mean (min) Variance Std. Dev. (min) CV Best (min)

D3N8S3_678_8
D 1252.17 0.00 0.00 0.00 1252.17
S 1360.54 5.87 × 103 7.66 × 101 5.63 × 10−2 1252.17

SDY 1991.70 4.77 × 104 2.18 × 102 1.10 × 10−1 1646.11

D3N8S3_234_8
D 1252.17 0.00 0.00 0.00 1252.17
S 1448.22 3.24 × 103 5.69 × 101 3.93 × 10−2 1401.54

SDY 2108.74 3.86 × 104 1.96 × 102 9.31 × 10−2 1889.42

D4N11S4_678_8
D 939.49 0.00 0.00 0.00 939.49
S 922.90 5.51 × 102 2.35 × 101 2.54 × 10−2 889.70

SDY 1366.12 3.61 × 104 1.90 × 102 1.39 × 10−1 1144.86

D4N11S4_234_8
D 939.49 0.00 0.00 0.00 939.49
S 1025.55 4.62 × 103 6.79 × 101 6.62 × 10−2 977.51

SDY 1588.98 2.57 × 104 1.60 × 102 1.01 × 10−1 1348.11

D5N13S5_678_8
D 939.49 0.00 0.00 0.00 939.49
S 987.30 9.27 × 103 9.63 × 101 9.75 × 10−2 900.76

SDY 1796.10 1.90 × 104 1.38 × 102 7.68 × 10−2 1528.07

D5N13S5_234_8
D 939.49 0.00 0.00 0.00 939.49
S 1137.92 5.30 × 102 2.30 × 101 2.02 × 10−2 1121.64

SDY 1926.85 3.64 × 104 1.91 × 102 9.90 × 10−2 1449.37

Table 10. Results of Computation Time with (Maximum) 8 Vehicles.

Instance Mode Mean (s) Variance Std. Dev. (s) CV Best (s)

D3N8S3_678_8
D 44.71 7.06 2.66 5.95 × 10−2 42.62
S 73.91 2.02 × 103 4.49 × 101 6.08 × 10−1 34.48

SDY 1199.77 1.15 × 105 3.39 × 102 2.82 × 10−1 753.67

D3N8S3_234_8
D 57.10 8.54 2.92 5.12 × 10−2 54.69
S 1540.38 1.32 × 106 1.15 × 103 7.45 × 10−1 144.20

SDY 1200.27 9.80 × 104 3.13 × 102 2.61 × 10−1 757.10

D4N11S4_678_8
D 22.90 1.81 × 10−2 1.34 × 10−1 5.87 × 10−3 22.71
S 133.84 1.55 × 103 3.94 × 101 2.95 × 10−1 83.94

SDY 1282.67 1.06 × 105 3.26 × 102 2.54 × 10−1 802.23

D4N11S4_234_8
D 46.36 8.13 × 10−1 9.02 × 10−1 1.95 × 10−2 45.44
S 70.80 1.36 × 103 3.68 × 101 5.20 × 10−1 42.03

SDY 1094.18 1.25 × 104 1.12 × 102 1.02 × 10−1 924.15

D5N13S5_678_8
D 190.92 2.21 × 101 4.70 2.46 × 10−2 184.48
S 240.57 1.83 × 103 4.27 × 101 1.78 × 10−1 190.99

SDY 3271.40 4.69 × 105 6.85 × 102 2.09 × 10−1 2389.22

D5N13S5_234_8
D 190.12 6.82 × 101 8.26 4.34 × 10−2 181.05
S 202.44 5.63 × 103 7.51 × 101 3.71 × 10−1 100.68

SDY 3269.92 9.27 × 105 9.63 × 102 2.95 × 10−1 2339.45
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Table 11. Results of Total Distance Travelled with (Maximum) 4 Vehicles.

Instance Mode Mean (km) Variance Std. Dev. (km) CV Best (km)

