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1. Introduction

We investigate weak solutions to the T -time-periodic incompressible Navier–Stokes
system in the three-dimensional whole-space

∂tu− ∆u− λ∂1u +∇p+ u · ∇u = f in R×R3,

div u = 0 in R×R3,

lim
|x|→∞

u(t, x) = 0,

u(t + T , ·) = u(t, ·)

(1)

with a T -time-periodic forcing term f : R×R3 → R3, f (t+ T , ·) = f (t, ·). Here, R denotes
the time axis. The unknowns u : R×R3 → R3 and p : R×R3 → R represent the Eulerian
velocity field and pressure term, respectively, of a Navier–Stokes liquid. The system (1) is
written in a frame of reference with velocity λ e1, λ ∈ R, in order to model both the case
of a fluid at rest at spatial infinity (λ = 0) and the case of a fluid with constant velocity at
spatial infinity (λ 6= 0).

To put the time-periodic Navier–Stokes problem (1) into context, it is worth comparing
it to the corresponding initial-value problem obtained by replacing the time axis with
an interval (0, T ) and the periodicity condition in (1) with an initial value u(0, ·) = u0.
Famously [1,2], existence of a weak solution u to the initial-value problem can be obtained
in the Leray–Hopf class

L2(0, T ; D1,2(R3)
)
∩ L∞(0, T ; L2(R3)

)
(2)

for a suitable class of initial values and forcing terms. Here, D1,2(R3) denotes the homoge-
neous Sobolev space of locally integrable functions u with ∇u ∈ L2(R3). Specifically, if the
kinetic energy of the initial value is finite, existence of a weak solution in the class (2) can
be obtained, that is, a solution whose kinetic energy given by the norm ‖u(t, ·)‖2 remains
finite for all times t, which is, of course, what one expects from a physical point of view.
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The situation is different when we consider a solution to the time-periodic problem (1).
This is perhaps best illustrated by considering a time-independent, and therefore trivially
time-periodic, force f . In this case, existence of a corresponding steady-state solution u,
which is also trivially time-periodic, is well-known. It is also well-known that steady-state
solutions to the Navier–Stokes problem in unbounded domains Ω in general do not belong
to L2(Ω). In fact, the information available on the structure of steady-state solutions to
the Navier–Stokes system in unbounded domains is very comprehensive (at least in the
case λ 6= 0); see for example [3] (Chapter X). Roughly speaking, the unbounded domain
allows for velocity distributions of steady-state solutions with infinite kinetic energy. Since
steady-states are special cases of time-periodic solutions, we conclude that solutions to (1),
in general, do not belong to the Leray–Hopf class (2). The question therefore arises as to
which function space is best suited to study weak solutions to (1) with energy methods.
The main goal of this article is to give an answer to this question.

We introduce the simple time-average projection

Pu(x) :=
1
T

∫ T
0

u(t, x)dt, P⊥u(t, x) := u(t, x)−Pu(x)

and use it to decompose a solution u = Pu + P⊥u to (1) into a steady-state part Pu,
independent on time, and a so-called purely oscillatory part P⊥u. A Galerkin method is
employed to establish the existence of a weak time-periodic solution u to (1) with a steady-
state part Pu ∈ D1,2(R3) ∩ L6(R3) in the function space intrinsic to steady-state solutions
of the Navier–Stokes problem, and a purely oscillatory part P⊥u in the Leray–Hopf class (2)
with finite kinetic energy at all times. In other words, we retain the Leray–Hopf class as a
canonical energy space for the purely oscillatory part of the solution. More precisely, the
following theorem is established as the main theorem:

Theorem 1. Let f : R×R3 → R3 be T -time-periodic with f ∈ L2(0, T ; D−1,2
0 (R3)

)
and λ ∈ R.

There exists a weak T -time-periodic solution u : R×R3 → R3 to (1) that satisfies

Pu ∈ D1,2(R3) ∩ L6(R3), (3)

P⊥u ∈ L2(0, T ; D1,2(R3)
)
∩ L∞(0, T ; L2(R3)

)
. (4)

Here, a weak solution to (1) is defined as a T -time-periodic vector field u : R×R3 → R3 with
u ∈ L2(0, T ; D1,2(R3)

)
and div u = 0 satisfying

∫ T
0

∫
R3
−u · ∂tΦ +∇u : ∇Φ− λ∂1u ·Φ + (u · ∇u) ·Φ dxdt =

∫ T
0
〈 f , Φ〉dt (5)

for all T -time-periodic test functions Φ ∈ C∞(R×R3)3 with Φ ∈ C∞
0 ([0, T ]×R3). Moreover,

A : B denotes the standard inner product of square matrices A and B.

