

  mathematics-09-01532




mathematics-09-01532







Mathematics 2021, 9(13), 1532; doi:10.3390/math9131532




Article



A Modified Rao-2 Algorithm for Optimal Power Flow Incorporating Renewable Energy Sources



Mohamed H. Hassan 1, Salah Kamel 1[image: Orcid], Ali Selim 1[image: Orcid], Tahir Khurshaid 2,*[image: Orcid] and José Luis Domínguez-García 3,*





1



Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt






2



Electrical Engineering Department, Yeungnam University, Gyeongsan 38541, Korea






3



IREC Catalonia Institute for Energy Research, Jardins de les Dones de Negre 1, 2a, 08930 Sant Adrià de Besòs, Barcelona, Spain









*



Correspondence: tahir@ynu.ac.kr (T.K.); jldominguez@irec.cat (J.L.D.-G.)







Academic Editor: Alessandro Niccolai



Received: 26 May 2021 / Accepted: 27 June 2021 / Published: 29 June 2021



Abstract

:

In this paper, a modified Rao-2 (MRao-2) algorithm is proposed to solve the problem of optimal power flow (OPF) in a power system incorporating renewable energy sources (RES). Quasi-oppositional and Levy flight methods are used to improve the performance of the Rao algorithm. To demonstrate effectiveness of the MRao-2 technique, it is tested on two standard test systems: an IEEE 30-bus system and an IEEE 118-bus system. The objective function of the OPF is the minimization of fuel cost in five scenarios. The IEEE 30-bus system reflects fuel cost minimization in three scenarios (without RES, with RES, and with RES under contingency state), while the IEEE 118-bus system reflects fuel cost minimization in two scenarios (without RES and with RES). The achieved results of various scenarios using the suggested MRao-2 technique are compared with those obtained using five recent techniques: Atom Search Optimization (ASO), Turbulent Flow of Water-based Optimization (TFWO), Marine Predators Algorithm (MPA), Rao-1, Rao-3 algorithms, as well as the conventional Rao-2 algorithm. Those comparisons confirm the superiority of the MRao-2 technique over those other algorithms in solving the OPF problem.
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1. Introduction


In recent decades, the optimal power flow (OPF) problem has had an important role in the operation and planning of electrical systems [1]. OPF aims to adjust the independent control variables parameters of power systems to reach the needed objective function, which are normally reducing the fuel cost, emission, and active power loss, to satisfy the needed demand load, concurrently meeting the boundaries of inequality and equality constraints [2].



The critical necessity to address global warming and climate change have placed renewable energy sources (RES) such as solar energy systems, wind energy systems, and hydropower plants in the center of energy conversion as well as the quickly dropping renewable power generation costs, we need to face the challenges, arising from using a high scale of renewable energy sources in the power system [3]. In recent years, RES contributes to decreasing the power losses of the grid, enhancing the quality and reliability of the electrical grid [4]; furthermore, they affect the electricity market. By increasing the added energy from RES inside the electrical power grid, it is required to set the best energy production for the system to satisfy the objective functions such as minimizing the fuel cost, total emission from the conventional power generation stations, and transmission losses and enhancing the voltage profile [5].



The OPF problem is generally non-convex, non-smooth, and non-differentiable objective functions. Consequently, it is very significant to develop new techniques to reach the global best solution for this problem. The conventional approaches such as Gradient’s method [6], nonlinear programming [6], quadratic programming [7], and interior-point methods [8] have been successfully applied in the previous researches to solve the OPF problem. The nonlinear properties may produce the obtained solutions to be confined in local minima, and these methods need a huge quantity of computational effort and time. Therefore, several optimization techniques need to be developed to defeat these weaknesses [9].



Thus, different heuristic techniques are utilized to solve the OPF problem such as a multi-objective hybrid firefly and PSO (MOHFPSO) [10], modified grasshopper optimization algorithm (MGOA) [11], forced initialized differential evolution algorithm [12], an adaptive multiple teams perturbation-guiding Jaya (AMTPG-Jaya) technique [13], modified Sine-Cosine algorithm (MSCA) [14], Developed Grey Wolf Optimizer (DGWO) [15], improved salp swarm algorithm (ISSA) [16], Barnacles Mating Optimizer (BMO) [17], and Lévy Coyote optimization algorithm (LCOA) [18].



Although these three versions of the Rao algorithm have been recently published, many optimization problems have been solved using them and using their modifications such as the photovoltaic cell parameter estimation [19,20,21,22], design optimization of mechanical system components [23], selected thermodynamic [24], Optimal weight design of a spur gear train [25], 2D truss structures [26], multi-objective design optimization of selected heat sinks [27], optimal reactive power dispatch with renewable energy and time-varying demand uncertainty [28], and Classification of Parkinson disease [29].



In this article, the main contribution is summarized as follows.



	
The proposed MRao-2 technique is used to achieve the accurate values of control variables of the OPF problem without RES, with RES, and with RES under contingency state.



	
The fuel cost is the main objective function in five scenarios for the two IEEE 30 -bus and 118-bus systems to test the validation of the proposed algorithm.



	
To check the robustness of this modified algorithm, its results are compared with five recent algorithms—ASO, TFWO, MPA, Rao-1, and Rao-3—as well as the original Rao-2 which are the strong algorithms in solving the modern power system problems and they are used in many published papers in the last two years so far.






The rest of the paper is organized as follows. The problem formulation is presented in Section 2. Section 3 introduces the proposed MRao-2 algorithm applied to solve the OPF problem with various scenarios. Section 4 gives a discussion and analysis of the simulation results. Section 5 presents the conclusion.




2. Problem Formulation


2.1. General Structure of OPF


The OPF solution provides the best value of the control variables by minimizing an objective function with satisfying equality and inequality limitations. Commonly, the mathematical formulation of the optimization problem may be expressed as follows [30]:


   Minimize   F    x , u    



(1)







Subject to


   g i    x , u   = 0              i  = 1 , 2 , 3 , … , m  



(2)






       h   j    x , u   ≤ 0              j  = 1 , 2 , 3 , … , n  



(3)




where F is the objective function;  x ,     u    are the state variables (dependent variables) and the control variables (independent variables) vectors, respectively;    g i    is the equality constraints  ;    m    is the number of equality constraints;        h   j    is the number of inequality constraints; and  n  is the number of inequality constraints.



The state variables are represented in a vector as follows [16]:


  x =    P  G 1   ,  V  L 1   …  V  LNPQ   ,  Q  G 1   …  Q  GNPV   ,  S  TL 1   …  S  TLNTL      



(4)




where    P  G 1     refers to the active power generation of slack bus, VL is the voltage magnitude of the load bus, NPQ is the number of load buses, QG is the generated reactive power, NPV is the number of generation buses, STL is the loading of transmission line, and NTL is Number of transmission lines.



The control variables are represented in a vector as follows [16]:


  u =    P  G 2   …  P  GNG   ,  V  G 1   …  V  GNG   ,  Q  C 1   …  Q  CNC   ,  T 1  …  T  NT      



(5)




where PG is the generated active power, and NG is the number of generators. VG is the voltage magnitude of the generation bus. QC is the injected imaginary power by the shunt compensator. NC is the number of shunt compensators. T is the tapping ratio of the transformer. NT is the number of transformers.




2.2. Objective Functions


2.2.1. Quadratic Total Fuel Cost


The total fuel cost of all thermal generation units is represented based on the polynomial quadratic function as the following equation [2]:


   F 1  =   ∑   i = 1  N     a i   P  gi  2  +  b i   P  gi   +  c i                 $  /  h     



(6)




where ai, b, and ci are the cost coefficients of ith generator.




2.2.2. Total Emission


Various types of noxious emissions are emitted from those plants because of using several types of fossil fuels in thermal power plants. Newly, one of the principal goals of the OPF problem is reducing these emissions without affecting the generated power to satisfy the load demands in the electrical power system. This emission is calculated from the following equation: [31]:


  E =   ∑   i = 1  N      10   − 2   (  α i  +  β i   P i  +  γ i   P i 2  )    



(7)




where    α i   ,    β i   , and    γ i    represent the emission coefficients for the ith unit.




2.2.3. Power Loss Function


The total active power losses in the system can be expressed as follows [32]:


   P  loss   =   ∑   k = 1   nl    G k     V i 2  +  V j 2  − 2  V i   V j  cos (  δ i  −  δ j  )   MW  



(8)




where   nl   is the number of network nodes;    V i    and    V j    are the voltage magnitudes for the i-th and j-th nodes, respectively;    δ i    and    δ j    are the node voltage angles of the i-th–j-th branch; and    G k    refers to the conductivity between node i and node j.




2.2.4. Voltage Deviation (VD) Function (Voltage Profile Improvement)


One of the effective methods is the voltage magnitude fluctuation from 1.0 per unit at each load bus which is defined as follows [32]:


  VD =   ∑   p = 1   NL      V   L p    − 1    



(9)




where    V   L p      is the ith voltage of load buses.





