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Abstract: In the current article, in the presence of thermal and diffusion processes, the equations
governing elastic materials through thermodiffusion are obtained. The Moore–Gibson–Thompson
(MGT) equation modifies and defines the equations for thermal conduction and mass diffusion that
occur in solids. This modification is based on adding heat and diffusion relaxation times in the
Green–Naghdi Type III (GN-III) models. In an unbounded medium with a cylindrical hole, the built
model has been applied to examine the influence of the coupling between temperature and mass
diffusion and responses. At constant concentration as well as intermittent and decaying varying heat,
the surrounding cavity surface is traction-free and is filled slowly. Laplace transform and Laplace
inversion techniques are applied to obtain the solutions of the studied field variables. In order to
explore thermal diffusion analysis and find closed solutions, a suitable numerical approximation
technique has been used. Comparisons are made between the results obtained with the results of the
corresponding previous models. Additionally, to explain and realize the presented model, tables and
figures for various physical fields are presented.

Keywords: solution of thermoelastic diffusion; MGT equation; thermal and diffusion relaxation time;
cylindrical hole

1. Introduction

The theory of thermoelasticity has received a lot of interest from researchers and sci-
entists due to its many applications in different fields. The fields of architecture, structural
features, plasma physics, geophysics, aeronautics, missiles, steam turbine generators, etc.
are among the most important areas in which this theory is used. For the first time, an
uncombined principle of thermoelasticity was foreseen, in that the elastic strain is inde-
pendent of the heat transfer and conversely. However, this hypothesis became invalid in
displaying the practical results of many concrete problems. Then, researchers provided
alternative theories of coupled thermoelasticity, which became widely known as a general
thermoelastic theory. This concept has been gaining fame in recent years because its aim is
to solve the contradiction of the unlimited heat propagation rate. This description, however,
has become appropriate to some extent to communicate practical performance, such as
high-speed energy transportation and low-temperature and high-heat transfer engineering.

The classical coupled thermoelasticity theory (CTE) [1] suggested by Biot expects a
theoretically unrealistic unlimited velocity of the spread of heat. In order to remove the
contradiction of the extraordinary physical phenomenon of unlimited speed in the CTE
theory, non-classical thermoelasticity models known as generalized thermoelasticity have
been formulated. Lord–Shulman [2], Green–Lindsay [3], and Green–Naghdi [4–6] theories
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are major theories of generalized thermoelasticity that became the focus of current research
in this field. Lord and Shulman [3] integrated the principle of heat flow rate into the law of
Fourier with thermal relaxation time, and formulated a theory of extended thermoelasticity
with a thermal flux rate. The energy equation as well as the relationship between Duhamel
and Neumann were altered by Green and Lindsay [4], providing two relaxation periods.
Theories of thermoelasticity without and with energy dissipation [4–6] have been proposed
by Green and Naghdi. Roychoudhuri [7] suggested the three-phase-lag (TPL) thermoelastic
model that involves three different phase delays in the heat flux vector, the gradient of
temperature, and the gradient of thermal displacement function. The prevalent problems
of thermoelasticity based on these new models are now of great significance [8–13].

The Moore–Gibson–Thompson Equation (MGT) has been heavily involved in a broad
range of papers focused on study and understanding in recent decades. This concept
stems from a differential equation of the third order, which is involved in the value of
several dynamic fluid aspects [14]. Quintanilla [15] has built a new model of thermo-
elastic heat conduction (called “MGT thermoelasticity”) based on the Moore–Gibson–
Thompson equation. Another new thermoelastic model with two temperatures, in which
heat conduction was described as the historical MGT version, was given by Quintanilla [16],
which emerged from the development of the theory of Green–Naghdi Type III by adding
a relaxation factor. In the context of several mechanical aspects of the flux, this theory
started with a third-order differential equation. The MGT thermoelastic model has led to a
significant increase in the range of researchers devoted to this theory [17–30].

Diffusion is the transition from a higher concentration area to a less centered region
(such as molecules, atoms, and ions). A mathematical relationship dependent on the con-
centration gradient defines diffusion. This phenomenon has resulted in several industrial
purposes from the recent interest. In many fields, the diffusion concept is commonly used,
including physics, economics, biology, sociology, chemistry, and finance. In bipolar tran-
sistor diffusion, integrated resistors are formed to form a base and emitter; spring/drain
regions are formed in the MOS transistor, and dopes are formed in the MOS gated polysili-
con transistor. Concentration is determined by what is called Fick’s Law in many of these
areas of application. This is a basic law that does not deal with the interactions between
the input substance and the medium in which the substance is incorporated or the effect of
temperature on this reaction [31–33].

One of the distinguishing features of diffusion is that it depends on the spontaneous
movement of particles, which, without the need for a direct mass movement, leads to
mixing or mass transfer. One of the elements of approximation, or collective action, is a
mass movement. The term “convection” describes the combination of two phenomena of
transport. Temperature, contact zone, gradient steepness of concentration, and particle-
size-effect diffusion. The rate and degree of diffusion can be adjusted independently and
collectively by each factor. Entropy inequality is suggested for the blend and is used to
restrict the constituent equations in a mixture of elastic materials subject to diffusion and
thermal management. The constituents are later assumed to be isotropic solids and further
restricted to the material frame–differentiation axiom and to reflect symmetrical conditions
of the material. It is shown that the constituent functions can be written with respect to the
left Cauchy–Green tensors for constituents.

Thermo-diffusion in solids, particularly metals, has been regarded as an unrelated
amount of body deformation until recent times. Even so, a study demonstrates that the
thermo-diffusing process can have a major impact on body deformation. The Thermoelastic
diffusion concept was introduced by Nowacki [33–35]. The developed thermoelastic model
was proposed in this concept. This requires propagation at infinite rates of thermoelastic
waves. Sherief et al. [36] established a thermoelastic generalization theory suggesting
limited spreading velocities for thermoelastic and propagating waves. In terms of the
principle of generalized thermoelastic diffusion, Sherief and Saleh [37] and Sherief and
Maghraby [38] have worked on a thermoelastic half-space issue with a permeating sub-
stance in contact with the bonding surface.
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The thermo-diffusion theory and the combination of quasi-stationary diffusion prob-
lems for an elastic substrate have been investigated by several researchers [32,39–44]. The
effects of cross-effects caused by the mixture of temperature, mass diffusion, and strain
were studied, resulting in additional mass concentration due to thermal excitation and
producing additional temperature ranges [45–50].