Existence of a weak solution is obtained without any restrictions on the size of the
data f . Utilizing a Fourier expansion in time, we shall employ a Galerkin approach based
on approximating subspaces that are finite-dimensional both in time and space. The
time discretization allows us to single out the steady-state part Pu as the zeroth order
Fourier mode at any level of the investigation and analyze it separately. In contrast to
the corresponding initial-value problem, the absence of a prescribed initial-value makes
the task of showing P⊥u ∈ L∞(0, T ; L2(R3)

)
in the time-periodic case more delicate

than one would perhaps expect from the relatively simple argument used to establish
u ∈ L∞(0, T ; L2(R3)

)
for the initial-value problem. We briefly elaborate on this matter in

Remark 5.
There are two important implications of the property P⊥u ∈ L∞(0, T ; L2(R3)

)
. In

physical terms, the property implies that the weak time-periodic solution u can be written
as a sum of a steady-state part Pu, and a time-dependent part P⊥u with finite kinetic
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energy. In mathematical terms, the property is important for the development of further
regularity properties. Experience from the initial-value problem, which has famously
been studied intensively over the years, shows that additional regularity for u in the
time variable is the biggest obstacle. Since u = Pu + P⊥u and Pu is time-independent,
P⊥u ∈ L∞(0, T ; L2(R3)

)
is as good a starting point for an investigation into further

time regularity as u ∈ L∞(0, T ; L2(R3)
)

is for the initial-value problem. In other words,
Theorem 1 “levels the playing field” for the time-periodic and initial-value Navier–Stokes
problem in this respect. The famous problem of establishing higher order regularity for
weak solutions to the initial-value Navier–Stokes problem remains unsolved to this date,
however, and it appears that the same problem for the time-periodic problem is just as
challenging.

The first rigorous investigation of the time-periodic Navier–Stokes equations in the
three-dimensional whole-space was carried out by Maremonti [4], who established the
existence of a solution to (1) in the space L∞(0, T; L3(R3)

)
under a structural condition

f = curl ψ imposed on the data. Subsequently, existence results were established in other
unbounded three-dimensional domains [5–9]. Theorem 1, which is based on ideas from [10],
is the first result in which the existence of a weak solution was established in the natural
energy space (3)–(4). A comprehensive overview of the time-periodic Navier–Stokes
equations can be found in [11].

The proof of Theorem 1 is presented in Section 3. In Section 4, further regularity
properties of weak solutions are established. Specifically, we show that the purely oscilla-
tory part P⊥u is continuous in time when considered as a mapping in time with values
in the space L2(R3) endowed with the weak topology. Finally, in Section 5, the existence
of a pressure p corresponding to a weak solution u is established with the property that
(u, p) is a distributional solution to (1). We thereby underline that the notion (5) of a weak
T -time-periodic solution is meaningful.

2. Preliminaries
2.1. Notation

Constants in the scope of a single proof are denoted by a lower case c, and constants
in the scope of the whole article are denoted by an upper case C. The notation c =
c(λ1, . . . , λn) is employed to denote dependency of the constant on parameters λ1, . . . , λn.

2.2. Sobolev Spaces

For any domain Ω ⊂ R3 and m ∈ N0, we denote, by Wm,q(Ω), the classical inhomoge-
neous Sobolev space and, by ‖·‖m,q, its norm. By Dm,q(Ω), we denote the homogeneous
Sobolev space

Dm,q(Ω) := {u ∈ L1
loc(Ω) | ∂αu ∈ Lq(Ω) for all α ∈ N3

0 with |α| = m}

equipped with the semi-norm

|u|m,q :=
(

∑
|α|=m

∫
Ω
|∂αu(x)|q dx

) 1
q

.