2.3. Constraints


2.3.1. Equality Constraints


The balanced load flow equations represent the equality constraints. The following equations express the active and reactive power constraints that fulfill the load demands requirements and also the power losses of the transmission line [33]:


   P  Gi   −  P  Di   =  V i      ∑   j = 1   NB    V j  [  G  ij   cos    δ i  −  δ j    +  B  ij   sin    δ i  −  δ j    ]  



(10)






   Q  Gi   −  Q  Di   =  V i      ∑   j = 1   NB    V j  [  G  ij   cos    δ i  −  δ j    −  B  ij   sin    δ i  −  δ j    ]  



(11)




where PG is the generated real power, QG is the reactive power generation,   NB   is the number of buses, and PD and QD are the real and imaginary load demands, respectively.    G  ij     and    B  ij     are the conductance and substance between buses i and j.       δ   i    and    δ j    are the voltage angles bus i and j.




2.3.2. Inequality Constraints


The inequality constraints are described as follows [34]:



(a) Generator constraints (thermal or renewable as applicable):


   P  Gi   min   ≤      P    Gi   ≤  P  Gi   max                 i  = 1 , 2 , … , NG  



(12)






   V  Gi   min   ≤  V  Gi   ≤  V  Gi   max                 i  = 1 , 2 , … , NPV  



(13)






   Q  Gi   min   ≤  Q  Gi   ≤  Q  Gi   max                 i  = 1 , 2 , … , NPV  



(14)







(b) Security constraints


       S    Li   ≤  S  li   max                          i  = 1 , 2 , … , NTL  



(15)






   V i  min     ≤  V i  ≤  V i  max                 i  = 1 , 2 , … , NPQ  



(16)







(c) Shunt VAR compensator constraints:


   Q  ci   min   ≤      Q    Ci   ≤  Q  ci   max                 i    = 1 , 2 ,   …   ,    NC   



(17)







(d) Transformer constraints:


   T i  min   ≤      T   i  ≤  T i  max                 i    = 1 , 2 ,   …   ,    NT   



(18)







The mathematical formulation of the fitness function combined with the quadratic penalty is as follows:


   F g    x , u   =  F i    x , u   + Penalty  



(19)






  Penalty =  λ p      Δ  P  G 1      2  +  λ v    ∑   i = 1   NPQ         Δ  V  Li      2  +  λ Q    ∑   i = 1   NPV         Δ  Q  Gi      2  +  λ s    ∑   i = 1   NTL         Δ  S  Li      2   



(20)






  Δ  P  G 1   =        P  G 1      max   −  P  G 1                  P  G 1   >  P  G 1      max          P  G 1   −  P  G 1      min                  P  G 1   <  P  G 1      min          



(21)






  Δ  V  Li   =       Δ  V  Li      max   − Δ  V  Li               Δ  V  Li   > Δ  V  Li      max         Δ  V  Li   − Δ  V  Li      min               Δ  V  Li   < Δ  V  Li      min          



(22)






  Δ  Q  Gi   =       Δ  Q  Gi      max   − Δ  Q  Gi                Δ  Q  Gi   > Δ  Q  Gi      max         Δ  Q  Gi   − Δ  Q  Gi      min                Δ  Q  Gi   < Δ  Q  Gi      min          



(23)






  Δ  S  Li   =       Δ  S  Li      max   − Δ  S  Li       Δ  S  Li   > Δ  S  Li      max         Δ  S  Li   − Δ  S  Li      min       Δ  S  Li   < Δ  S  Li      min          



(24)




where    λ p   ,   λ v   ,   λ Q   ,    λ s    are the Penalty factors.




2.3.3. Power Balance Considering RES


Adding the RES to the power system has different shapes in the studying of the OPF problem. In this article, the RES is employed as a negative load [35,36]. This implies that all RES (such as solar, wind, hydro, and biomass) that are added to the system will be utilized first to produce the part of the required power to loads then the remainder of the loads and power losses will be covered from the thermal power plants.






3. The Proposed Optimization Technique


3.1. Rao Algorithm


Rao algorithms have recently been implemented in [37]. The key benefit of these algorithms is that they do not need any complex control parameters, only ordinary parameters such as population size and the number of iterations are required. Rao-1, Rao-2, and Rao-3 are three algorithms that have been developed in [37]. The Rao-2 algorithm is used in this study as it has a high convergence rate.



The following equation can be used to describe the mathematical formulation of the Rao-2 algorithm:


   X  j , k p , i  ′  =  X  j , k p , i   + R  d  1 , j , i        X  j , b e s t , i   −  X  j , w o r s t , i     + R  d  2 , j , i        X  j , k p , i   o r    X  j , l m , i         −    X  j , l m , i   o r    X  j , k p , i          



(25)




where    X  j , kp , i     denotes the value of jth variable design for kpth candidate solution after the ith iteration, and    X  j , kp , i  ′     denotes the updated value of the next iteration.    X  j , best , i     and       X    j , worst , i      are the values of the j for the best and worst candidate solutions during the ith iteration, respectively.       Rd    1 , j , i        and   Rd    2 , j , i      are random numbers in the range [0, 1] for the jth variable during the ith iteration.



The terminology (   X  j , kp ,  i         or   X    j , lm ,  i           and   X    j , lm ,  i         or   X    j , kp ,  i       ) are used to compare the fitness values of a candidate solution k and a randomly chosen candidate solution.



The following are the key steps of the Rao-2 algorithm.



	
Step 1: Randomly distribute the population within the vector ranges.



	
Step 2: Determine the objective value for each variable.



	
Step 3: Define the worst and best solutions depending on the objective function’s values.



	
Step 4: Upgrade the solutions by (25).



	
Step 5: If any of the updated values fall outside of the range, they should be returned.



	
Step 6: Evaluate the value of each search agent’s objective function.



	
Step 7: Increase the number of iterations of the new one   i t = i t + 1  



	
Step 8: If the iteration has reached its end, return the best value so far. If not, go on to Step 3.






Figure 1 illustrates the main flowchart for the Rao-2.




3.2. Modified Rao Algorithm


The quasi-oppositional and Levy flight methods are used to enhance the conventional Rao technique in this paper.



3.2.1. Quasi-Oppositional


Opposition-based learning (OBL) [38] is a commonly used way to enhance several optimization algorithms such as Quasi-oppositional swine influenza model-based optimization with quarantine (QOSIMBO-Q) [39], quasi-oppositional teaching-learning (QOTLBO) [40], quasi oppositional bonobo optimizer (QOBO) [41], and Oppositional Jaya Algorithm [42].



The OBL can be improved by simultaneously using the candidate solution and the opposite. Therefore, this work will express the opposite solution of    X B i    in the Rao algorithm as


   X  j , kp , i    ′ qi    =       C +  r 1    C −  X  j , kp , i  ′    ,     |      X  j , kp , i  ′  ) < C       C −  r 1     X  j , kp , i  ′    − C ) ,     |      X  j , kp , i  ′  ) ≥ C        



(26)




where    r 1    is a random number between [0, 1], and  C  is a middle point between    X  min  i    and    X  max  i   , which can be calculated as follows:


  C =    X  min  i  +  X  max  i   2   



(27)








3.2.2. Levy Flight


The delivery of levy flight is used to boost the exploration phase using the following equation:


   X  j , kp , i  ′     levy   =  X  j , kp , i  ′  + S × LF  D   



(28)




where D is the problem dimension, and    S   is a vector of random values with size   1 × D  . The LF is the levy flight function, which is calculated by the following equations:


  LF  x  = 0.01 ×   μ × σ      v     1 β       



(29)






  σ =       Γ   1 + β   × sin      π β   2      Γ     1 + β  2    × β ×  2      β − 1  2             1 β     



(30)




where  μ  and  v  are random values inside (0,1),  β  is a default constantset to 1.5, and  Γ  is a gamma function.



The updated Rao positions will then be chosen based on the value of the objective function where if the objective function of the updated Rao position using levy   F    X  j , kp , i  ′     levy        is   lower   than     the objective function of the conventional Rao position   F    X  j , kp , i  ′      then the new position will be the    X  j , kp , i  ′     levy     otherwise the position will not be updated. Therefore, the following equation can be used to update the modified Rao:


   X  j , kp , i  ′  =        X  j , kp , i  ′                 if   F    X  j , kp , i  ′    < F    X  j , kp , i  ′     levy            X  j , kp , i  ′     levy   ,              if     F    X  j , kp , i  ′     levy     < F    X  j , kp , i  ′           



(31)










4. Simulation Results


4.1. Test Systems


In this paper, the IEEE 30-bus and IEEE 118-bus systems are used to prove the efficient performance of the proposed MRao-2. The data of lines and buses for the IEEE 30-bus system can be found in [43], while the data of lines and buses for the IEEE 118-bus system can be found in [28,44]. The IEEE 30-bus system has 41 transmission lines and 6 generating units. Bus 1 is selected as the slack bus and the load demand is 283.4 MW. Table 1 displays the upper and lower limits of the control variables in 30- bus system. The IEEE 118-bus system has 54 generation units and 186 transmission lines. Bus 69 is chosen as the slack bus and the total load of the network is 3733.07 MW [45]. The upper and lower limits of the control variables in 118-bus systems are also displayed in Table 1 [4]. The emission coefficients of the generators are taken from [46].



The modification to the IEEE 30-bus system is by adding the RES. The selection of the proper location of these RES in the test system is based on the power loss sensitivity and generation cost to each real and imaginary power as stated in [47]. The results in [47] presented that the optimum location is bus 30 and the value chosen of RES is 20MW. Figure 2 shows a single line diagram of the modified IEEE 30-bus system.