D3N8S3_678_4
D 9099.94 0.00 0.00 0.00 9099.94
S 9099.94 0.00 0.00 0.00 9099.94

SDY 15,518.21 1.00 × 106 1.00 × 103 6.45 × 10−2 14,336.66

D3N8S3_234_4
D 9099.94 0.00 0.00 0.00 9099.94
S 9566.40 2.52 × 105 5.02 × 102 5.25 × 10−2 9211.09

SDY 15,397.60 4.87 × 106 2.21 × 103 14.3 × 10−1 12,206.56

D4N11S4_678_4
D 6601.66 0.00 0.00 0.00 6601.66
S 6620.67 7.23 × 102 2.69 × 101 4.06 × 10−3 6601.66

SDY 11,809.59 9.76 × 105 9.88 × 102 8.37 × 10−2 10,039.78

D4N11S4_234_4
D 6601.66 0.00 0.00 0.00 6601.66
S 6850.23 8.31 × 104 2.88 × 102 4.21 × 10−2 6601.66

SDY 12,169.90 1.25 × 106 1.12 × 103 9.18 × 10−2 10,078.55

D5N13S5_678_4
D 7406.06 0.00 0.00 0.00 7406.06
S 7406.06 0.00 0.00 0.00 7406.06

SDY 12,751.34 1.14 × 106 1.07 × 103 8.36 × 10−2 11,148.8

D5N13S5_234_15
D 7406.06 0.00 0.00 0.00 7406.06
S 7849.32 1.08 × 105 3.28 × 102 4.18 × 10−2 7406.06

SDY 13,890.02 1.05 1.03 × 103 7.39 × 10−2 12,206.56

Table 12. Results of Total Travel Time with (Maximum) 4 Vehicles.

Instance Mode Mean (min) Variance Std. Dev. (min) CV Best (min)

D3N8S3_678_4
D 1959.53 0.00 0.00 0.00 1959.53
S 2067.91 5.87 × 103 7.66 × 101 3.71 × 10−2 1959.53

SDY 2965.15 6.25 × 104 2.50 × 102 8.43 × 10−2 2592.54

D3N8S3_234_4
D 1959.53 0.00 0.00 0.00 1959.53
S 1998.35 3.01 × 103 5.49 × 101 2.75 × 10−2 1959.53

SDY 2943.891 1.92 × 105 4.38 × 102 1.49 × 10−1 2387.51

D4N11S4_678_4
D 1500.31 0.00 0.00 0.00 1500.31
S 1512.98 3.21 × 102 1.79 × 101 1.18 × 10−2 1500.31

SDY 2384.30 5.48 × 104 2.34 × 102 9.82 × 10−2 2054.62

D4N11S4_234_4
D 1450.52 0.00 0.00 0.00 1450.52
S 1524.27 1.15 × 103 3.39 × 101 2.22 × 10−2 1500.31

SDY 2454.84 4.49 × 104 2.12 × 102 8.64 × 10−2 2052.68

D5N13S5_678_4
D 1840.25 0.00 0.00 0.00 1840.25
S 1779.54 7.37 × 103 8.59 × 101 4.83 × 10−2 1658.11

SDY 2482.96 8.31 × 104 2.88 × 102 1.16 × 10−1 2097.63

D5N13S5_234_4
D 1450.52 0.00 0.00 0.00 1450.52
S 1618.58 1.85 × 104 1.36 × 102 8.41 × 10−2 1429.28

SDY 2686.73 3.60 × 104 1.90 × 102 7.06 × 10−2 2387.51
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Table 13. Results of Computation Time with (Maximum) 4 Vehicles.

Instance Mode Mean (s) Variance Std. Dev. (s) CV Best (s)

D3N8S3_678_4
D 5.02 2.32 × 10−2 1.52 × 10−1 3.03 × 10−2 4.81
S 44.33 3.09 × 101 5.56 1.25 × 10−1 37.95

SDY 981.67 7.21 × 104 2.68 × 102 2.73 × 10−1 617.48

D3N8S3_234_4
D 50.80 2.08 × 102 1.44 × 101 2.84 × 10−1 39.41
S 148.90 8.08 × 103 8.99 × 101 6.04 × 10−1 81.24

SDY 1443.06 5.85 × 105 7.65 × 102 5.30 × 10−1 601.83

D4N11S4_678_4
D 11.90 9.28 × 10−2 3.05 × 10−1 2.56 × 10−2 11.49
S 51.32 9.97 × 101 9.98 1.95 × 10−1 43.70

SDY 1210.45 1.08 × 105 3.29 × 102 2.72 × 10−1 732.84

D4N11S4_234_4
D 13.42 1.27 × 10−1 3.57 × 10−1 2.66 × 10−2 13.02
S 40.95 3.79 × 102 1.95 × 101 4.75 × 10−1 26.12

SDY 1169.21 8.09 × 104 2.84 × 102 2.43 × 10−1 699.12

D5N13S5_678_4
D 72.70 6.41 2.53 3.48 × 10−2 69.14
S 187.26 5.49 × 102 2.34 × 101 1.25 × 10−1 155.87

SDY 2563.46 5.59 × 105 7.47 × 102 2.92 × 10−1 1615.64

D5N13S5_234_4
D 121.22 7.79 2.79 2.30 × 10−2 118.74
S 204.94 9.40 × 102 3.07 × 101 1.50 × 10−1 170.47

SDY 2044.35 1.88 × 105 4.34 × 102 2.12 × 10−1 1627.45

Table 14. Abbreviation for Tables and Figures.