It was found from previous studies that the theory of the third form (GN-III) by
Green and Naghdi has a similar defect as the usual Fourier model and also forecasts the
immediate spread of thermal waves. Giorgi et al. [45] explained that such phenomena
relevant to constant states are outside the control of the theory of Type III, which should
be seen in Fourier as a principle of thermal conduction rather than as a simple theory.
This theory is true for both stationary and sluggish thermal phenomena. To solve this
dilemma, it is, therefore, natural to amend this suggestion. A new theory of thermal
diffusion is formulated in this present work, in which the Moore–Gibson–Thompson
equation defines the heat conduction and diffusion formulae. This model was designed
to explore the interaction between elasticity, heat, and the mechanisms of diffusion of
elastic materials that allow the propagation of thermal waves at finite rates. Many studies
have been performed on the inversion of the Laplace transform in the literature [51–58].
More details for them will be given in the next sections. Indeed, the governing system
equations can be realized in the new model after the addition of two relaxation factors in
the GN-III model. Discrete singular convolution is also applied for some heat and cavity
problems [59,60]. A modified and correct solution technique is proposed using the integral
boundary formulations of the heat equation by Chernov and Reinarz [61].

The topic of thermo-diffusion interactions in an unbounded isotropic homogeneous
solid with a cylindrical hole has been researched in the sense of the generalized model
of Moore–Gibson–Thompson thermo-diffusion (MGT-TD). The surface of the cylinder is
free of traction and, respectively, undergoes time-dependent convection and chemical load.
By means of the Laplace transform method, an accurate solution to the issue is obtained
first. The Laplace transformations have been reversed numerically. To show the diffusion
effects and different physical phenomena of these solids, the study findings have also been
numerically measured and graphically portrayed. Numerical values have been provided
in figures and tables to illustrate the comparisons between the physical fields in order to
allow a distinction between the results we obtained and the corresponding results in other
special models.

2. The Basic MGT Thermo-Diffusion Equations

Many mathematicians, physicists, and engineers, as well as industry, widely use
Fourier and Vic formulas to explain the thermal conductivity and diffusion in elastic
materials. In this section, we will derive a new paradigm that allows describing the
phenomena of heat transfer as well as propagation within materials in a manner consistent
with the physical and chemical aspects.

In a homogeneous isotropic, elastic solids, the governing equations, and constitutive
relationships for generalized thermo-diffusion behavior are established by [33–35]. The
Fourier’s law:

q(x, t) = −K∇θ(x, t) (1)

The Fick’s law:
η(x, t) = −D∇P(x, t) (2)

The strain–displacement relations:

eij =
1
2
(
uj,i + ui,j

)
(3)

The coupled conservation heat energy equation:

ρCe
∂θ

∂t
+ β1T0

∂

∂t
(div u) + aT0

∂C
∂t

= −div q + Q (4)
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The continuity equation [46]:

− div η =
.
C (5)

The chemical potential P:

P = −β2ekk + bC− aθ (6)

where heat flux q, θ = T− T0 denotes the temperature increment in which T is the absolute
temperature, T0 is the reference temperature, K indicates the thermal conductivity, eij de-
notes the strain tensor and ui is the displacement vector. Additionally, in Equations (1)–(6),
P denotes the chemical potential, η denotes the flow of the diffusing mass vector, D is the
diffusion coefficient, where div u = ekk is the cubical dilatation, Q is the source of heat,
ρ is the density of the medium, Ce denotes the specific heat at constant strain, a is the
measure of thermoelastic diffusion effect, C is the concentration of the diffusive material
and β1 = (3λ + 2µ)αt are the material constants (thermoelastic coupling), where αt is the
coefficient of the thermal expansion.

Although the elastic thermal diffusion laws of Fourier and Fick have been well tested
for most practical problems, they do not specify a temporary short-time temperature area
(higher frequencies and smaller wavelengths). We obtain parabolic partial differential
equations through the combination of Equation (1) with (4) and (2) with (5). They emit
an infinite velocity of propagation as a result. This property, from a physical point of
view, conflicts with physical phenomena. In the past 3 decades, the non-classical diffusion
and thermal elasticity theories have been replaced by more general equations to solve the
previous inconsistency issue. The generalized model of thermo-diffusion with a time of
relaxation was developed by Sherief et al. [36], which allows thermal wave propagation to
be reduced.

In 1948, to solve the infinitely rapid propagation in the heat equation, Cattaneo
proposed an updated equation for the heat equation. The relationship (1) was replaced by(

1 + τ0
∂

∂t

)
q(x, t) = −K∇θ(x, t) (7)

where τ0 is a thermal relaxation time parameter. Sherief et al. [36] postulated a similar mass
flow equation in the same way and similar to Equation (7), given by:(

1 + τ1
∂

∂t

)
η(x, t) = −D∇P(x, t) (8)

where τ1 indicates the diffusion time relaxation parameter. This ensures that the C equation
also forecasts the limited velocity of spread of the substance from medium to media. This
is achieved with concentration C.

The development of an alternative construction of heat diffusion was then suggested
by Green and Naghdi [4–6] as an entirely new thermoelastic theory. The function ϑ is seen
as a new constituent vector in the models of Green and Naghdi as a gradient of thermal
displacement. In mechanical fields and in thermal fields, the scalar function ϑ is generally
seen as the mechanical displacement equivalent. In addition, the function ϑ fulfills

.
ϑ = θ.