The modification to the standard IEEE 118-bus test system is by adding RES based on that in [48]. The location and values of the RES in the IEEE 118-bus test systems are tabulated in Table 2. A single line diagram of the modified IEEE 118-bus system is presented in Figure 3.



In this article, the numerical simulations studies have been run on an Intel ®® core TM i5-7200U CPU with 8 GB of RAM using MATLAB 2016a. The proposed MRao-2 technique is employed to find the best solution for the OPF problem in different cases considering the fuel cost, emission, transmission loss, and improvement of the voltage profile. The results of MRao-2 are compared with the ASO Algorithm [49], TFWO [50], MPA [51], and Rao algorithms: Three metaphor-less simple algorithms (Rao-1, Rao-2, and Rao-3) [37]. The parameters settings of the different optimization techniques are shown in Table 3.




4.2. Case 1: The OPF without RES for the IEEE 30-Bus System


The proposed MRao-2 is used in this case to achieve the best solution for the OPF problem without RES and considering the fuel cost, power loss, emission, and voltage profile improvement. Table 4 presents the results of the MRao-2 algorithm in comparison with other techniques. These results confirm that the MRao-2 technique outperforms other algorithms. Its objective function (Fuel Cost = 800.4412 $/h) is better than all other algorithms and it performs without any violation of the constraints. The voltage profile of the proposed MRao-2 is displayed in Figure 4. It can be observed from this figure that all voltage magnitudes at all buses of the power system are within the boundaries presented in Table 1. Given the convergence characteristics of all algorithms for the optimal solutions that have been achieved by the ASO, TFWO, MPA, Rao algorithms, and MRao-2 in this case, the proposed MRao-2 has a smooth convergence characteristics curve to the best solution with a rapid convergence rate and without oscillations in comparison with all other techniques as displayed in Figure 5. It is shown in Figure 5 that the supremacy of the MRao-2 over the recent other techniques is proven in the last iterations as it converges to the best solution.



Furthermore, Figure 6 shows graphic comparisons for 20 individual runs (i.e., fuel cost) obtained from the proposed algorithm compared with the other six algorithms in the form of a boxplot graph. These boxplots present the mean performance of techniques that can be compared visually. There are five elements that can be defined from each boxplot as follows: first quartile, minimum, third quartile, maximum, and median. The median value is the line inside the box. These boxplots are drawn after 20 individual runs for each technique, and they display the classification precision. It can be seen that the MRao-2 algorithm has a lower boxplot compared to the other well-known techniques. Furthermore, the median of the proposed MRao-2 has a minimum value compared to the other techniques. It can be observed from this figure that the proposed MRao-2 is competitive and often superior to the other recent algorithms. Furthermore, the proposed MRao-2 technique delivers the optimal results in terms of precision and reliability compared to the other techniques. The optimal fuel cost listed in Table 5 shows that the proposed MRao-2 technique is more effective than other approaches in obtaining the best solutions as its fuel cost is less than those of others.




4.3. Case 2: OPF Incorporating RES for the IEEE 30-Bus System


The proposed MRao-2 technique is employed in the second case to reach the optimum solution for the OPF problem incorporating RES, considering the generation cost, transmission loss, emission, and improvement of voltage profile. Next, the obtained results using the proposed MRao-2 algorithm are compared with ASO, TFWO, MPA, Rao-1, Rao-2, and Rao-3 algorithms. The results of all the techniques for this case are listed in Table 6.



It is seen from these results that the MRao-2 technique is also more effective than other techniques in reaching the best solution for the OPF problem with fuel cost and RES. Its fitness function (Fuel cost = 729.3429 $/h) is less than all other algorithms and it does not violate the constraints. Furthermore, the objective function of the MRao-2 technique is reduced from 800.4412 $/h (case 1) to 729.3429 $/h (case 2) by 8.88% after incorporating the RES as expected. By entering the RES as a negative load, the total load of the power system is decreased, which reduces the generation cost of the conventional thermal generators.



Furthermore, as in the previous case, the voltage magnitude of all buses is within their boundaries as shown in Figure 7. After incorporating the RES, the proposed MRao-2 has also smooth and speedy convergence curves in comparison with other algorithms as presented in Figure 8. The Boxplot graph of best Fuel cost in 20 runs of the proposed MRao-2 and other recent algorithms for case 2 is presented in Figure 9.




4.4. Case 3: OPF Incorporating RES under Contingency State for IEEE 30-Bus System


In this case, a contingency state is simulated by the outage of two lines. These lines are line (10–17) and line (10–21). Table 7 tabulates the obtained results using the proposed MRao-2 and other algorithms. According to these results, the proposed MRao-2 technique provides the best solution for the fitness function in comparison with other algorithms including RES during the contingency state and without any violation of the constraints. Figure 10 displays the voltage profile of the MRao-2 technique, while Figure 11 shows the convergence characteristics of all algorithms. From these figures, it is clear that all voltage magnitudes are within the constraints and the proposed MRao-2 has smooth convergence features with speedy convergence in comparison with other techniques. Furthermore, Figure 12 displays the Boxplot graph of best Fuel cost in individual 20 runs of the proposed MRao-2 and other recent algorithms for this case.



The statistical results of the proposed MRao-2 and the other recently algorithms for 20 individual runs for each case are presented in Table 8. Most researchers choose the minimum, mean, median, maximum, and standard deviation (STD) values to demonstrate the superiority and effectiveness of a technique. Table 8 shows the minimum, average, median, maximum, and STD values of the fuel cost as the objective function for all cases. These results confirm the supremacy of the proposed algorithm on the other algorithms.




4.5. Case 4: OPF without RES for the IEEE 118-Bus System


In this case, the MRao-2 is utilized to find the optimum solution for the OPF problem for the IEEE 118-bus system considering the fuel cost, transmission loss, and improvement of the voltage profile and without considering the RES. In this paper, this system is chosen to test the scalability of the MRao-2 technique and demonstrate its robustness to apply it to solve the OPF for large-scale systems. Table 9 presents the obtained results using the proposed MRao-2 algorithm. These results are compared with ASO, TFWO, MPA, Rao-1, Rao-2, and Rao-3, and this comparison is listed in Table 10. These results confirm the supremacy of the MRao-2 algorithm over other techniques in achieving the best solution for the OPF problem with the Fuel cost as an objective function for the large-scale electrical power system without considering the RES.



The MRao-2’s objective function (Fuel cost = 131,457.8 $/h) is less than the fitness function of other algorithms without any violation of the restraints. Figure 13 displays the magnitudes of the voltages of all buses are within the limits. Moreover, the MRao-2 has smooth and speedy convergence curves in comparison with other algorithms as shown in Figure 14.




4.6. Case 5: OPF Incorporating RES for the IEEE 118-Bus System


In this case, the proposed MRao-2 technique is applied to the IEEE 118-bus system to check the ability of the proposed algorithm to solve the OPF for the large-scale system considering the RES. Table 11 tabulates the obtained results using the proposed MRao-2 algorithm. Furthermore, the results of the MRao-2 technique and other algorithms for this case are presented in Table 12. These results of the fuel cost for this case by ASO, TFWO, MPA, Rao-1, Rao-2, Rao-3, and MRao-2 algorithms are 103,847.47, 101,747.68, 101,981.69, 101,981.17, 101,078.92, 101,297.12, and 100,738.54 $/h, respectively. These results show that the proposed MRao-2 achieves a better solution than other algorithms in solving the OPF considering RES using the large-scale system and without any violation of the limits. Furthermore, adding RES to the IEEE 118-bus system decreases the fuel cost as an objective function of the MRao-2 by 23.4%. Figure 15 displays the magnitudes of the voltage of all buses of the MRao-2 are within the limits. Figure 16 shows that the proposed MRao-2 has smooth and speedy convergence curves in comparison with other techniques even for large-scale systems.





5. Conclusions


In this article, a new technique has been proposed for finding the optimum solution to the OPF problem incorporating renewable energy sources considering the fuel cost, transmission loss, emission, and improvement of the voltage profile. To overcome the shortcomings of the original Rao-2, the MRao-2 algorithm has been proposed using the quasi-oppositional and levy methods. The superiority and effectiveness of MRao-2 have been checked based on two standard test systems (IEEE 30-bus system and IEEE 118-bus system) with or without RES. It is obvious from the results that the MRao-2 provided a better solution of the objective function for all cases over other algorithms employed in the comparison. The obtained results using MRao-2 in comparison with those obtained using other recent techniques show that the proposed MRao-2 is superior to these algorithms for normal, contingency states and with incorporating RES whatsoever the scale of the power system which shows the strength of the MRao-2 to solve the real-life application.