D Deterministic Model, D-MDVRPRC (Offline)
S Stochastic Model, MDVRPSRC-2S (Offline)

SDY Stochastic & Dynamic Model, MDDVRPSRC (Online)

Both the D-MDVRPRC and MDVRPSRC-2S models are solved offline, computing the
route for each instance tested. Meanwhile, the matheuristic rollout (using MDVRPSRC-2S1
and MDVRPSRC-2S2) is adopted to compute the route online by simulation, as seen by
the agent or decision support system through RL. Each respective computed route per
instance is assessed by the total distance covered and total time travel by all vehicles
utilised as well as the computation time needed to compute the routes. In Tables 5–12,
an average of three independent runs is listed for the validation of the D-MDVRPRC and
MDVRPSRC-2S models. Meanwhile, due to the high variability of the online stochastic
and dynamic problems in MDDVRPSRC (including random vehicle at depots), an average
of ten readings is recorded to demonstrate the applicability of matheuristic rollout (using
MDVRPSRC-2S1 and MDVRPSRC-2S2) in the MDDVRPSRC.

Furthermore, for stochastic models (MDVRPSRC-2S2 and MDDVRPSRC), the mea-
surements of mean, variance, standard deviation, coefficient of variation and the best
results are recorded to investigate the distribution of the data obtained. With the exception
of computation time, these measurements understandably do not apply for the determinis-
tic model (D-MDVRPRC) where multiple runs would always yield the same result for total
distance and total travel time covered. It should be noted once again that the purpose of
this section is to mainly validate the models and the matheuristic proposed. The online
computational results are expected to be different as compared to offline computational
results due to the reasons discussed below in this section. However, it is interesting to note
and observe how they differ when compared side by side.

The results presented in the tables are translated into figures in Appendix A where
observable trends could be seen. From the figures, it is obvious that addressing the
online problem would result in covering much more total distance and thus would in-
cur larger costs as compared to the results obtained through the offline computation of
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both the D-MDVRPRC and MDVRPSRC-2S as seen in Figures A5 and A6 and especially
Figures A14 and A15.

The offline computation approach, however, is optimistic and unlikely to be realistic
as both the D-MDVRPRC and MDVRPSRC-2S assume non dynamic changes with regards
to road capacity. Therefore, the results obtained never consider some of the roads becoming
increasingly less available over time for the vehicles. This is especially true for the roads
in close proximity to the epicenter of the disaster. Addressing the online problem (using
MDVRPSRC-2S1 and MDVRPSRC-2S2), however, took into account the dynamic reduction
of road capacity over time due to damaged roads. Therefore, vehicle routes are developed
constructively depending on the status of the road capacity at the time of decision point, Tk.
Furthermore, the D-MDVRPRC and MDVRPSRC-2S models dispatch vehicles according to
the total demands since they assume all the vehicles are able to travel safely back and forth
from the depot. However, MDDVRPSRC takes into account the worst case scenario where
the vehicle might be stranded at their last location due to no available road capacity to the
neighboring location. Since the road capacity decreases over time, the vehicle might get
stranded at any time throughout the mission. As a result, they could not make it back to the
depot or resume delivery to shelters which are not fully served while en-route. This was
observed a few times when running the smallest instance for the online computation where
the roads to emergency shelters were limited and prone to damage. Thus, all vehicles
are dispatched as long as total demands are not fully served. In a normal case scenario,
the demand might be fully served when other vehicles with fresh capacity are dispatched
and en-route, resulting in unnecessary trips. At this point, vehicles with non-delivered
supplies have to return back to the depot from their assigned locations. This translates to
additional distance or cost, total travel time as well as computation time.

Moreover, unlike D-MDVRPRC and MDVRPSRC-2S models, a realistic look at the
problem assumes that, at the beginning, the vehicles are randomly distributed among the
existing depots thus reflecting a more realistic situation during the disaster event. So, some
vehicles might depart from depots that are situated at a location that is less ideal for an
optimal delivery. The offline computation problem model has the luxury of choosing the
departure depots for a respective vehicle in an optimal manner. All the aforementioned
difference between offline and online models factored in towards a larger variance observed
in the online model.