Clearly, |·|m,q defines a norm on C∞
0 (Ω), and we let

Dm,q
0 (Ω) := C∞

0 (Ω)
|·|m,q

denote the closure with respect to this norm. We use the notation D−m,q
0 (Ω) to denote the

dual space of Dm,q′
0 (Ω), and |·|−m,q to denote its norm.
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We use C∞
0,σ(Ω) to denote the space of solenoidal vector fields in C∞

0 (Ω)3, that is,

C∞
0,σ(Ω) := {u ∈ C∞

0 (Ω)3 |div u = 0},

and introduce the spaces

Lq
σ(Ω) := C∞

0,σ(Ω)
‖·‖q , Dm,q

0,σ (Ω) := C∞
0,σ(Ω)

|·|m,q , Wm,q
0,σ (Ω) := C∞

0,σ(Ω)
‖·‖m,q

of solenoidal vector fields.
We recall an embedding theorem that is not always found in standard literature:

Lemma 1. Let q ∈ [1, 3), r ∈ [q, 3q/(3− q)], and λ := 3(r−q)
rq .

Then

∀u ∈ C∞
0 (R3) : ‖u‖r ≤ C1‖u‖1−λ

q ‖∇u‖λ
q ,

with C1 = C1(λ, q, r).

Proof. See for example [12] (Lemma II.2.2).

As a direct consequence of Lemma 1, it follows that

∀u ∈ D1,2
0 (R3) : ‖u‖L6(R3) ≤ C1 ‖∇u‖L2(R3). (6)

Consequently, we can identify D1,2
0 (R3) = D1,2(R3) ∩ L6(R3).

2.3. Torus Group

We let T := R/T Z denote the torus group endowed with the canonical quotient
topology. Employing the quotient mapping Π : R→ R/T Z as a pull-back operator, we
obtain a bijection between the T -time-periodic functions u : R → X and the functions
U : T→ X defined on the torus in any setting of X-valued functions.

The torus T is further equipped with the normalized Haar-measure, which is equiva-
lent to the normalized Lebesgue measure on [0, T ). More precisely,

∀ϕ ∈ C0(T) :
∫
T

ϕ dt :=
1
T

∫ T
0

ϕ(t)dt.

For simplicity, we use dt to denote both the normalized Haar-measure on T and the
Lebesgue measure on [0, T ).

We employ the Bochner spaces L2(T; D1,2
0,σ(R3)

)
and L2(T; D−1,2

0 (R3)
)
. We shall also

need Bochner–Sobolev spaces of fractional order. We employ the Fourier transform on T to
introduce these spaces. Recall that, for any complex Hilbert space H, the Fourier transform
FT extends to an isomorphism

FT : L2(T; H)→ L2(Z; H), û := FT(u),

which is isometric with respect to the inner products in L2(T; H) and L2(Z; H). We define,
for α ∈ (0, ∞), the space

Wα,2(T; H
)

:= {u ∈ L2(T; H
)
| |k|αû(k) ∈ L2(Z; H

)
}

with the norm

‖u‖Wα,2(T;H) :=
(

∑
k∈Z

(1 + |k|α)2 ‖û(k)‖2
H

)1/2

.
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It is easy to see that Wα,2(T; H
)

equipped with this norm is a Hilbert space. If H is a real
Hilbert space, we define Wα,2(0, T; H

)
and Wα,2(T; H

)
by using first the complexification

of H, and subsequently restrict the elements to their real parts.
We shall introduce a weak formulation of (1) in a framework where the time axis R is

replaced with the torus T. To this end, we need a space of smooth solenoidal test functions
of compact support in the domain T×R3. We use the quotient map

π : R×R3 → T×R3, π(t, x) := ([t], x) (7)

to define

C∞(T×R3) := {u : T×R3 → R | ∃U ∈ C∞(R×R3) : U = u ◦ π}. (8)

We, then, introduce the space

C∞
0,σ(T×R3) := {u ∈ C∞(T×R3) |div u = 0, supp u is compact}, (9)

which will serve as the space of test functions in the weak formulation.