Author Contributions


Conceptualization, M.H.H., A.S., and S.K.; data curation, T.K. and J.L.D.-G.; formal analysis, M.H.H., A.S., and S.K.; resources, T.K. and J.L.D.-G.; methodology, M.H.H. A.S. and S.K.; software, M.H.H., A.S., and S.K.; supervision, T.K. and J.L.D.-G.; validation, T.K. and J.L.D.-G.; visualization, M.H.H., A.S., and S.K.; writing—original draft, M.H.H., A.S., and S.K.; writing—review and editing, T.K. and J.L.D.-G. All authors together organized and refined the manuscript in the present form. All authors have approved the final version of the submitted paper. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Not applicable.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Sulaiman, M.H.; Mustaffa, Z.; Mohamad, A.J.; Saari, M.M.; Mohamed, M.R. Optimal power flow with stochastic solar power using barnacles mating optimizer. Int. Trans. Electr. Energy Syst. 2021, 31, e12858. [Google Scholar] [CrossRef]

	



Abaci, K.; Yamacli, V. Differential search algorithm for solving multi-objective optimal power flow problem. Int. J. Electr. Power Energy Syst. 2016, 79, 1–10. [Google Scholar] [CrossRef]

	



Ben Hmida, J.; Chambers, T.; Lee, J. Solving constrained optimal power flow with renewables using hybrid modified imperialist competitive algorithm and sequential quadratic programming. Electr. Power Syst. Res. 2019, 177, 105989. [Google Scholar] [CrossRef]

	



Elattar, E.E.; ElSayed, S.K. Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement. Energy 2019, 178, 598–609. [Google Scholar] [CrossRef]

	



Shaheen, M.A.M.; Hasanien, H.M.; Al-Durra, A. Solving of Optimal Power Flow Problem Including Renewable Energy Resources Using HEAP Optimization Algorithm. IEEE Access 2021, 9, 35846–35863. [Google Scholar] [CrossRef]

	



Frank, S.; Steponavice, I.; Rebennack, S. Optimal power flow: A bibliographic survey I. Energy Syst. 2012, 3, 221–258. [Google Scholar] [CrossRef]

	



Momoh, J.A.; Adapa, R.; El-Hawary, M.E. A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 1999, 14, 96–104. [Google Scholar] [CrossRef]

	



Yan, X.; Quintana, V.H. Improving an interior-point-based OPF by dynamic adjustments of step sizes and tolerances. IEEE Trans. Power Syst. 1999, 14, 709–717. [Google Scholar] [CrossRef]

	



Khunkitti, S.; Siritaratiwat, A.; Premrudeepreechacharn, S.; Chatthaworn, R.; Watson, N. A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems. Energies 2018, 11, 2270. [Google Scholar] [CrossRef]

	



Khan, A.; Hizam, H.; Abdul-Wahab, N.I.; Othman, M.L. Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm. Energies 2020, 13, 4265. [Google Scholar] [CrossRef]

	



Taher, M.A.; Kamel, S.; Jurado, F.; Ebeed, M. Modified grasshopper optimization framework for optimal power flow solution. Electr. Eng. 2019, 101, 121–148. [Google Scholar] [CrossRef]

	



Shaheen, A.M.; El-Sehiemy, R.A.; Farrag, S.M. Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm. IET Gener. Transm. Distrib. 2016, 10, 1634–1647. [Google Scholar] [CrossRef]

	



Warid, W. Optimal power flow using the AMTPG-Jaya algorithm. Appl. Soft Comput. 2020, 91, 106252. [Google Scholar] [CrossRef]

	



Attia, A.-F.; El Sehiemy, R.A.; Hasanien, H.M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. Int. J. Electr. Power Energy Syst. 2018, 99, 331–343. [Google Scholar] [CrossRef]

	



Abdo, M.; Kamel, S.; Ebeed, M.; Yu, J.; Jurado, F. Solving Non-Smooth Optimal Power Flow Problems Using a Developed Grey Wolf Optimizer. Energies 2018, 11, 1692. [Google Scholar] [CrossRef]

	



Abd el-sattar, S.; Kamel, S.; Ebeed, M.; Jurado, F. An improved version of salp swarm algorithm for solving optimal power flow problem. Soft Comput. 2021, 25, 4027–4052. [Google Scholar] [CrossRef]

	



Sulaiman, M.H.; Mustaffa, Z. Solving optimal power flow problem with stochastic wind–solar–small hydro power using barnacles mating optimizer. Control Eng. Pract. 2021, 106, 104672. [Google Scholar] [CrossRef]

	



Kaymaz, E.; Duman, S.; Guvenc, U. Optimal power flow solution with stochastic wind power using the Lévy coyote optimization algorithm. Neural Comput. Appl. 2021, 33, 6775–6804. [Google Scholar] [CrossRef]

	



Premkumar, M.; Babu, T.S.; Umashankar, S.; Sowmya, R. A new metaphor-less algorithms for the photovoltaic cell parameter estimation. Optik 2020, 208, 164559. [Google Scholar] [CrossRef]

	



Wang, L.; Wang, Z.; Liang, H.; Huang, C. Parameter estimation of photovoltaic cell model with Rao-1 algorithm. Optik (Stuttgart) 2020, 210, 163846. [Google Scholar] [CrossRef]

	



Jian, X.; Zhu, Y. Parameters identification of photovoltaic models using modified Rao-1 optimization algorithm. Optik (Stuttgart) 2021, 231, 166439. [Google Scholar] [CrossRef]

	



Lekouaghet, B.; Boukabou, A.; Boubakir, C. Estimation of the photovoltaic cells/modules parameters using an improved Rao-based chaotic optimization technique. Energy Convers. Manag. 2021, 229, 113722. [Google Scholar] [CrossRef]

	



Rao, R.V.; Pawar, R.B. Constrained design optimization of selected mechanical system components using Rao algorithms. Appl. Soft Comput. 2020, 89, 106141. [Google Scholar] [CrossRef]

	



Rao, R.V.; Keesari, H.S. Rao algorithms for multi-objective optimization of selected thermodynamic cycles. Eng. Comput. 2020. [Google Scholar] [CrossRef]

	



Venkata Rao, R.; Pawar, R.B. Optimal Weight Design of a Spur Gear Train Using Rao Algorithms. In Proceedings of the International Conference on Sustainable and Innovative Solutions for Current Challenges in Engineering & Technology, Gwalior, India, 2–3 November 2019; pp. 351–362. [Google Scholar]

	



Grzywiński, M.; Dede, T. New Optimization Algorithms and their Application for 2d Truss Structures. Zesz. Nauk. Politech. Częstochowskiej. Bud. 2020, 175, 50–54. [Google Scholar] [CrossRef]

	



Rao, R.V.; Pawar, R.B. Quasi-oppositional-based Rao algorithms for multi-objective design optimization of selected heat sinks. J. Comput. Des. Eng. 2020, 7, 830–863. [Google Scholar] [CrossRef]

	



Hassan, M.H.; Kamel, S.; El-Dabah, M.A.; Khurshaid, T.; Dominguez-Garcia, J.L. Optimal Reactive Power Dispatch With Time-Varying Demand and Renewable Energy Uncertainty Using Rao-3 Algorithm. IEEE Access 2021, 9, 23264–23283. [Google Scholar] [CrossRef]

	



Sharma, S.R.; Singh, B.; Kaur, M. Classification of Parkinson disease using binary Rao optimization algorithms. Expert Syst. 2021, 38, e12674. [Google Scholar] [CrossRef]

	



Zabaiou, T.; Dessaint, L.; Kamwa, I. Preventive control approach for voltage stability improvement using voltage stability constrained optimal power flow based on static line voltage stability indices. IET Gener. Transm. Distrib. 2014, 8, 924–934. [Google Scholar] [CrossRef]

	



Elattar, E.E. Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources. Energy 2018, 159, 496–507. [Google Scholar] [CrossRef]

	



Biswas, P.P.; Suganthan, P.N.; Mallipeddi, R.; Amaratunga, G.A.J. Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques. Eng. Appl. Artif. Intell. 2018, 68, 81–100. [Google Scholar] [CrossRef]

	



Birogul, S. Hybrid Harris Hawk Optimization Based on Differential Evolution (HHODE) Algorithm for Optimal Power Flow Problem. IEEE Access 2019, 7, 184468–184488. [Google Scholar] [CrossRef]

	



Duong, T.L.; Nguyen, N.A.; Nguyen, T.T. A Newly Hybrid Method Based on Cuckoo Search and Sunflower Optimization for Optimal Power Flow Problem. Sustainability 2020, 12, 5283. [Google Scholar] [CrossRef]

	



Farhat, I.A.; El-Hawary, M.E. Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power. IET Gener. Transm. Distrib. 2010, 4, 989. [Google Scholar] [CrossRef]

	



Nwulu, N.I.; Xia, X. Optimal dispatch for a microgrid incorporating renewables and demand response. Renew. Energy 2017, 101, 16–28. [Google Scholar] [CrossRef]

	



Rao, R.V. Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems. Int. J. Ind. Eng. Comput. 2020, 11, 107–130. [Google Scholar] [CrossRef]

	



Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701. [Google Scholar]

	



Sharma, S.; Bhattacharjee, S.; Bhattacharya, A. Quasi-Oppositional Swine Influenza Model Based Optimization with Quarantine for optimal allocation of DG in radial distribution network. Int. J. Electr. Power Energy Syst. 2016, 74, 348–373. [Google Scholar] [CrossRef]

	



Sultana, S.; Roy, P.K. Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 534–545. [Google Scholar] [CrossRef]

	



Kharrich, M.; Mohammed, O.H.; Kamel, S.; Selim, A.; Sultan, H.M.; Akherraz, M.; Jurado, F. Development and Implementation of a Novel Optimization Algorithm for Reliable and Economic Grid-Independent Hybrid Power System. Appl. Sci. 2020, 10, 6604. [Google Scholar] [CrossRef]

	



Yu, J.; Kim, C.-H.; Rhee, S.-B. Oppositional Jaya Algorithm With Distance-Adaptive Coefficient in Solving Directional Over Current Relays Coordination Problem. IEEE Access 2019, 7, 150729–150742. [Google Scholar] [CrossRef]

	



Taha, I.B.M.; Elattar, E.E. Optimal reactive power resources sizing for power system operations enhancement based on improved grey wolf optimiser. IET Gener. Transm. Distrib. 2018, 12, 3421–3434. [Google Scholar] [CrossRef]

	



Christie, R. Power Systems Test Case Archive, University of Washington. Available online: http://www.ee.washington.edu/research/pstca/ (accessed on 26 May 2021).