In Figures A5–A10, the total distance, total travel time and computation time are
charted for every instance with respective maximum road capacity settings classified
by their problem model: Deterministic (D), Stochastic programming (S) and the online
MDDVRPSRC, which is both stochastic and dynamic (SDY). In Figure A5, especially, both
offline computation models show close to no difference in terms of total distance travelled
by the vehicle, even with the increase of vehicles from four, eight and 15 for all three
instances. The SDY model, however, shows a clear increase of total distance travelled with
the increased number of vehicles. Such observations could be explained by the difference
in the mode of operations and assumptions taken between the offline and online modelling
approach as explained earlier. The same reasoning would still apply for the slight increase
of total distance for both S and D models seen in Figure A6, which addressed the instance
with a tighter maximum road capacity setting. In both Figures A7 and A8, however,
all three problem models solved for the routes show a decrease in time travel with the
increase of vehicles. This result is to be expected as more vehicles may contribute to serving
the total demands faster, proportional to the number of vehicles available. Meanwhile,
Figures A9 and A10, as expected, show an overall increase of computation time for the D,
S and SDY models in this order. An exception, however, is observed for a tighter maximum
road capacity (2, 3, 4). Here, the two-stage SILP model shows a huge jump in computation
time for the smallest instance with 8 vehicles. This could be explained by a stochastic value
of the road capacities based on the maximum capacity setting which might be sampled
with small capacities where routing computation could be challenging.
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In Figures A11–A13, the assessment measurement values are compared side by side
per instance, between the maximum road capacity settings (6, 7, 8) and (2, 3, 4). In general,
the trend formed by the measured values could be said to be roughly similar where
occasionally the setting (2, 3, 4) would slightly increase the value of measurements. This
is due to the consideration of the stochastic road capacity, which holds more influence
for a tighter maximum road capacity setting. Roads with a maximum road capacity of
two, for example, are more likely to be randomly sampled as zero during computation in
comparison with roads with a maximum road capacity of six. Having one road perceived
as unavailable for the offline computation would drastically deviate from the ideal optimal
road configuration. This results in a slight difference in the value measured when compared
to the results of the deterministic model. Here, it is also observed that an increase of vehicles
for an instance with a tighter road capacity setting would also increase the total distance,
especially for smaller instances. This is due to limited roads within the network (for smaller
instances) that have a tighter capacity limit but need to accommodate a larger number of
vehicles in order to reach the emergency shelters. For some vehicles, a direct or obvious
route is not possible due to the capacity thus leading to a longer route detour resulting in
an increase in total distance covered. Larger road networks, on the other hand, provided
wider options for alternative routes even if a direct route is not possible.

Meanwhile, the counterparts of Figures A5–A10 (Figures A14–A19) are shown to
observe the trends for all three instances, with increasing the amount of vehicles grouped
by the model characteristics (D, S and SDY) for each maximum road capacity settings. Here,
the general similarity of D and S model characteristics in terms of the results obtained
for total distance, time travel as well as computation is even more apparent. Meanwhile,
Figures A20–A22 are the counterparts of Figures A11–A13 where the trends obtained from
Figures A14–A19 are put side by side based on their respective maximum road capacity
settings. As discussed for the earlier figures, the MDVRPSRC-2S model tends to produce
optimal assessment values similar to those of deterministic values when the stochastic
sampling of random road capacity permits it. Otherwise, slight differences are observed,
suggesting the limitation of ideal routes due to a tighter road capacity and thus road
availability. It is also seen that the increase in the number of vehicles has close to no
influence on decreasing the total distance travelled for the case of the two offline models.
This is due to the flexibility of dispatching vehicles according to the total demand as well
as the optimistic assumption that the vehicle dispatched will make it back to the depot.