2.4. Time-Averaging Projection

For a Banach space X, we define the projection P on Lq(T; X
)
, q ∈ [1, ∞) by

P : Lq(T; X
)
→ Lq(T; X

)
, Pg :=

∫
T

g(s)ds, (10)

where the integral above is understood as a Bochner integral in X. Clearly, P is a continuous
projection. Put

P⊥ : Lq(T; X
)
→ Lq(T; X

)
, P⊥g := Id−Pg. (11)

Of course, P⊥ is also a continuous projection.
Observe that Pg time-independent. More precisely, PLq(T; X

)
= X. Consequently, P

induces a decomposition

Lq(T; X
)
= X⊕ Lq

⊥
(
T; X

)
, (12)

where Lq
⊥
(
T; X

)
= P⊥Lq(T; X

)
. For u ∈ Lq(T; X

)
, we will refer to Pu as the steady-state

part and P⊥u as the purely oscillatory part of u.

3. Existence

In the framework of the torus group, we define a weak time-periodic solution to (1) as
follows:

Definition 1. Let f ∈ L2(T; D−1,2
0 (R3)3). A vector field u ∈ L2(T; D1,2

0,σ(R3)
)

is called a weak
time-periodic solution to (1) if

∀Φ ∈ C∞
0,σ(T×R3) :∫

T

∫
R3
−u · ∂tΦ +∇u : ∇Φ− λ∂1u ·Φ + (u · ∇u) ·Φ dxdt =

∫
T
〈 f , Φ〉dt.

(13)

Remark 1. Recalling (6), we observe for u and Φ, as in Definition 1, that∫
T

∫
R3
|(u · ∇u) ·Φ|dxdt ≤

∫
T
‖u(t)‖6‖∇u(t)‖2 ‖Φ(t)‖3 dt

≤ sup
t∈T
‖Φ(t)‖3

∫
T
‖∇u(t)‖2

2 dt.

Thus, the integral in (13) is well-defined.
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Remark 2. In Section 5, we shall show the existence of a pressure term p that, together with
the weak solution, constitutes a solution (u, p) to (1) in the sense of distributions and, thereby,
justify (13) as a weak formulation.

In the framework of the torus group, a slightly stronger version of Theorem 1 takes
the form:

Theorem 2. Let f ∈ L2(T; D−1,2
0 (R3)3) and λ ∈ R. There exists a weak time-periodic solution

u ∈ L2(T; D1,2
0,σ(R3)

)
to (1) that satisfies

Pu ∈ D1,2
0,σ(R

3), (14)

P⊥u ∈ L2(T; D1,2
0,σ(R

3)
)
∩ L∞(T; L2

σ(R3)
)
. (15)

Moreover,

∀α ∈ [0,
1
3
) : P⊥u ∈Wα,2(T; L2

σ(R3)
)
. (16)

Proof. Without loss of generalization, we assume λ ≥ 0. We let {ψj}j∈N ⊂ C∞
0,σ(R3)3 be an

orthonormal basis for the Hilbert space W1,2
0,σ(R3). Since W1,2

0,σ(R3) is separable and C∞
0,σ(R3)

is dense herein, it is possible to find such a basis. For j, k ∈ N put

Ψ#
jk : T×R3 → R, Ψ#

jk(t, x) :=
1√
2

ψj(x) cos
(2π

T kt
)
,

Ψ∗jk : T×R3 → R, Ψ#
jk(t, x) :=

1√
2

ψj(x) sin
(2π

T kt
)
,

Ψ0
j : T×R3 → R, Ψ0

j k(t, x) := ψj(x).

Clearly, {Ψ#
jk, Ψ∗jk, Ψ0

j }k,j∈N is an orthonormal basis for L2(T; W1,2
0,σ(R3)

)
. For n ≥ m, we let

Xm
n := span

{
Ψ#

jk, Ψ∗jk, Ψ0
j
∣∣ j ≤ m, k ≤ n

}
denote a finite linear span of these basis vectors. More precisely, we consider Xm

n as a
subspace of L2(T; W1,2

0,σ(R3)
)
.

We say that U ∈ Xm
n is an approximate solution in Xm

n to (1) if

∀Φ ∈ Xm
n :∫

T

∫
R3
−U · ∂tΦ +∇U : ∇Φ− λ∂1U ·Φ + (U · ∇U) ·Φ dxdt =

∫
T
〈 f , Φ〉dt.