	



Duman, S.; Rivera, S.; Li, J.; Wu, L. Optimal power flow of power systems with controllable wind-photovoltaic energy systems via differential evolutionary particle swarm optimization. Int. Trans. Electr. Energy Syst. 2020, 30, 1–28. [Google Scholar] [CrossRef]

	



Hazra, J.; Sinha, A.K. A multi-objective optimal power flow using particle swarm optimization. Eur. Trans. Electr. Power 2011, 21, 1028–1045. [Google Scholar] [CrossRef]

	



Warid, W.; Hizam, H.; Mariun, N.; Abdul-Wahab, N. Optimal Power Flow Using the Jaya Algorithm. Energies 2016, 9, 678. [Google Scholar] [CrossRef]

	



Pena, I.; Martinez-Anido, C.B.; Hodge, B.-M. An Extended IEEE 118-Bus Test System With High Renewable Penetration. IEEE Trans. Power Syst. 2018, 33, 281–289. [Google Scholar] [CrossRef]

	



Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl.-Based Syst. 2019, 163, 283–304. [Google Scholar] [CrossRef]

	



Ghasemi, M.; Davoudkhani, I.F.; Akbari, E.; Rahimnejad, A.; Ghavidel, S.; Li, L. A novel and effective optimization algorithm for global optimization and its engineering applications: Turbulent Flow of Water-based Optimization (TFWO). Eng. Appl. Artif. Intell. 2020, 92, 103666. [Google Scholar] [CrossRef]

	



Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]

	



Rezaei Adaryani, M.; Karami, A. Artificial bee colony algorithm for solving multi-objective optimal power flow problem. Int. J. Electr. Power Energy Syst. 2013, 53, 219–230. [Google Scholar] [CrossRef]

	



Ramesh Kumar, A.; Premalatha, L. Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization. Int. J. Electr. Power Energy Syst. 2015, 73, 393–399. [Google Scholar] [CrossRef]

	



Mohamed, A.-A.A.; Mohamed, Y.S.; El-Gaafary, A.A.M.; Hemeida, A.M. Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 2017, 142, 190–206. [Google Scholar] [CrossRef]

	



Niknam, T.; Narimani, M.R.; Azizipanah-Abarghooee, R. A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect. Energy Convers. Manag. 2012, 58, 197–206. [Google Scholar] [CrossRef]

	



El-Fergany, A.A.; Hasanien, H.M. Single and Multi-objective Optimal Power Flow Using Grey Wolf Optimizer and Differential Evolution Algorithms. Electr. Power Compon. Syst. 2015, 43, 1548–1559. [Google Scholar] [CrossRef]








[image: Mathematics 09 01532 g001 550] 





Figure 1. Flowchart of Rao-2 algorithm. 
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Figure 2. Single-line diagram of the modified IEEE 30-bus test system. 
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Figure 3. Single-line diagram of IEEE 118-bus test system. 
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Figure 4. The voltage profile of the MRao-2 for the best solutions of case 1. 
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Figure 5. Convergence characteristics of the proposed MRao-2 and other recent algorithms for case 1. 
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Figure 6. Boxplot graph of best Fuel cost in 20 runs of the proposed MRao-2 and other recent algorithms for case 1. 
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Figure 7. The voltage profile of the MRao-2 for case 2. 
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Figure 8. Convergence characteristics curves of all algorithms for case 2. 






Figure 8. Convergence characteristics curves of all algorithms for case 2.



[image: Mathematics 09 01532 g008]







[image: Mathematics 09 01532 g009 550] 





Figure 9. Boxplot graph of best Fuel cost in 20 runs of the proposed MRao-2 and other recent algorithms for case 2. 
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Figure 10. The voltage profile of the MRao-2 for case 3. 
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Figure 11. Convergence characteristics of all methods for case 3. 






Figure 11. Convergence characteristics of all methods for case 3.



[image: Mathematics 09 01532 g011]







[image: Mathematics 09 01532 g012 550] 





Figure 12. Boxplot graph of best Fuel cost in 20 runs of the proposed MRao-2 and other recent algorithms for case 3. 
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Figure 13. The voltage profile of the MRao-2 for case 4. 
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Figure 14. Convergence characteristics of all methods for case 4. 
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Figure 15. The voltage profile of the MRao-2 for case 5. 
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Figure 16. Convergence characteristics of all methods for case 5. 
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Table 1. Limit setting for control variables of the all-test systems [4].
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IEEE 30-Bus System

	
IEEE 118-Bus System






	
Variables

	
Lower limit

	
Upper limit

	
Lower limit

	
Upper limit




	
Voltages for all generator bus

	
0.95 p.u

	
1.1 p.u

	
0.94 p.u

	
1.06 p.u




	
Voltages for all load bus

	
0.95 p.u

	
1.05 p.u

	
0.95 p.u

	
1.05 p.u




	
Tap setting

	
0.9 p.u

	
1.1 p.u

	
0.9 p.u

	
1.1 p.u




	
Reactive power of capacitor banks

	
0

	
0.05 p.u

	
0

	
0.3 p.u
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Table 2. The location and values of the RES in the IEEE 118-bus test systems.
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	Type of RES
	No. of Bus
	Value (MW)





	biomass
	12
	18.2



	wind
	31
	156



	solar
	54
	264



	hydro
	76
	77



	hydro
	116
	286










[image: Table] 





Table 3. The parameter settings of different optimization techniques.
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	Algorithms
	Parameters Setting





	Common settings
	
	
Population size: nPop = 30



	
Maximum iterations: Max_iter = 200 for IEEE 30-bus test system and Max_iter = 300 for IEEE 118-bus test system.



	
Number of independent runs: 20.








	ASO
	
	
depth weight a = 50.



	
multiplier weight β = 0.2.








	MPA
	
FADs = 0.2, P = 0.5, C = 0.05, e = 0.25
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Table 4. Results of the proposed MRao-2 algorithm and other algorithms for case 1.
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	ASO
	TFWO
	MPA
	Rao-1
	Rao-2
	Rao-3
	MRao-2





	PG1 (MW)
	176.9732
	177.2422
	176.8351
	179.8369
	177.887
	177.5088
	176.3625



	PG2 (MW)
	48.91006
	48.64558
	48.67575
	49.49712
	49.36524
	48.76959
	49.07412



	PG5 (MW)
	21.30213
	21.36803
	21.45982
	22.21521
	21.54786
	20.94155
	21.24651



	PG8 (MW)
	20.9253
	21.35596
	21.88621
	18.77388
	21.6564
	21.53046
	21.37135



	PG11 (MW)
	12.45411
	11.86476
	11.54409
	10.38348
	10.00796
	11.80911
	12.21261



	PG13 (MW)
	12.00137
	12.00148
	12.02418
	12
	12.04775
	12.0039
	12.10508



	V1 (p.u.)
	1.080029
	1.079984
	1.082237
	1.078675
	1.084304
	1.080698
	1.083304



	V2 (p.u.)
	1.080992
	1.030047
	1.083237
	1.027824
	1.094344
	1.099999
	1.092657



	V5 (p.u.)
	1.028033
	1.082677
	1.031479
	1.085737
	1.031264
	1.028262
	1.029766



	V8 (p.u.)
	1.034358
	1.035451
	1.037666
	1.033404
	1.037539
	1.036411
	1.037062



	V11 (p.u.)
	1.006403
	1.05873
	1.065692
	1.078167
	1.077243
	1.031184
	1.059477



	V13 (p.u.)
	1.036055
	1.067677
	1.029076
	1.057387
	1.034243
	1.099824
	1.046984



	T11 (6–9)
	0.96365
	0.972727
	0.963545
	1.014786
	1.031208
	0.916034
	1.002334



	T12 (6–10)
	1.014561
	1.012358
	1.05331
	0.983026
	0.9
	1.099979
	0.953247



	T15 (4–12)
	1.056913
	0.994481
	0.989785
	1.001
	0.964418
	1.031275
	0.971027



	T36 (28–27)
	0.99403
	0.971573
	1.000675
	0.975213
	0.980459
	0.987251
	0.971058



	QC10 (MVAR)
	3.0526
	4.9784
	3.2035
	0.5727
	0.1362
	0.00562
	3.7024



	QC12 (MVAR)
	3.5939
	0.5594
	4.639
	0.7186
	1.3228
	0.00426
	2.0306



	QC15 (MVAR)
	2.5611
	4.635
	3.9502
	5
	4.9242
	4.9567
	2.2152



	QC17 (MVAR)
	1.6444
	3.7878
	1.5066
	3.3725
	4.2338
	0.0702
	4.6995



	QC20 (MVAR)
	1.9898
	4.5001
	4.8618
	4.4774
	3.1484
	4.9871
	3.859



	QC21 (MVAR)
	3.4191
	4.1061
	3.5977
	3.9993
	0.2586
	4.8557
	4.8858



	QC23 (MVAR)
	4.7618
	0.00168
	4.3476
	0.818
	3.2847
	0.0451
	3.9984



	QC24 (MVAR)
	1.1282
	2.1995
	4.5618
	4.9692
	4.9243
	4.9741
	4.8289



	QC29 (MVAR)
	1.5646
	0.4415
	3.5686
	2.1977
	4.9685
	2.3785
	1.6698



	Fuel cost ($/h)
	801.0005
	800.6477
	800.5804
	800.8944
	800.6166
	800.848
	800.4412