The law of improved thermal conductivity of the GN-III theory is described as [5]

q = −K∇θ(x, t)− K∗∇ϑ(x, t) (9)

In this instance, the parameter K∗ > 0 is a constant material property and is also
mentioned as the heat conductivity rate. Abouelregal [39,40] suggested a similar relation
for the vector of heat flow to Equation (9) as:

η(x, t) = −∇P(x, t)− D∗∇υ(x, t) (10)
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In Equation (10), the chemical displacement rate υ is regarded as a new constitutive
variable in which parameter D∗ is the diffusion rate factor. The chemical displacement
function υ satisfies the relation

.
υ = P.

The combination of Fourier’s modified law (9) and energy Equation (4) has been found
to lead to a series of elements in the point continuum, rendering the actual component
infinitely dependent on the solutions. Equation (9) has the exact same flaw as the usual
Fourier hypothesis that the waves of thermal conduction spread instantly. Therefore, this
proposal was also generally updated, and Quintanilla [15,16] included a relaxation time to
solve this problem, given the MGT equation. Quintanilla [15] made an adjustment to the
proposed updated heat conduction equation (MGTE) after adding the relaxation factor in
the Green–Naghdi form III model as follows:(

1 + τ0
∂

∂t

)
q = −[K∇θ + K∗∇ϑ] (11)

By differentiating Equation (11) and using the relationship
.
ϑ = θ, we have(

1 + τ0
∂

∂t

)
.
q = −

(
K∇∂θ

∂t
+ K∗∇θ

)
(12)

As in Equation (11), the mass flux Equation (10) is assumed to be similar:(
1 + τ1

∂

∂t

)
η = −[D∇P + D∗∇υ] (13)

After differentiating the previous relationship with respect to time and using
.
υ = P,

we obtain (
1 + τ1

∂

∂t

)
.
η = −

[
D∇∂P

∂t
+ D∗∇P

]
(14)

By combining Equations (4) and (12), a modified type of heat conduction equation can
be obtained, which is developed based on the MGTE equation [15,16]. When we take a
divergence operator to Equation (12) and use Equation (4), we obtain:(

1 + τ0
∂
∂t

)[
ρCe

∂2θ
∂t2 + β1T0

∂2e
∂t2 + aT0

∂2C
∂t2 − ∂Q

∂t

]
= K∇2

.
θ + K∗∇2θ (15)

We also obtain the modified equation of mass diffusion by taking the divergence of
Equation (15) and the use of Equations (5) and (6) as(

D
∂

∂t
+ D∗

)(
b ∇2C− β2 ∇2ekk − a ∇2θ

)
=

(
1 + τ1

∂

∂t

)
∂2C
∂t2 (16)

Complementing the system of equations that govern the behavior of thermal, dynamic,
and diffusion propagation inside bodies with normal properties and homogeneity, we
have [36]:

µui,jj + (λ + µ)uj,ij − β1θ,i − β2C,i + Fi = ρ
..
ui (17)

σij = 2µeij + δij
[
λeij − β1θ − β2C

]
(18)

where and β2 is a material constant (diffusion coupling) given by β2 = (3λ + 2µ)αc, where
αc is the coefficient of the linear diffusion equation, σij is the stress tensor, λ and µ are
Lame’s constants, and δij is the Kronecker delta function.

Equation (15) occurs in viscous thermal soothing applications, with high intensity,
medical and industrial applications such as lituosis, thermal therapy, or ultrasound wash-
ing. The model is also known as the Kelvin or Zener model. This equation is found in the
viscoelasticity theory, the classic linear viscoelastic model, to clarify the conduct of certain
viscoelastic materials, including the complex and viscous micro-structures of fluids [48].
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3. Implementation of the Proposed Model

We will study an infinitely homogeneous thermo-diffusive solid with a cylindrical
hole of radius R and the boundary initially in a non-turbulent state and at a uniform
temperature T0 and an initial concentration of C0. We will use the cylindrical coordinate
system (r, Θ, z) because of the nature of the problem, considering that the z-axis lies along
the axis of the cylindrical hole. The state of a solid can be represented in terms of state
r and time t variables because of the symmetry of the problem so that the values of all
physical field variables vanish at infinity. We also assumed that there are no sources of
external body force and heat that influence the body, implying that in the beginning, the
body is calm.

The displacement and strain tensor components are given by

ur = u(r, t), uΘ = 0 = uϕ (19)

err =
∂u
∂r

, eΘΘ =
u
r

, ezz = erz = erΘ = eΘz = 0 (20)

Based on Equation (20), we can obtain the cubical dilatation as

e = err + eϕϕ + eΘΘ =
∂u
∂r

+
u
r

(21)

From Equations (6) and (18), the radial and hoop stresses and chemical potential can
be written as

σrr = 2µ
∂u
∂r

+ λe− β1θ − β2C (22)

σΘΘ = 2µ
u
r
+ λe− β1θ − β2C (23)

P = −β2e + bC− aθ (24)

The modified equations for MGT heat conduction (15) and MGTE mass diffusion (16)
can be written as follows:(

1 + τ0
∂
∂t

)[
ρCe

∂2θ
∂t2 + β1T0

∂2e
∂t2 + aT0

∂2C
∂t2 − ∂Q

∂t

]
=
(

K ∂
∂t + K∗

)
∇2θ (25)

(
D

∂

∂t
+ D∗

)(
b ∇2C− β2 ∇2ekk − a ∇2θ

)
=

(
1 + τ1

∂

∂t

)
∂2C
∂t2 (26)

where ∇2 = ∂2

∂r2 + 1
r

∂
∂r is the cylindrical operator of Laplace. Equation (17) can be ex-

pressed as

σrr,r +
1
r
(σrr − σΘΘ) = ρ

∂2u
∂t2 (27)

Inserting Equations (22) and (23) in Equation (27), we obtain

(λ + 2µ)

(
∂2u
∂r2 +

1
r

∂u
∂r
− u

r2

)
−
(

β1
∂θ

∂r
+ β2

∂C
∂r

)
= ρ

∂2u
∂t2 (28)

Multiplying the cylindrical div operator on both sides of Equation (28), then we have

(λ + 2µ)∇2e− β1∇2θ − β2∇2C = ρ
∂2e
∂t2 (29)
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By using the following dimensionless quantities, the control equations can be more
conveniently put into practice:

(r′, u′) = c1η(r, u), ( t′, τ′0, τ′0) = c2
1η( t′, τ0, τ1),

θ′ = β1
λ+2µ θ, P′ = P

β2
, C′ = β2

λ+2µ C,

σ′ij =
1

λ+2µ σij, η = ρCE
K , c2

1 = λ+2µ
ρ

(30)

Equations (22)–(26) and (29) in the non-dimensional variables can be expressed as follows:

∇2e−∇2θ −∇2C =
∂2e
∂t2 (31)

∂2

∂t2

(
1 + τ0

∂

∂t

)
[θ + εe + η1C] =

(
∂

∂t
+ γ1

)
∇2θ (32)(

∂

∂t
+

D∗

β2D

)(
η3 ∇2C−∇2e− η4 ∇2θ

)
= η2

(
1 + τ1

∂

∂t

)
∂2C
∂t2 (33)

σrr =
(

1− 2β2
)

e + 2β2 ∂u
∂r
− θ − C (34)

σΘΘ =
(

1− 2β2
)

e + 2β2 u
r
− θ − C (35)

P = η3C− e− η4θ (36)

where
η1 = aβ1T0

ηKβ2
, η4 =

aρc2
1

β1β2
η2 =

ρc2
1

β2
2ηD

, η3 =
bρc2

1
β2

2
,

ε =
β2

1T0
ρ2cEc2

1
, γ1 = K∗

ρCEK , β2 = µ
λ+2µ , γ2 = D∗

β2D

(37)

We have lowered the primes for simplicity in Equations (31)–(36).

4. Initial and Boundary Conditions

The initial conditions can be assumed as

u = 0 =
∂u
∂t

, θ = 0 =
∂θ

∂t
, C = 0 =

∂C
∂t

, t = 0 (38)

The following boundary conditions can be considered

σrr = 0 at r = R (39)

θ = θ0te−t/2 cos(t) at r = R (40)

P = P0H(t) at r = R (41)

where θ0 and P0 are constants, and H(t) is the Heaviside unit step function.

5. Solution in the Laplace Transform Domain

Applying the Laplace transform to Equations (31)–(36) under the initial conditions
(38), described by

f (r, s) =
∫ ∞

0
e−st f (r, t)dt (42)

we obtain (
∇2 − s2

)
e = ∇2θ +∇2C (43)

εξ1e + η1ξ1C =
(
∇2 − ξ1

)
θ (44)(

η3 ∇2 − ξ2

)
C = ∇2e + η4 ∇2θ (45)
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σrr =
(

1− 2β2
)

e + 2β2 du
dr
− θ − C (46)

σΘΘ =
(

1− 2β2
)

e + 2β2 u
r
− θ − C (47)

P = η3C− e− η4θ (48)

where

ξ1 =
s2(1 + τ0s)

s + γ1
, ξ2 =

η2s2(1 + τ1 s)
s + γ2

(49)

Eliminating e, C between Equations (43)–(45), we obtain(
∇6 −Λ1∇4 + Λ2∇2 −Λ3

)
θ = 0 (50)

where
Λ1 = y3x1+y2+y1x3−x2

y1−x1
, Λ2 =

x2y3−y2x3+y1x4
y1−x1

, Λ3 = x4y2
y1−x1

x1 = ξ1(εη3+η1)
η3

, x2 = εξ1ξ2
η3

, x3 = ξ2+η3ξ1+η1η4ξ1
η3

, x4 = ξ1ξ2
η3

y1 = ξ1(ε + η1), y2 = s2η1ξ1, y3 = ξ1(η1 − 1)

(51)

By the same manner, we can demonstrate that the functions e and C can fulfill the
equations (

∇6 −Λ1∇4 + Λ2∇2 −Λ3

)
e = 0 (52)(

∇6 −Λ1∇4 + Λ2∇2 −Λ3

)
C = 0 (53)

Introducing the parameters mi (i = 1, 2) into Equation (50), we have(
∇2 −m2

1

)(
∇2 −m2

2

)(
∇2 −m2

3

)
θ = 0 (54)

where m2
1, m2

2 and m2
3 are the solutions for the equation:

m6 −Λ1m4 + Λ2m2 + Λ3 = 0 (55)

The parameters m1, m2 and m3 can be determined as

m1 =
√

1
3 [2p sin(q) + A1], m2 =

√
− p

3

[√
3 cos(q) + sin(q)

]
+ A1

3 ,

m3 =

√
p
3

[√
3 cos(q)− sin(q)

]
+ A1

3 , p =
√

A2
1 − 3A2,

q = 1
3 sin−1(χ), χ = − 2A3

1−9A1 A2+27A3
2p3 .

(56)

The solution of Equation (54), which is infinitely limited, is given by

θ(r, s) =
3

∑
i=1

Bi(s)K0(mir) (57)

where Bi, (i = 1, 2, 3) are the integral parameters and K1/2(·) denotes the second kind of
Modified Bessel function of zero order. Likewise, we can write

e(r, s) =
3

∑
i=1

B′i(s)K0(mir) (58)

C(r, s) =
3

∑
i=1

B′′i (s)(s)K0(mir) (59)
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Inserting Equations (58) and (59) into Equations (43)–(45), the following relations can
be obtained

B′i =
m4

i + y3m2
i

y1m2
i − y2

Bi = ΓiBi, B′′i =
m2

i (1− Γi)− s2

m2
i

Bi = ΩiBi (60)

Then, Equations (58) and (59) may be expressed as

e(r, s) =
3

∑
i=1

ΓiBiK0(mir) (61)

C(r, s) =
3

∑
i=1

ΩiBiK0(mir) (62)

After using the relationship between u and e, the solution of the radial displacement u
will be

u(r, s) = −
3

∑
i=1

Γi
mi

Bi(s)K1(mir) (63)

Using the expressions (57), (61)–(63) and the well-known relation

xK′n(x) = −xKn−1(x)− nKn(x) (64)

we can obtain the solutions of the thermal stresses and the chemical potential as

σrr(r, s) =
3

∑
i=1

(
(Γi − 1−Ωi)K0(mir) +

2Γiβ
2

mir
K1(mir)