(17)

We start by showing existence of such an approximate solution. Interestingly, we can use
the same method that is employed in [13] (Chapter IX.4) to treat the steady-state case. Let

∀ξ =
(
ξ#, ξ∗, ξ0) ∈ Rm×n ×Rm×n ×Rm : Uξ := ∑

j≤m,k≤n
ξ#

jkΨ#
jk + ξ∗jkΨ∗jk + ξ0

j Ψ0
j .

Define the mapping

P : Rm×n ×Rm×n ×Rm → Rm×n ×Rm×n ×Rm, P(ξ) =
(

P#(ξ), P∗(ξ), P0(ξ)
)
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by

P#
jk(ξ) :=

∫
T

∫
R3

(
∂tUξ − ∆Uξ − λ∂1Uξ + Uξ · ∇Uξ

)
·Ψ#

jk dxdt−
∫
T
〈 f , Ψ#

jk〉dt,

P∗jk(ξ) :=
∫
T

∫
R3

(
∂tUξ − ∆Uξ − λ∂1Uξ + Uξ · ∇Uξ

)
·Ψ∗jk dxdt−

∫
T
〈 f , Ψ∗jk〉dt,

P0
j (ξ) :=

∫
T

∫
R3

(
∂tUξ − ∆Uξ − λ∂1Uξ + Uξ · ∇Uξ

)
·Ψ0

j dxdt−
∫
T
〈 f , Ψ0

j 〉dt.

Clearly, P is continuous. Moreover,

P(ξ) · ξ

=
∫
T

∫
R3

∂tUξ ·Uξ − ∆Uξ ·Uξ − λ∂1Uξ ·Uξ +
(
Uξ · ∇Uξ

)
·Uξ dxdt−

∫
T
〈 f , Uξ〉dt

=
∫
T

∫
R3
|∇Uξ |2 dxdt−

∫
T
〈 f , Uξ〉dt

≥ ‖Uξ‖2
L2(T;D1,2

0,σ(R3))
− ‖ f ‖L2(T;D−1,2

0 (R3))
‖Uξ‖L2(T;D1,2

0,σ(R3))
.

(18)

Since the family of vectors
{

Ψ#
jk, Ψ∗jk, Ψ0

j

∣∣ j ≤ m, k ≤ n
}

is linearly independent in the

space L2(T; W1,2
0,σ(R3)

)
, it is also linearly independent as a family of vectors in the space

L2(T; D1,2
0,σ(R3)

)
. Consequently, there are constants A, B > 0 such that

∀ξ ∈ Rm×n ×Rm×n ×Rm : A|ξ| ≤ ‖Uξ‖L2(T;D1,2
0,σ(R3))

≤ B|ξ|.

It follows that

P(ξ) · ξ ≥ A2|ξ|2 − B‖ f ‖L2(T;D−1,2
0 (R3))

|ξ|,

whence P(ξ) · ξ > 0 for all ξ ∈ Rm×n ×Rm×n ×Rm with |ξ| = 2 B
A2 ‖ f ‖. Thus, P satisfies

the condition in [13] (Lemma VIII.3.1) from which the existence of ξ0 ∈ Rm×n×Rm×n×Rm

with the property

P(ξ0) = 0 (19)

then follows. We conclude that Uξ0 is an approximate solution in Xm
n . We put Um

n := Uξ0 .
By a similar computation as in (18), we find

0 = P(ξ0) · ξ0 =
∫
T

∫
R3
|∇Um

n |
2 dxdt−

∫
T
〈 f , Um

n 〉dt,

and, thus, conclude

‖Um
n ‖L2(T;D1,2

0,σ(R3))
≤ ‖ f ‖L2(T;D−1,2

0 (R3))
. (20)

Summarizing, we have found for all m, n ∈ N an approximate solution Um
n ∈ Xm

n to (1) that
satisfies (20).