	Emission (ton/h)
	0.295736
	0.296049
	0.295644
	0.297821
	0.296313
	0.296384
	0.295152



	Power loss (MW)
	9.177889
	9.083431
	9.036827
	9.312149
	9.123883
	9.163424
	8.983817



	Voltage deviation (p.u.)
	0.334805
	0.749458
	0.575301
	0.707313
	0.916652
	0.469378
	0.868108



	Time (s)
	95.06342
	104.1479
	166.5552
	101.91743
	94.84023
	101.83725
	169.6059
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Table 5. Simulation results of MRao-2 and other algorithms for Case 1.
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	Algorithm
	Min
	Max
	Average





	MRao-2
	800.4412
	800.553
	800.4872



	Rao-2
	800.6166
	800.7965
	800.7118



	Rao-1
	800.8944
	801.2647
	800.9678



	Rao-3
	800.848
	800.9628
	800.9067



	MPA
	800.5804
	800.8416
	800.6659



	TFWO
	800.6477
	803.8754
	801.1159



	ASO
	801.0005
	801.4358
	801.101



	MGOA [11]
	800.4744
	NA
	NA



	ABC [52]
	800.6600
	800.8715
	801.8674



	Jaya [47]
	800.4794
	800.4928
	800.5306



	ARCBBO [53]
	800.5159
	800.6412
	800.9262



	MSA [54]
	800.5099
	NA
	NA



	Hybrid SFLA SA [55]
	801.79
	NA
	NA



	HHO [33]
	801.4228
	NA
	NA



	HHODE [33]
	800.9959
	NA
	NA



	DE [56]
	801.23
	801.622
	801.282
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Table 6. Results of the proposed MRao-2 algorithm and other algorithms for case 2.
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	ASO
	TFWO
	MPA
	Rao-1
	Rao-2
	Rao-3
	MRao-2





	PG1 (MW)
	166.3103
	167.0352
	166.5015
	167.7043
	167.5941
	167.2709
	167.2508



	PG2 (MW)
	45.88087
	46.29256
	46.03059
	47.38566
	45.71914
	47.19775
	46.42704



	PG5 (MW)
	20.9709
	20.64382
	20.45905
	20.90393
	20.6118
	20.69004
	20.64984



	PG8 (MW)
	15.69756
	15.68206
	15.17763
	13.74229
	15.13705
	14.47554
	15.27324



	PG11 (MW)
	10.79724
	10.00009
	11.10394
	10
	10.53956
	10.00813
	10



	PG13 (MW)
	12.00262
	12
	12.32851
	12
	12.03885
	12.04529
	12



	V1 (p.u.)
	1.077967
	1.081966
	1.0788
	1.077875
	1.080078
	1.080089
	1.07852



	V2 (p.u.)
	1.072375
	1.006269
	1.1
	1.094477
	1.051656
	1.063304
	1.1



	V5 (p.u.)
	1.033146
	1.057191
	1.031388
	1.076221
	1.077262
	1.0572
	1.032235



	V8 (p.u.)
	1.031798
	1.036781
	1.038591
	1.038888
	1.039808
	1.040699
	1.026295



	V11 (p.u.)
	1.02098
	1.099826
	1.093579
	1.049587
	1.04657
	1.078359
	1.047772



	V13 (p.u.)
	1.042508
	1.022207
	1.014105
	1.01495
	1.009777
	1.022799
	1.062827



	T11(6–9)
	0.986874
	0.989094
	1.027745
	0.99534
	1.09646
	0.991078
	0.98482



	T12(6–10)
	1.005378
	1.1
	0.957009
	0.928192
	0.908495
	1.073045
	0.977984



	T15(4–12)
	0.975554
	0.987607
	0.981413
	0.981491
	0.971842
	0.970377
	0.981403



	T36(28–27)
	1.001887
	0.99311
	0.99195
	0.997822
	1.017273
	1.010252
	1.001331



	QC10 (MVAR)
	4.1156
	4.7537
	2.7651
	4.7977
	2.8059
	4.9307
	4.9494



	QC12 (MVAR)
	2.8466
	4.821
	3.8682
	3.6157
	1.4147
	0.0171
	0



	QC15 (MVAR)
	3.4126
	4.8818
	0.5251
	4.3005
	1.2958
	3.8049
	0.0184



	QC17 (MVAR)
	2.9106
	4.2942
	4.9994
	0.3354
	4.6224
	3.1239
	4.8752



	QC20 (MVAR)
	2.3832
	2.9394
	4.6997
	4.691
	4.394
	3.1954
	4.8711



	QC21 (MVAR)
	2.9478
	5
	0.3764
	1.8647
	3.3121
	0
	5



	QC23 (MVAR)
	1.4159
	1.9167
	2.9807
	1.0238
	4.9937
	5
	5



	QC24 (MVAR)
	2.6985
	5
	0.8889
	3.9491
	4.9191
	4.7007
	4.9522



	QC29 (MVAR)
	2.7382
	0.3091
	2.0465
	1.5414
	4.2786
	2.302
	2.282



	Fuel cost ($/h)
	729.9074
	729.6002
	729.6347
	729.6406
	729.5025
	729.5657
	729.3429



	Emission (ton/h)
	0.287894
	0.288436
	0.288163
	0.288493
	0.289114
	0.28828
	0.288559



	Power loss (MW)
	8.271074
	8.264871
	8.212681
	8.341641
	8.245904
	8.293049
	8.21248



	Voltage deviation (p.u.)
	0.487935
	0.587188
	0.723005
	0.74643
	0.599303
	0.554658
	0.890863



	Time (s)
	96.3905
	101.40315
	154.3002
	93.26448
	92.40164
	95.84038
	166.5166
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Table 7. Results of the proposed method and other methods for case 3.
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	ASO
	TFWO
	MPA
	Rao-1
	Rao-2
	Rao-3
	MRao-2





	PG1 (MW)
	169.1157
	167.646
	168.4079
	166.1685
	168.162
	168.2884
	167.6707



	PG2 (MW)
	47.10122
	46.38156
	46.73768
	46.29319
	46.34349
	46.35133
	46.43635



	PG5 (MW)
	20.77245
	20.68947
	20.8021
	20.22988
	20.61748
	20.70681
	20.82097



	PG8 (MW)
	12.4257
	15.29242
	13.2599
	17.28305
	14.80192
	14.45443
	14.76838



	PG11 (MW)
	10.9089
	10
	10.93876
	10
	10.09605
	10.24194
	10.22822



	PG13 (MW)
	12.0136
	12
	12.00331
	12.02535
	12.00538
	12.00845
	12.05377



	V1 (p.u.)
	1.071178
	1.080797
	1.082793
	1.088881
	1.082847
	1.081143
	1.08205



	V2 (p.u.)
	1.091177
	1.0925
	1.033038
	1.063013
	1.084106
	1.082092
	1.083835



	V5 (p.u.)
	1.018346
	1.031645
	1.086276
	1.054294
	1.031456
	1.026707
	1.032011



	V8 (p.u.)
	1.023794
	1.036661
	1.037818
	1.034209
	1.033635
	1.033571
	1.03592



	V11 (p.u.)
	1.038897
	1.071995
	1.083139
	1.059527
	1.029808
	1.074468
	1.029754



	V13 (p.u.)
	1.019225
	1.042984
	1.047633
	1.039893
	1.046966
	1.045277
	1.04714



	T11 (6–9)
	0.966049
	0.965995
	1.05369
	0.973616
	1.040438
	1.078513
	1.06788



	T12 (6–10)
	0.970151
	1.099986
	0.939359
	1.016485
	0.906038
	0.9
	0.900135



	T15 (4–12)
	0.96075
	0.984042
	0.957996
	0.961999
	0.984907
	0.988115
	0.980633



	T36 (28–27)
	1.014058
	1.006899
	1.011424
	1.01808
	1.017749
	1.010059
	1.010374



	QC10 (MVAR)
	3.3514
	1.8078
	1.993
	4.6449
	0.0643
	0.1501
	0.0246



	QC12 (MVAR)
	2.4055
	4.5298
	2.4846
	0.515
	0.9183
	3.2165
	0.0275



	QC15 (MVAR)
	3.0776
	5
	4.3023
	4.5803
	4.4913
	4.9203
	1.5989



	QC17 (MVAR)
	3.3283
	5
	2.7311
	4.2387
	4.9964
	4.7269
	4.994



	QC20 (MVAR)
	3.9248
	0
	2.5187
	0.2183
	1.9472
	0.0149
	4.8959



	QC21 (MVAR)
	4.4199
	5
	0.24
	3.2204
	5
	5
	4.9499



	QC23 (MVAR)
	2.5112
	0.702
	1.7923
	4.9999
	4.9924
	0
	3.431



	QC24 (MVAR)
	4.5875
	5
	2.9447
	1.9501
	4.8343
	4.9989
	5



	QC29 (MVAR)
	2.7613
	0
	2.76 × 10−5
	0
	0.00259
	0.0514
	0.0739



	Fuel cost ($/h)
	731.4898
	730.6851
	731.0095
	731.0468
	730.6201
	730.688
	730.583