6. Conclusions

This paper addressed the problem of Multi-Depot VRP with Stochastic Road Capacity
during a post-disaster event for medical supplies’ delivery. Apart from multi-depot,
split delivery is allowed to account for limited homogeneous vehicles when disaster
strikes. The D-MDVRPRC model represents the deterministic version of the problem.
The MDVRPSRC-2S model is based on the two-stage SILP in dealing with stochastic
road capacity. Both of these models are validated by offline computations using CPLEX.
Moreover, in this work, the reduced models from MDVRPSRC-2S: MDVRPSRC-2S1 and
MDVRPSRC-2S2 are presented for iterative application during the rollout approach in
ADP to solve MDDVRPSRC online. Through solving MDVRPSRC-2S1 or MDVRPSRC-2S2
for each vehicle at each decision point in the rollout, the base policy for rollout is thus
constructed on the go.
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All proposed models and the novel construction of the base policy in the rollout are
validated through the results presented. From the results, the differences in the idealistic
assumptions of the offline model and the more realistic online model are shown based
on the solutions computed. Additionally, the dynamic consideration of deteriorating
stochastic road capacity, which leads to difficulties in road navigation, is shown in the
online computation of the problem. Based on the presented work, a few future research
directions are noted. MDVRPSRC-2S addressed the problem by incorporating a recourse
rule, which is to either to stay at the current position or to proceed with the computed route
if the road capacity is available for the vehicle. This problem model could be extended with
the option of navigating to other destinations instead of staying at the current position
when the optimal path is not available. However, the model would be progressively
complex as the extended version may need to be addressed by multi-stage stochastic
programming instead of adapting to the multiple possible changes of routes at each route
failure. Furthermore, the results obtained from the proposed rollout are based on a single
vehicle rollout. More research can be carried out to study the practicality of such an
approach (constructive matheuristic rollout) for the case of multiple-vehicle rollout in
terms of reduced model complexity as well as additional computation time. The proposed
solution approach, on the other hand, is shown to produce good results for a short rollout
horizon and a minimal Monte Carlo simulation for this specific problem.
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Appendix A. Road Network Problem Instances with Results and Trend Analysis

Figure A1. Road Network for Instance D3N8S3.

Figure A2. Road Network for Instance D4N11S4.
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Figure A3. Road Network for Instance D5N13S5.

Figure A4. Changes in Road Capacity Over Time in Online Simulation and Computation.
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Figure A5. Total Distance Travelled for Maximum Road Capacity Setting (6, 7, 8): Offline and Online
Computation for all Instances based on Model Characteristic.

Figure A6. Total Distance Travelled for Maximum Road Capacity Setting (2, 3, 4): Offline and Online
Computation for all Instances based on Model Characteristic.
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Figure A7. Total Travel Time for Maximum Road Capacity Setting (6, 7, 8): Offline and Online
Computation for all Instances based on Model Characteristic.

Figure A8. Total Travel Time for Maximum Road Capacity Setting (2, 3, 4): Offline and Online
Computation for all Instances based on Model Characteristic.
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Figure A9. Computation Time for Maximum Road Capacity Setting (6, 7, 8): Offline and Online
Computation for all Instances based on Model Characteristic.

Figure A10. Computation Time for Maximum Road Capacity Setting (2, 3, 4): Offline and Online
Computation for all Instances based on Model Characteristic.
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Figure A11. Total Distance Travelled: Offline and Online based on Model Characteristic and Maxi-
mum Road Capacity Setting.

Figure A12. Total Travel Time: Offline and Online computation based on Model Characteristic and
Maximum Road Capacity Setting.
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Figure A13. Computation Time: Offline and Online computation based on Model Characteristic and
Maximum Road Capacity Setting.

Figure A14. Total Distance Travelled for Maximum Road Capacity Setting (6, 7, 8) in Online and
Offline Computation for all Instances grouped by Model Characteristic.



Mathematics 2021, 9, 1572 38 of 44

Figure A15. Total Distance Travelled for Maximum Road Capacity Setting (2, 3, 4) in Online and
Offline Computation for all Instances grouped by Model Characteristic.

Figure A16. Total Travel Time for Maximum Road Capacity Setting (6, 7, 8) in Online and Offline
Computation for all Instances grouped by Model Characteristic.
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Figure A17. Total Travel Time for Maximum Road Capacity Setting (2, 3, 4) in Online and Offline
Computation for all Instances grouped by Model Characteristic.

Figure A18. Computation Time for Maximum Road Capacity Setting (6, 7, 8) in Online and Offline
Computation for all Instances grouped by Model Characteristic.
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Figure A19. Computation Time for Maximum Road Capacity Setting (2, 3, 4) in Online and Offline
Computation for all Instances grouped by Model Characteristic.

Figure A20. Total Distance Travelled in Online and Offline Computation for all Instances grouped by
Model Characteristic and Maximum Road Capacity Setting.
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Figure A21. Total Travel Time in Online and Offline Computation for all Instances grouped by Model
Characteristic and Maximum Road Capacity Setting.

Figure A22. Computation Time in Online and Offline Computation for all Instances grouped by
Model Characteristic and Maximum Road Capacity Setting.
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