)
Bi (65)

σΘΘ(r, s) =
3

∑
i=1

(((
1− 2β2

)
Γi − 1−Ωi

)
K0(mir)−

2Γiβ
2

mir
K1(mir)

)
Bi (66)

P(r, s) =
3

∑
i=1

(η3Ωi − η4 − Γi)K0(mir)Bi (67)

The boundary conditions in Equations (39)–(41) at r = R in the transformed domain
may be expressed as

σrr(R, s) = 0, θ(R, s) =
4θ0
(
−3 + 4s + 4s2)

(5 + 4s + 4s2)
2 = M(s), P(R, s) =

P0

s
(68)

Using the boundary conditions (68) with Equations (57), (65), and (67), the following
linear system of equations can be obtained:

3

∑
i=1

Bi(s)K0(mir) = M(s) (69)

3

∑
i=1

(
(Γi − 1−Ωi)K0(mir) +

2Γiβ
2

mir
K1(mir)

)
Bi = 0 (70)

3

∑
i=1

(η3Ωi − η4 − Γi)K0(mir)Bi =
P0

s
(71)

The unknown parameters B1, B2, and B3 can be determined by resolving the system
(69)–(71). By the setting of the constants B1, B2, and B3 and substitution in the general
solutions of the different functions, this means that we have finished solving the problem
in the field of the Laplace Transform.
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5.1. Generalized MGT Model of Thermoelasticity without DIFFUSION

In this case, we take C = P = 0. However, the functions θ and e may be obtained
Laplace transform domain by solving the two differential equations:(

∇2 − s2
)

e = ∇2θ (72)

εξ1e =
(
∇2 − ξ1

)
θ (73)

Eliminating e(r, s) or θ(r, s) in the above equation, one obtains the fourth-order differ-
ential equation: (

∇4 − E1∇2 + E2

) {
θ, e
}
= 0 (74)

where
E1 = s2 + ξ1(ε + 1), E2 = s2ξ1 (75)

The solutions to Equation (55) are given by

θ(r, s) =
2

∑
i=1

K0(mir)Gi(s) (76)

e(r, s) =
2

∑
i=1

HiK0(mir)Gi(s) (77)

where Hi =
n2

i −ξ1
εξ1

, Gi (i = 1, 2) are integral constants and n2
i are given by

n2
j =

1
2

(
E1 ±

√
E2

1 − 4E2

)
(78)

Based on these solutions, the quantities of other physical fields can be simplified in
the same way as in the previous analysis:

u(r, s) = −
2

∑
i=1

Hi
mi

K1(nir)Gi(s) (79)

σrr(r, s) =
2

∑
i=1

(
(Hi − 1)K0(nir) +

2Hiβ
2

mir
K1(nir)

)
Bi (80)

σΘΘ(r, s) =
2

∑
i=1

(((
1− 2β2

)
Hi − 1

)
K0(nir)−

2Hiβ
2

mir
K1(nir)

)
Bi (81)

To complete the solution in this case, the boundary conditions in Equations (39) and
(40) are sufficient to obtain the integral constants Gi (i = 1, 2).

5.2. Special Cases of Thermoelasticity and Thermo-Diffusion Models

The model and equations derived and obtained in the second section of this paper are
valid for many special cases that can be inferred from our constructed model. A system of
equations containing thermal conduction equation (Equation (15)) and diffusion equation
(Equation (16)) may include at least 10 generalized theories of thermal elasticity in the
absence of diffusion as well as some generalized diffusion theories. The following can be
summarized and documented in some special cases:

Case I: When the diffusion effect is absent

If the diffusion effect is missing (C = 0), it is possible to obtain the following models:

• The traditional theory of thermoelasticity (CTE) [1] when K∗ = τ0 = 0.
• The Lord and Shulman generalized theory (LS) [2] by setting K∗ = 0.
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• The Green and Naghdi model of Type II (GN-II) [6] when the first term on the right-
hand side of Equation (15) is disregarded and τ0 = 0.

• The Green and Naghdi theory of Type III (GN-III) [5] when τ0 = 0.
• The Moore–Gibson–Thompson thermoelasticity theory MGTE [15,17] when K∗, τ0 > 0.

Case II: Taking into account the effect of diffusion

• The conventional thermo-diffusion model (CTED) [33–35] when K∗ = τ0 = 0.
• The generalized thermoelastic diffusion model (GTD) [36] by setting K∗ = 0 and

D∗ = 0.
• The Green and Naghdi thermoelastic diffusion theory of Type II (GND-II) [49] when

the first term on the right-hand side of Equation (15) is neglected with the addition of
D = τ0 = 0.

• The Green and Naghdi thermoelastic diffusion theory of Type III (GND-III) [50] when
thermal relaxation τ0 = 0.

• The Moore–Gibson–Thompson diffusion thermoelasticity theory MGTED when the
parameters K∗, D∗, τ0 > 0.

5.3. Inversion of the Laplace Transforms

Many problems have solutions that may be expressed in terms of a Laplace transform,
which is therefore too difficult to invert using complex analysis techniques. The numerical
evaluation of the Laplace inversion integral has been accomplished using a variety of
approaches. Many papers have been written in the literature on the inversion of the
Laplace transform. See, for example, [51–54], and a detailed bibliography can be found
in [55,56].

Some methods work amazingly well with some image functions, while providing
horrific results for others. Since no approach is best in all cases, we recommend using
several alternative strategies to solve a particular reversal problem. We can be more
confident and accept a numerically inverse Laplace transform if two or more methods give
approximately the same result. In [57], Abate and Valkó have classified those algorithms
into four categories according to the basic approach of the method as follows: (1) Fourier
series expansion; (2) Laguerre function expansion; (3) combination of Gaver functionals;
(4) deform the Bromwich contour.