In the next step, we seek to establish a similar bound on the norm of P⊥Um
n in the

space Wα,2(T; L2
σ(R3)

)
. For this purpose, it will be convenient to express Um

n (·, x) in terms

of the basis {ei 2π
T kt | k ∈ Z} of the complex Hilbert space L2(T;C). More precisely, we put

∀k ∈ Z : uk(x) :=
∫
T

Um
n (t, x) e−i 2π

T kt dt ∈ C∞
0,σ(R3). (21)
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Clearly, uk = 0 for all |k| > n. Since {uk(x) | k ∈ Z} are the Fourier coefficients of Um
n (·, x),

we have

Um
n (t, x) = ∑

k∈Z
uk(x) ei 2π

T kt = ∑
|k|≤n

uk(x) ei 2π
T kt . (22)

Observe that

PUm
n (t, x) = u0(x),

P⊥Um
n (t, x) = ∑

k∈Z\{0}
uk(x) ei 2π

T kt = ∑
|k|≤n,k 6=0

uk(x) ei 2π
T kt . (23)

For any l ∈ Z \ {0} and γ ∈ R, γ > 0 we will now use (−i) sgn(l)|l|−γul e−i 2π
T lt as a test

function in the weak formulation (17). We, therefore, compute∫
T

∫
R3

∂tUm
n · (−i) sgn(l)|l|−γul e−i 2π

T lt dxdt

=
∫
T

∫
R3

(
∑
k∈Z

i
2π

T kuk(x) ei 2π
T kt

)
· (−i) sgn(l)|l|−γul e−i 2π

T lt dxdt

=
∫
R3

2π

T l sgn(l)|l|−γulul dx

=
2π

T |l|
1−γ

∫
R3
|ul |2 dx.

(24)

Similarly, we compute

∫
T

∫
R3
∇Um

n : ∇
[
(−i) sgn(l)|l|−γul e−i 2π

T lt
]

dxdt

= (−i) sgn(l)|l|−γ
∫
R3
|∇ul |2 dx, (25)

and∫
T

∫
R3

λ∂1Um
n · (−i) sgn(l)|l|−γul e−i 2π

T lt dxdt = (−i) sgn(l)|l|−γλ
∫
R3

∂1ulul dx. (26)

Since Um
n is a real function, it follows that uk = u−k. Consequently,∫

T

∫
R3
(Um

n · ∇Um
n ) · (−i) sgn(l)|l|−γul e−i 2π

T lt dxdt

=
∫
T

∫
R3

((
∑
|k|≤n

uk(x) ei 2π
T kt ) · ∇( ∑

|h|≤n
uh(x) ei 2π

T ht ))
· (−i) sgn(l)|l|−γul e−i 2π

T lt dxdt

=
∫
T

∫
R3 ∑
|k|,|h|≤n

(uk · ∇uh) ·
(
(−i) sgn(l)|l|−γu−l ei 2π

T (k+h−l)t )dxdt

= (−i) sgn(l)|l|−γ
∫
R3 ∑
|k|≤n

(uk · ∇ul−k) · u−l dx.

(27)
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For |l| ≤ n, it is easy to see that the function (−i) sgn(l)|l|−γul e−i 2π
T lt belongs to the

complexification Xm
n ⊕ iXm

n of Xm
n . Consequently, we can use it as a test function in the

weak formulation (17). From (17) and (24)–(27) it, therefore, follows that

2π

T |l|
1−γ

∫
R3
|ul |2 dx = −(−i) sgn(l)|l|−γ

∫
R3
|∇ul |2 dx

+ (−i) sgn(l)|l|−γλ
∫
R3

∂1ulul dx

− (−i) sgn(l)|l|−γ
∫
R3 ∑
|k|≤n

(uk · ∇ul−k) · u−l dx

+ (−i) sgn(l)|l|−γ
∫
T
〈 f , ul〉 e−i 2π

T lt dt.

(28)

We shall estimate the terms on the right-hand side above. To estimate the second term, we
employ first Hölder’s and then Young’s inequality to obtain

∣∣∣|l|−γλ
∫
R3

∂1ulul dx
∣∣∣ ≤ |l|−γλ

( ∫
R3
|∇ul |2 dx

) 1
2
( ∫

R3
|ul |2 dx

) 1
2

≤ |l|−γ
(

1
2

2π

T

∫
R3
|ul |2 dx + c1

∫
R3
|∇ul |2 dx

)
≤ |l|1−γ 1

2
2π

T

∫
R3
|ul |2 dx + c1

∫
R3
|∇ul |2 dx,

(29)

with a constant c1 = c1(λ, T ) > 0 according to Young’s inequality. Recalling (6), we
estimate, employing Hölder’s inequality, the third term on the right-hand side in (28) by∣∣∣|l|−γ