	Emission (ton/h)
	0.289802
	0.288885
	0.289341
	0.287874
	0.289345
	0.289416
	0.288841



	Power loss (MW)
	8.949145
	8.620926
	8.755022
	8.605339
	8.63787
	8.662901
	8.589888



	Voltage deviation (p.u.)
	0.595555
	0.626741
	0.73608
	0.693286
	0.695892
	0.665941
	0.665648



	Time (s)
	94.1653
	98.40031
	153.3302
	95.61418
	98.2997
	97.24576
	164.5099
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Table 8. Statistical results comparison of investigated cases for IEEE 30-bus system for different recent optimization algorithm.
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Case No.

	
Algorithm

	
Min

	
Average

	
Median

	
Max

	
STD






	
Case 1

	
MRao-2

	
800.4412

	
800.4872

	
800.4769

	
800.553

	
0.038822




	
Rao-2

	
800.6166

	
800.7118

	
800.7135

	
800.7965

	
0.052478




	
Rao-1

	
800.8944

	
800.9678

	
800.9277

	
801.2647

	
0.111619




	
Rao-3

	
800.848

	
800.9067

	
800.9167

	
800.9628

	
0.0403




	
MPA

	
800.5804

	
800.6659

	
800.6347

	
800.8416

	
0.081797




	
TFWO

	
800.6477

	
801.1159

	
800.855

	
803.8754

	
0.975128




	
ASO

	
801.0005

	
801.101

	
801.0422

	
801.4358

	
0.152133




	
Case 2

	
MRao-2

	
729.3429

	
729.4065

	
729.4001

	
729.4615

	
0.042289




	
Rao-2

	
729.5025

	
729.5599

	
729.5596

	
729.6205

	
0.040197




	
Rao-1

	
729.6406

	
729.6845

	
729.6815

	
729.7441

	
0.031135




	
Rao-3

	
729.5657

	
729.5888

	
729.5903

	
729.6361

	
0.021254




	
MPA

	
729.6347

	
729.674

	
729.6771

	
729.7095

	
0.024818




	
TFWO

	
729.6002

	
730.1646

	
729.782

	
732.1079

	
0.813312




	
ASO

	
729.9074

	
730.3542

	
730.251

	
731.555

	
0.513813




	
Case 3

	
MRao-2

	
730.583

	
730.6588

	
730.6266

	
730.8189

	
0.09241




	
Rao-2

	
730.6201

	
730.7573

	
730.747

	
730.9311

	
0.141165




	
Rao-1

	
731.0468

	
731.132

	
731.1247

	
731.2359

	
0.090685




	
Rao-3

	
730.688

	
730.8235

	
730.8296

	
730.9879

	
0.113336




	
MPA

	
731.0095

	
731.136

	
731.14

	
731.2927

	
0.111756




	
TFWO

	
730.6851

	
730.9124

	
730.8677

	
731.3553

	
0.23962




	
ASO

	
731.4898

	
731.8588

	
731.6576

	
732.9515

	
0.546641
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Table 9. Optimal settings of control variables for case 4 using MRao-2.
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Variables

	
Value

	
Variables

	
Value

	
Variables

	
Value

	
Variables

	
Value

	
Variables

	
Value






	
PG1 (MW)

	
1.984061

	
PG62 (MW)

	
0.04968

	
PG113 (MW)

	
86.1052

	
VG59 (p.u.)

	
0.94707

	
VG111 (p.u.)

	
1.05221




	
PG4 (MW)

	
0.351443

	
PG65 (MW)

	
343.880

	
PG116 (MW)

	
4.20199

	
VG61 (p.u.)

	
1.02331

	
VG112 (p.u.)

	
1.04184




	
PG6 (MW)

	
1.344034

	
PG66 (MW)

	
340.152

	
VG1 (p.u.)

	
0.94

	
VG62 (p.u.)

	
0.95129

	
VG113 (p.u.)

	
1.02649




	
PG8 (MW)

	
10.24637

	
PG69 (MW)

	
415.633

	
VG4 (p.u.)

	
1.00609

	
VG65 (p.u.)

	
0.94352

	
VG116 (p.u.)

	
0.96645




	
PG10 (MW)

	
376.1126

	
PG70 (MW)

	
4.69474

	
VG6 (p.u.)

	
1.00546

	
VG66 (p.u.)

	
1.01735

	
T8 (8–5)

	
0.91057




	
PG12 (MW)

	
76.80127

	
PG72 (MW)

	
7.50899

	
VG8 (p.u.)

	
0.94545

	
VG69 (p.u.)

	
1.03288

	
T32 (25–26)

	
1.09451




	
PG15 (MW)

	
1.528393

	
PG73 (MW)

	
10.3911

	
VG10 (p.u.)

	
0.94035

	
VG70 (p.u.)

	
0.97696

	
T36 (17–30)

	
1.09266




	
PG18 (MW)

	
46.72157

	
PG74 (MW)

	
5.8267

	
VG12 (p.u.)

	
0.99321

	
VG72 (p.u.)

	
1.03499

	
T51 (37–38)

	
0.9




	
PG19 (MW)

	
0.067021

	
PG76 (MW)

	
20.4488

	
VG15 (p.u.)

	
1.01157

	
VG73 (p.u.)

	
0.98931

	
T93 (59–63)

	
1.00128




	
PG24 (MW)

	
2.611653

	
PG77 (MW)

	
5.51401

	
VG18 (p.u.)

	
0.96454

	
VG74 (p.u.)

	
0.99958

	
T95 (61–64)

	
1.03762




	
PG25 (MW)

	
196.2022

	
PG80 (MW)

	
451.524

	
VG19 (p.u.)

	
1.04577

	
VG76 (p.u.)

	
0.99539

	
T102 (65–66)

	
0.95931




	
PG26 (MW)

	
280.9463

	
PG85 (MW)

	
0

	
VG24 (p.u.)

	
0.99640

	
VG77 (p.u.)

	
0.97826

	
T107 (68–69)

	
0.95758




	
PG27 (MW)

	
98.34095

	
PG87 (MW)

	
0.95058

	
VG25 (p.u.)

	
0.97686

	
VG80 (p.u.)

	
1.01302

	
T127 (80–81)

	
1.05250




	
PG31 (MW)

	
0.751755

	
PG89 (MW)

	
483.822

	
VG26 (p.u.)

	
0.94265

	
VG85 (p.u.)

	
0.97493

	
QC34 (MVAR)

	
3.111




	
PG32 (MW)

	
18.9298

	
PG90 (MW)

	
2.75380

	
VG27 (p.u.)

	
1.01799

	
VG87 (p.u.)

	
0.94034

	
QC44 (MVAR)

	
29.931




	
PG34 (MW)

	
0.070676

	
PG91 (MW)

	
0

	
VG31 (p.u.)

	
1.03403

	
VG89 (p.u.)

	
1.03117

	
QC45 (MVAR)

	
29.497




	
PG36 (MW)

	
4.986125

	
PG92 (MW)

	
1.17943

	
VG32 (p.u.)

	
0.99471

	
VG90 (p.u.)

	
1.02089

	
QC46 (MVAR)

	
28.169




	
PG40 (MW)

	
1.913409

	
PG99 (MW)

	
16.5592

	
VG34 (p.u.)

	
1.00824

	
VG91 (p.u.)

	
1.04970

	
QC48 (MVAR)

	
0




	
PG42 (MW)

	
1.394682

	
PG100 (MW)

	
200.116

	
VG36 (p.u.)

	
0.99818

	
VG92 (p.u.)

	
1.01643

	
QC74 (MVAR)

	
24.96




	
PG46 (MW)

	
13.76368

	
PG103 (MW)

	
23.1161

	
VG40 (p.u.)

	
0.99148

	
VG99 (p.u.)

	
1.02329

	
QC79 (MVAR)

	
28.765




	
PG49 (MW)

	
209.701

	
PG104 (MW)

	
99.6802

	
VG42 (p.u.)

	
1.02358

	
VG100 (p.u.)

	
0.99312

	
QC82 (MVAR)

	
27.479




	
PG54 (MW)

	
48.30631

	
PG105 (MW)

	
0.13269

	
VG46 (p.u.)

	
0.98153

	
VG103 (p.u.)

	
1.05004

	
QC83 (MVAR)

	
24.519




	
PG55 (MW)

	
26.09714

	
PG107 (MW)

	
0.19020

	
VG49 (p.u.)