This work presents the numerical inversion technique of Laplace transforms based on
the Durbin and Fourier series expansion [58] and Honig and Hirdes [53]. The disadvantage
of this type of inversion method, the remarkable dependence of estimation, and truncation
error on free parameters is overcome by applying a procedure to reduce the estimation
error, a method to speed up the Fourier series convergence, and a procedure that roughly
computes the “best” option for all free parameters at the same time. For two reasons, this
approach is effective in meeting the demands of standalone digital computing. Compared
to other more complex numerical squaring methods, it is fast (economical) on the digital
computers that are currently accessible. Second, because the inverse function is given as a
Fourier cosine series with the coefficients being acceptable forward transform values, the
technique is theoretically straightforward and requires minimal programming effort.

The Laplace transform and its inversion formula of the function f (t) are defined
as follows:

F(r, s) =
∫ ∞

0
e−st f (r, t)dt (82)

f (r, t) =
1

2πi

∫ ϑ−i∞

ϑ−i∞
estF(r, s)ds (83)

where ϑ > 0 is arbitrary but must be chosen so that it is greater than the real parts of all the
singularities of F(r, s). For purposes of discussion, it is herein assumed that these integrals
exist for Re(s) > ϑ > 0. Using the inversion formula

f (r, t) =
eϑt

π

∫ ∞

0
[Re{F(r, s)} cos(wt)− Im{F(r, s)} sin(wt)]dw, (84)
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which is equivalent to (2) with s = ϑ + iw, ϑ, w ∈ R, and a Fourier series expansion of
e−ϑt f (r, t) in the interval [0, 2t1], Durbin derived the approximation formula

f (r, t) ∼=
2eϑt

t1

(
1
2

ReF(r, ϑ) + Re ∑ ∞
N=1F

(
r, ϑ +

iNπ

t1

)
cos
(

Nπ

t1
t
))

(85)

where the parameter N is a satisfactorily large integer and denotes the number of stops in
the truncated Fourier series. The parameter N can be chosen so that it is

eeϑt
Re
(

eiNπt/t1 g(c + iNπ/t1)
)
≤ ε1 (86)

where ε1 is a persecuted small positive number that corresponds to the degree of accuracy
to be achieved. A good choice of free parameters N and ϑt is important not only for
the accuracy of the results but also for the application of the “Korrektur” method and
convergence acceleration methods. These methods do not improve results if the parameters
are badly chosen. For faster convergence, numerical experiments have shown that the
value of the parameter ϑ that satisfies the above relation is given in terms of time as
ϑ =≈ 4.7/t [13].

6. Numerical Example and Discussion

We will now present some empirical results numerically to explain the new model
introduced in this work and on the basis of preceding section outcomes. In order to
answer the issue more comprehensively and to see how the studied fields depend on
diffusion and certain physical influences, we have also numerically calculated for a par-
ticular physical material. The physical values of copper were selected for the purpose of
mathematical estimation. The properties of this substance are therefore given in the SI
units as follows [39,40]:

T0 = 293K, ρ = 8954kgm−3, τ0 = 0.02s, α1 = 0.06s, CE = 383.1Jkg−1K−1

α2 = 0.09s, αt = 1.78× 10−5K−1, αc = 1.98× 10−4m3kg−1

{µ, λ} = {3.86, 7.76} × 1010kgm−1s−2, τ1 = 0.2s, b = 0.9× 106m5kg−1s−2

α = 1.2× 104m2s−2K−1, K = 386Wm−1K−1, D = 0.85× 10−8kgsm−3

(87)

All of the parameters calculated t = 0.12, γ1 = 1 and γ2 = 0.5 will be used in
calculations unless are determined otherwise. The numerical procedure defined in (84)
has been applied to obtain the temperature θ, displacement u, radial stress σrr, hoop stress
σΘΘ, and concentration C as the chemical potential P distributions within the medium. We
assume that the cylinder cavity, with its center, has a radius of R = 1 from the origin.

By comparing the basic Green and Naghdi theories of the second and third types
with the modified thermal diffusion model, this section will provide some examples and
applications for testing the validity of the given model. Plot activities are seen in the hollows
cylinder’s radial pathway. The tabulation of some of the results for future comparisons to
other researchers is an important part of this study.

The effects of the field variables analyzed based on the thermo-diffusion theories
CTED, CTED, GND-II, GND-III, and MGTED have been reported in Tables 1–6. In the
radial direction of the cylinder, Figures 1–6 display further sample graphs of all models to
assess the effect of various thermal diffusion models on the quantities of the physical fields.

In the presence of the diffusion effect, Table 1 and Figure 1 display the variance of the
temperature vs. the radial distance r for the different theories. The temperature values θ
reach the maximum values on the surface of the spherical cavity r = 1 as shown in the table
and the figure, and then gradually decrease. The distribution of temperature satisfies the
condition of the thermal boundary imposed upon the problem. The values of θ gradually
decrease and ultimately decrease in the opposite direction of the heat-wave propagation to
a value of zero as the radius r increases.
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Table 1. The temperature θ for different thermo-diffusion models.

r CTED CTED GND-II GND-III MGTED

1.0 0.482375 0.482375 0.482375 0.482375 0.482375
1.2 0.295083 0.243376 0.277035 0.308172 0.258926
1.4 0.182314 0.123602 0.160531 0.198940 0.140311
1.6 0.113203 0.0625852 0.0932805 0.129202 0.0762489
1.8 0.0703235 0.0311688 0.0540023 0.084112 0.0412362
2.0 0.0434885 0.0149006 0.0308823 0.0546925 0.0219489
2.2 0.0265966 0.00647244 0.0172123 0.0353729 0.0112778
2.4 0.0159271 0.0021343 0.00912002 0.0226299 0.00537005
2.6 0.00918038 5.9651 × 10−5 0.00434163 0.0142029 0.00211293
2.8 0.00492057 1.1276 × 10−5 0.0015413 0.00862565 0.000337224
3.0 0.00224365 1.6055 × 10−5 0.000075166 0.00493878 0.000608679
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A great difference in the temperature field has been found near the boundary surface
of the body under all thermo-diffusion theories, considering the convergence of all models
when increasing the radius within the body. It was also noted that in the CTED and
GND-III models, higher temperature values were observed compared to the GN-II, GTD,
and MGTED models. In the CTED and GND-III models, thermal waves do not fade easily,
unlike in other thermal diffusion models in which it is clear that thermal waves spread
at slow speeds inside the medium. This is because the heat waves in the CTED model
propagate at an unlimited velocity. It is also noted that in the case of the MGTED model,
the numerical values are lower inside the body away from the spherical cavity of the
surface than in the case of the GND-III model, and the waves also fade away faster. The
explanation for the rapid decrease, as predicted, is the inclusion of relaxation times in the
equations extracted.