∫
R3 ∑
|k|≤n

(uk · ∇ul−k) · u−l dx
∣∣∣

≤ |l|−γ ∑
|k|≤n

( ∫
R3
|uk|6 dx

) 1
6
( ∫

R3
|∇ul−k|2 dx

) 1
2
( ∫

R3
|ul |3 dx

) 1
3

≤ c2 |l|−γ ∑
|k|≤n

( ∫
R3
|∇uk|2 dx

) 1
2
( ∫

R3
|∇ul−k|2 dx

) 1
2
( ∫

R3
|ul |3 dx

) 1
3

≤ c2 |l|−γ
( ∫

R3
|ul |3 dx

) 1
3
(

∑
|k|≤n

∫
R3
|∇uk|2 dx

) 1
2
(

∑
|k|≤n

∫
R3
|∇ul−k|2 dx

) 1
2

,

with a constant c2 > 0 according to the embedding (6). Employing Lemma 1 to estimate
the first integral on the right-hand side above, we further obtain∣∣∣|l|−γ

∫
R3 ∑
|k|≤n

(ul−k · ∇uk) · u−l dx
∣∣∣

≤ c3 |l|−γ
( ∫

R3
|ul |2 dx

) 1
4
( ∫

R3
|∇ul |2 dx

) 1
4
(

∑
k∈Z

∫
R3
|∇uk|2 dx

)
,

whence, by Plancherel’s equality,∣∣∣|l|−γ
∫
R3 ∑
|k|≤n

(uk · ∇ul−k) · u−l dx
∣∣∣

≤ c4 |l|−γ
( ∫

R3
|ul |2 dx

) 1
4
( ∫

R3
|∇ul |2 dx

) 1
4
( ∫

T

∫
R3
|∇Um

n |
2 dxdt

)
.

(30)
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We can estimate the last term on the right-hand side in (28) by∣∣∣|l|−γ
∫
T
〈 f , ul〉 e−i 2π

T lt dt
∣∣∣ ≤ ‖ fl‖2

D−1,2
0 (R3)

+ ‖∇ul‖2
2, (31)

where fl denotes the l’th Fourier coefficient of f . Collecting (28)–(31) and recalling (20), we
can now deduce

|l|1−γ
∫
R3
|ul |2 dx

≤ c5

( ∫
R3
|∇ul |2 dx + |l|−γ

( ∫
R3
|ul |2 dx

) 1
4
( ∫

R3
|∇ul |2 dx

) 1
4

+ ‖ fl‖2
D−1,2

0 (R3)

)
,

where c5 = c5(‖ f ‖, T , λ). Finally, we employ Young’s inequality to estimate

|l|−γ
( ∫

R3
|ul |2 dx

) 1
4
( ∫

R3
|∇ul |2 dx

) 1
4

= |l|−γ− 1
4 (1−γ)

( ∫
R3
|l|1−γ|ul |2 dx

) 1
4
( ∫

R3
|∇ul |2 dx

) 1
4

≤ c6|l|−2( 3
4 γ+ 1

4 ) +
1

2c5

∫
R3
|l|1−γ|ul |2 dx + c7

∫
R3
|∇ul |2 dx

and conclude

|l|1−γ
∫
R3
|ul |2 dx ≤ c8

( ∫
R3
|∇ul |2 dx + |l|−2( 3

4 γ+ 1
4 ) + ‖ fl‖2

D−1,2
0 (R3)

)
. (32)

We have derived the above inequality for l ∈ Z \ {0} with |l| ≤ n. However, since ul = 0
for |l| > n, the above inequality holds for all l ∈ Z \ {0}. We will now sum both sides over
l. For γ > 1

3 , we have

−2
(

3
4

γ +
1
4

)
< −1 (33)

whence, using again Plancherel’s equality, it follows that

∑
l∈Z\{0}

|l|1−γ‖ul‖2
L2(R3) dx ≤ c9

(
∑
l∈Z

∫
R3
|∇ul |2 dx + 1 + ‖ f ‖2

L2(T;D−1,2
0 (R3))

)

= c9

( ∫
T

∫
R3
|∇Um

n |
2 dxdt + 1 + ‖ f ‖2

L2(T;D−1,2
0 (R3))