	
1.00041

	
VG104 (p.u.)

	
1.05559

	
QC105 (MVAR)

	
27.063




	
PG56 (MW)

	
80.54259

	
PG110 (MW)

	
0.42630

	
VG54 (p.u.)

	
0.99326

	
VG105 (p.u.)

	
0.96614

	
QC107 (MVAR)

	
6.934




	
PG59 (MW)

	
128.7814

	
PG111 (MW)

	
33.7688

	
VG55 (p.u.)

	
1.05871

	
VG107 (p.u.)

	
0.94274

	
QC110 (MVAR)

	
29.781




	
PG61 (MW)

	
146.4049

	
PG112 (MW)

	
5.1539

	
VG56 (p.u.)

	
1.05977

	
VG110 (p.u.)

	
1.00997

	

	




	

	

	

	

	

	
Fuel cost ($/h)

	

	
131457.8

	




	

	

	

	

	

	
Power loss (MW)

	

	
96.68278

	




	

	

	

	

	

	
Voltage deviation (p.u.)

	

	
0.730363
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Table 10. Results of the proposed MRao-2 algorithm and other algorithms for case 4.
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	Algorithm
	ASO
	TFWO
	MPA
	Rao-1
	Rao-2
	Rao-3
	MRao-2





	Fuel cost ($/h)
	133,610.8
	132,132.2
	131,942.6
	131,817.9
	131,490.7
	131,793.1
	131,457.8



	Power loss (MW)
	61.83332
	65.55476
	71.94402
	93.85931
	95.46617
	93.95222
	96.68278



	Voltage deviation (p.u.)
	0.658779
	0.961026
	1.152593
	1.328297
	0.998901
	1.192274
	0.730363



	Time (s)
	800.709
	809.028
	1022.262
	807.969
	804.5724
	806.71149
	1160.264
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Table 11. Optimal settings of control variables for case 5 using the proposed MRao-2.
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Variables

	
Value

	
Variables

	
Value

	
Variables

	
Value

	
Variables

	
Value

	
Variables

	
Value






	
PG1 (MW)

	
3.0911

	
PG62 (MW)

	
6.37571

	
PG113 (MW)

	
7.09147

	
VG59 (p.u.)

	
1.036427

	
VG111 (p.u.)

	
1.03604




	
PG4 (MW)

	
7.265278

	
PG65 (MW)

	
298.824

	
PG116 (MW)

	
0

	
VG61 (p.u.)

	
0.956257

	
VG112 (p.u.)

	
0.97545




	
PG6 (MW)

	
79.79656

	
PG66 (MW)

	
284.31

	
VG1 (p.u.)

	
1.01134

	
VG62 (p.u.)

	
1.054308

	
VG113 (p.u.)

	
1.04051




	
PG8 (MW)

	
0.20039

	
PG69 (MW)

	
400.029

	
VG4 (p.u.)

	
1.03191

	
VG65 (p.u.)

	
0.974536

	
VG116 (p.u.)

	
0.97347




	
PG10 (MW)

	
332.3392

	
PG70 (MW)

	
7.71916

	
VG6 (p.u.)

	
1.02025

	
VG66 (p.u.)

	
1.00127

	
T8 (8–5)

	
1.09856




	
PG12 (MW)

	
73.21883

	
PG72 (MW)

	
0.27496

	
VG8 (p.u.)

	
0.94257

	
VG69 (p.u.)

	
1.020322

	
T32 (25–26)

	
0.90257




	
PG15 (MW)

	
6.500848

	
PG73 (MW)

	
6.45688

	
VG10 (p.u.)

	
0.94115

	
VG70 (p.u.)

	
0.979919

	
T36 (17–30)

	
0.9




	
PG18 (MW)

	
5.979357

	
PG74 (MW)

	
5.52285

	
VG12 (p.u.)

	
0.97438

	
VG72 (p.u.)

	
1.030921

	
T51 (37–38)

	
0.90084




	
PG19 (MW)

	
1.346065

	
PG76 (MW)

	
2.53255

	
VG15 (p.u.)

	
1.05303

	
VG73 (p.u.)

	
1.005468

	
T93 (59–63)

	
1.09369




	
PG24 (MW)

	
1.582226

	
PG77 (MW)

	
0.22016

	
VG18 (p.u.)

	
1.04361

	
VG74 (p.u.)

	
1.020992

	
T95 (61–64)

	
0.96853




	
PG25 (MW)

	
159.4184

	
PG80 (MW)

	
363.967

	
VG19 (p.u.)

	
0.98928

	
VG76 (p.u.)

	
1.019236

	
T102 (65–66)

	
0.93325




	
PG26 (MW)

	
215.2208

	
PG85 (MW)

	
0.07633

	
VG24 (p.u.)

	
0.96523

	
VG77 (p.u.)

	
1.034034

	
T107 (68–69)

	
0.91076




	
PG27 (MW)

	
0.110372

	
PG87 (MW)

	
4.60698

	
VG25 (p.u.)

	
1.04943

	
VG80 (p.u.)

	
1.036756

	
T127 (80–81)

	
0.9




	
PG31 (MW)

	
1.978596

	
PG89 (MW)

	
434.560

	
VG26 (p.u.)

	
1.00787

	
VG85 (p.u.)

	
1.049239

	
QC34 (MVAR)

	
0.20760




	
PG32 (MW)

	
2.320654

	
PG90 (MW)

	
0.12767

	
VG27 (p.u.)

	
0.97993

	
VG87 (p.u.)

	
1.059658

	
QC44 (MVAR)

	
0.00941




	
PG34 (MW)

	
0.120587

	
PG91 (MW)

	
17.5246

	
VG31 (p.u.)

	
0.98609

	
VG89 (p.u.)

	
1.010104

	
QC45 (MVAR)

	
0.26098




	
PG36 (MW)

	
5.158081

	
PG92 (MW)

	
1.45348

	
VG32 (p.u.)

	
0.94097

	
VG90 (p.u.)

	
0.963199

	
QC46 (MVAR)

	
0.07600




	
PG40 (MW)

	
32.66632

	
PG99 (MW)

	
4.11549

	
VG34 (p.u.)

	
0.94553

	
VG91 (p.u.)

	
1.042132

	
QC48 (MVAR)

	
0.24244




	
PG42 (MW)

	
3.238611

	
PG100 (MW)

	
206.177

	
VG36 (p.u.)

	
1.00105

	
VG92 (p.u.)

	
1.040622

	
QC74 (MVAR)

	
0.2194




	
PG46 (MW)

	
4.574268

	
PG103 (MW)

	
35.1167

	
VG40 (p.u.)

	
0.97223

	
VG99 (p.u.)

	
0.943471

	
QC79 (MVAR)

	
5.6 × 10−5




	
PG49 (MW)

	
161.9397

	
PG104 (MW)

	
1.01542

	
VG42 (p.u.)

	
0.97289

	
VG100 (p.u.)

	
0.951227

	
QC82 (MVAR)

	
0.00622




	
PG54 (MW)

	
28.01801

	
PG105 (MW)

	
15.1016

	
VG46 (p.u.)

	
0.98664

	
VG103 (p.u.)

	
1.004165

	
QC83 (MVAR)

	
0.27248




	
PG55 (MW)

	
0.389909

	
PG107 (MW)

	
0

	
VG49 (p.u.)

	
1.00712

	
VG104 (p.u.)

	
0.987921

	
QC105 (MVAR)

	
0.03938




	
PG56 (MW)

	
12.21136

	
PG110 (MW)

	
18.5235

	
VG54 (p.u.)

	
1.04523

	
VG105 (p.u.)

	
0.943759

	
QC107 (MVAR)

	
0.27336




	
PG59 (MW)

	
108.0116

	
PG111 (MW)

	
35.5095

	
VG55 (p.u.)

	
1.05831

	
VG107 (p.u.)

	
0.960449

	
QC110 (MVAR)

	
0.23428




	
PG61 (MW)

	
122.726

	
PG112 (MW)

	
2.19141

	
VG56 (p.u.)

	
0.96064

	
VG110 (p.u.)

	
1.00083

	

	




	

	

	

	

	

	
Fuel cost ($/h)

	
100738.5

	

	




	

	

	

	

	

	
Power loss (MW)

	
88.04623

	

	




	

	

	

	

	

	
Voltage deviation (p.u.)

	
0.778536
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Table 12. Results of the proposed MRao-2 algorithm and other algorithms for case 5.






Table 12. Results of the proposed MRao-2 algorithm and other algorithms for case 5.





	Algorithm
	ASO
	TFWO
	MPA
	Rao-1
	Rao-2
	Rao-3
	MRao-2





	Fuel cost ($/h)
	103,847.47
	101,747.68
	101,981.69
	101,981.17
	101,078.92
	101,297.12
	100,738.54



	Power loss (MW)
	58.3333
	85.062475
	71.168974
	89.992651
	90.296046
	91.006497
	88.04623



	Voltage deviation (p.u.)
	0.6645742
	04387701
	0.7712916
	1.1227076
	1.1595186
	0.9923019
	0.778536



	Time (s)
	792.735
	802.82732
	1013.509
	800.827
	803.4047
	798.4426
	1136.06
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