The effect of all thermal diffusion models on the displacement u in the radial direction
of the cylinder is shown in Table 2 and Figure 2. The displacement distribution begins
at a negative value and then increases gradually as the distance increases until it reaches
a peak value of approximately r = 1.2, after which it eventually decreases to zero with
r increasing. From the table and figure, it can be seen that the relaxation times τ0 and τ1
that were used in the current thermo-diffusion model have a significant role to play in
body deformation.
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Table 2. The displacement u for different thermo-diffusion models.

r CTED CTED GND-II GND-III MGTED

1.0 −0.079734 −0.081456 −0.099797 −0.099287 −0.074101
1.2 0.00409436 0.00133869 0.00216732 0.00452298 0.00362599
1.4 0.00905289 0.00598837 0.00779358 0.0106263 0.00823209
1.6 0.00538761 0.00330092 0.00482924 0.00685372 0.00474181
1.8 0.00287224 0.00167184 0.00275236 0.00392333 0.00246476
2.0 0.00160078 0.000948539 0.00169206 0.00228376 0.0013645
2.2 0.00098475 0.000627214 0.00115203 0.00141395 0.000850296
2.4 0.000674483 0.000465978 0.00085086 0.000945582 0.000595687
2.6 0.000504701 0.000370188 0.000662123 0.000681815 0.000455172
2.8 0.000401442 0.000304314 0.000531199 0.000523657 0.000367178
3.0 0.000331688 0.000254552 0.00043369 0.000421697 0.000305562
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In the case of modified GTD, GND-II, and modified MGTED models, numerical values
of disolactivity are also smaller compared to the findings of the CTED and GN-III models.
In general, it seems that in various theories, there is great similarity and convergence in the
action of displacement. Only in magnitude and peak points does the difference arise. It
can be detected that when relaxation times are used, the displacement profile for the Green
and Naghdi thermo-diffusion model (GND-III) is greater in the absence of relaxation times
than for the MGTED thermo-diffusion model.

For various combinations of thermo-diffusion models, Tables 3 and 4 and Figures 3 and 4
are provided to investigate the effect of thermo-diffusion on the variance of thermal stresses
σrr and σΘΘ. The comparison between the various models and the various distributions
of heat stress can be observed. It is also noted that, in comparison to the CTED model,
the magnitudes of stress values in the case of thermal diffusion GN-III models are the
largest possible.
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Table 3. The radial stress σrr for different thermo-diffusion models.

r CTED CTED GND-II GND-III MGTED

1.0 0 0 0 0 0
1.2 −0.854538 −0.363519 −0.612671 −1.0998 −0.506898
1.4 −0.426424 −0.150462 −0.280248 −0.584935 −0.242656
1.6 −0.225884 −0.0670708 −0.137284 −0.326984 −0.124743
1.8 −0.123914 −0.0310105 −0.0697059 −0.189105 −0.0664459
2.0 −0.0694617 −0.0146615 −0.0361796 −0.111722 −0.0361722
2.2 −0.0395136 −0.00703726 −0.0190601 −0.0669692 −0.0199845
2.4 −0.0227178 −0.0034148 −0.01015 −0.0405677 −0.0111598
2.6 −0.0131671 −0.00167074 −0.00544939 −0.0247716 −0.00628256
2.8 −0.00768002 −0.000822742 −0.0029445 −0.0152214 −0.00355943
3.0 −0.00450248 −0.000407266 −0.00159924 −0.0094005 −0.00202698

Table 4. The hoop stress σΘΘ for different thermo-diffusion models.

r CTED CTED GND-II GND-III MGTED

1.0 −0.372282 −0.376351 −0.372118 −0.373018 −0.37111
1.2 −0.852663 −0.362632 −0.611177 −1.09758 −0.505897
1.4 −0.426185 −0.150271 −0.280019 −0.584682 −0.242504
1.6 −0.225779 −0.0669935 −0.137185 −0.326875 −0.124674
1.8 −0.12386 −0.0309766 −0.0696585 −0.189046 −0.0664112
2.0 −0.0694327 −0.014646 −0.0361559 −0.111689 −0.036154
2.2 −0.0394976 −0.00702998 −0.0190479 −0.0669499 −0.0199748
2.4 −0.0227088 −0.00341133 −0.0101436 −0.0405563 −0.0111544
2.6 −0.0131619 −0.00166907 −0.00544603 −0.0247648 −0.00627961
2.8 −0.00767706 −0.000821926 −0.0029427 −0.0152172 −0.00355778
3.0 −0.00450077 −0.000406865 −0.00159828 −0.00939798 −0.00202605
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The radial thermal stress σrr starts at zero, filling the conditions of the proposed
problem, then decreases rapidly until at the peak point it reaches its maximum value, and
then decreases steadily until it disappears to zero (see Table 3 and Figure 3). With the
hoop stress σΘΘ, the same previous behavior occurs except that it starts with a negative
value different from zero at the surface of the spherical cavity. In behavior and principles,
the variations in GTD-, GND-II-, and MGTED-generalized thermal diffusion models are
similar together.

The existence of the relaxation parameters of generalized thermoelasticity (GND-III)
and the diffusion that have been integrated into the current model (MGTED) have a major
effect on the properties and actions of the vibrations of the different distributions.

It can be attributed to the compressive essence of stress that atoms are suppressed
together in the solids and voluminously induce compressive stress because of the dissolu-
tion of the substance. In both cases, the comparison of each figure shows that, as time pass
away from the source, the magnitude of the various quantities considered decreases, thus
showing the wave fronts.

For the five separate thermo-diffusion models, the numerical computations of the
chemical potential P against the radial distance r are shown graphically in Figure 5 and
in Table 5. Figure 5 and Table 5 show that at the beginning, the variance of the chemical
potential P is great and that the vibrations of the transition decrease and fade as the r value
increases. The chemical potential P profile has also been established, starting with the
greatest surface value, meeting the boundary conditions imposed on the problem, and this
confirms and validates the outcomes we have obtained. In Figure 5 and Table 5, we note
that the variations in the case of CEDT and GND-III are similar to each other and have the
highest values, while the GTD models GND-II and MGTED are smaller in size due to the
effect of generalized thermal and diffusion relaxation parameters.

The comparison with space for the distribution of concentration C is shown in Figure 6
and Table 6 for different thermos-diffusion models. From the numerical values, it was
found that there were some variations between the values of concentration C and the
variation in the model. The concentration C curves and tables have the same behavior but
vary only in quantity.
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r CTED CTED GND-II GND-III MGTED

1.0 1.013155 1.013155 1.013155 1.013155 1.013155
1.2 15.8287 5.60381 10.4178 21.6918 9.01363
1.4 4.60106 1.15509 2.59169 7.01602 2.46841
1.6 1.4672 0.262133 0.708675 2.48466 0.742418
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2.4 0.0204726 0.000944823 0.00536546 0.0525816 0.00821032
2.6 0.0072729 0.000239424 0.00163639 0.0207244 0.00275235
2.8 0.00260187 6.11038 × 10−5 0.00050261 0.00822539 0.000929177
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Table 6. The concentration C for different thermo-diffusion models.

r CTED CTED GND-II GND-III MGTED

1.0 0.117031 0.116954 0.117034 0.117017 0.117052
1.2 0.850402 0.364377 0.611294 1.09261 0.506495
1.4 0.427816 0.151386 0.281513 0.58636 0.243597
1.6 0.226681 0.0674881 0.137925 0.327908 0.125236
1.8 0.124353 0.0312044 0.0700328 0.189644 0.0667094
2.0 0.0697087 0.0147534 0.0363497 0.112041 0.0363159
2.2 0.0396543 0.00708146 0.0191498 0.0671608 0.0200641
2.4 0.0227988 0.00343627 0.0101978 0.0406839 0.0112042
2.6 0.0132141 0.00168126 0.0054751 0.0248426 0.00630761
2.8 0.00770743 0.000827926 0.0029584 0.015265 0.00357363
3.0 0.00451856 0.000409833 0.00160679 0.00942747 0.00203507

The concentration begins with a positive value at the cavity of the cylinder and then
rises steadily until r = 1.2 reaches its highest local maximum value. After that, increasing
the distance r within the medium steadily decreases until it dissipates to obtain its null
value. In contrast with the CTED and GND-III models, the C-field values can be inferred
from the numeric values to be smaller in the case of the MGTED model. The GND-III
model, however, gives the GND-II model a larger model.

The medium is strained in the vicinity of the cylinder and, with the passing of time,
is greater. Cross-effects may result in the presence of tensile stress near the cavity surface
due to temperature coupling, mass dissemination, and strain fields. Owing to these cross-
effects, an additional accumulation of thermal stress arises from the thermal excitation.
The primary difference between the GND-III model of thermoelastic diffusion and the
MGTED-based thermal conductivity equations of thermoelastic diffusion is the additional
delay times τ0 and τ1.

These relaxation times provide an additional diffusion and propagation mechanism in
the governing equation for the dissipation effect. The delay time τ0 is known to monitor the
propagation behavior of the thermal wave, slow down the speed of heat-wave propagation,
and show the characteristics of the thermal wave. Thermal energy can be diffused, and
diffusion wave decay characters can be produced in the MGTED heat transfer by the
τ1 effect.

7. Conclusions

A new generalized thermoelastic diffusion model has been derived in the present
paper, connecting heat and mass flux in elastic materials. It is understood that, due to the
coupling between temperature and mass diffusion as well as stress fields, thermoelastic
diffusion takes place in a flexible solid material. Centered on the Moore–Gibson–Thompson
equation, the constitutive equations, as well as the heat and mass diffusion equations, have
been modified. The goal behind the implementation of this new model was to deal with
the evident inconsistency between the infinite thermal and diffusion rates predicted by the
classical theories of thermoelastic diffusion [1,33–35] and the energy dissipation model of
Green and Naghdi (GN-III) [5]. In the constructed modified model, the laws of Fourier and
Fick have also been improved to incorporate the time needed to speed up the heat wave
and the time derivative of the diffusive mass flow.

The primary distinction between the thermoelastic diffusion model GND-III and the
thermoelastic diffusion thermal conductivity equations based on MGTED is the additional
delay times τ0 and τ1. These relaxation times provide an additional diffusion and propaga-
tion mechanism in the governing equation for the dissipation effect. The delay time τ0 is
known to monitor the propagation behavior of the thermal signal, slow down the speed of
thermal wave propagation, and show the characteristics of the thermal wave.

Thermal energy can be diffused, and diffusion wave decay characters can be produced
in the MGTED heat transfer by the τ1 effect.
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The problem of an unbounded solid with a cylindrical cavity with a permeable
material shaped on the surface in contact with the cylindrical cavity has been studied
to explain and examine the proposed model. In the area of Laplace transformation, the
solution is achieved by a direct approach. Centered on Fourier expansion techniques, a
computational approach is used to invert Laplace transforms to solve the problem in the
physical field.

It was found from our observations that thermal and diffusion waves are propagated
as a wave with a slight velocity rather than an endless velocity on the conventional ther-
moelastic diffusion model. The thermoelastic diffusion models can be deduced as special
cases: Green–Naghdi Type II and III models, generalized thermo-diffusion with one relax-
ation. Furthermore, the GND-III and CTED models have a near-conduct but are distinct
from MGTED, which shows that the model of thermoelastic diffusion was significant. The
results in this article should be useful for science and engineering research as well as for
those working on solid mechanics growth. A wide variety of thermodynamic concerns
are related to the method used in this article. These theoretical conclusions will provide
experimental experts and researchers who work on this subject with interesting knowledge.
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