)
,

where c9 = c9(‖ f ‖, γ, T , λ). Recalling (20), we deduce

∀γ ∈ (
1
3

, ∞) : ∑
l∈Z\{0}

|l|1−γ‖ul‖2
L2(R3) dx ≤ c9,

with c9 independent on m and n. Recalling (23), we conclude for all α ∈ [0, 1
3 ) that P⊥Um

n ∈
Wα,2(T; L2

σ(R3)
)

with

∀α ∈ [0,
1
3
) : ‖P⊥Um

n ‖Wα,2(T;L2
σ(R3)) ≤ c10, (34)

where c10 = c10(α, ‖ f ‖, T , λ) is independent on m and n.
In the next step of the proof, we wish to establish an estimate of the approximate

solution in the L∞(T; L2(R3)3)-norm. For this purpose, we choose again an appropriate
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test function and utilize that Um
n satisfies (17). We shall also need to pass to the limit n→ ∞.

We, therefore, denote now the Fourier coefficients of Um
n (·, x) by {un

k }k∈Z. Thus, we have

Um
n (t, x) = ∑

k∈Z
un

k (x) ei 2π
T kt = ∑

|k|≤n
un

k (x) ei 2π
T kt . (35)

We choose for j, l ∈ Z with |j|, |l| ≤ n the function un
j e−i 2π

T lt ∈ Xm
n ⊕ iXm

n as a test function
in (17) and obtain∫

T

∫
R3
−Um

n ·
(
− i

2π

T lun
j e−i 2π

T lt
)
+∇Um

n : ∇un
j e−i 2π

T lt

− λ∂1Um
n · un

j e−i 2π
T lt +(Um

n · ∇Um
n ) · un

j e−i 2π
T lt dxdt =

∫
T
〈 f , un

j 〉 e−i 2π
T lt dt.

Inserting the Fourier series (35) for Um
n in the above identity, we find∫

R3
i
2π

T lun
l un

j +∇un
l : ∇un

j − λ∂1un
l · u

n
j + ∑

|k|≤n
(un

l−k · ∇un
k ) · u

n
j dx

=
∫
T
〈 f , un

j 〉 e−i 2π
T ls ds.

Multiplying both sides above with ei 2π
T (l+j)t and summing over j and l, we further deduce

∑
|j|,|l|≤n

j 6=0

∫
R3

i
2π

T lun
l un

j ei 2π
T (l+j)t dx = ∑

|j|,|l|≤n
j 6=0

∫
R3
−∇un

l : ∇un
j ei 2π

T (l+j)t dx

+ ∑
|j|,|l|≤n

j 6=0

∫
R3

λ∂1un
l · u

n
j ei 2π

T (l+j)t dx

− ∑
|k|,|j|,|l|≤n

j 6=0

∫
R3
(un

l−k · ∇un
k ) · u

n
j ei 2π

T (l+j)t dx

+ ∑
|j|,|l|≤n

j 6=0

∫
T
〈 f , un

j 〉 e−i 2π
T ls ds ei 2π

T (l+j)t .

(36)

In the sums in (36), we recognize familiar quantities. For example, we compute, recalling
that P⊥Um

n is a real function,

∂t

∫
R3
|P⊥Um

n (t, x)|2 dx = ∂t

∫
R3 ∑

|l|,|j|≤n
l,j 6=0

un
l un

j ei 2π
T (l+j)t dx

= ∑
|l|,|j|≤n

l,j 6=0

∫
R3

i
2π

T (l + j)un
l un

j ei 2π
T (l+j)t dx

= ∑
|l|,|j|≤n

j 6=0

∫
R3

i
2π

T lun
l un

j ei 2π
T (l+j)t dx

+ ∑
|l|,|j|≤n

l 6=0

∫
R3

i
2π

T jun
l un

j ei 2π
T (l+j)t dx

= 2 ∑
|l|,|j|≤n

j 6=0

∫
R3

i
2π

T lun
l un

j ei 2π
T (l+j)t dx.

(37)
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We have, hereby, identified the left-hand side in (36) with 1
2 ∂t
∫
R3 |P⊥Um(t, x)|2 dx. Similar

identifications can be made for the terms on the right-hand side as well. We immediately
see that

∑
|l|,|j|≤n

j 6=0

∫
R3
∇un

l : ∇un
j e−i 2π

T (l+j)t dx =
∫
R3
∇Um

n : ∇P⊥Um
n dx (38)

and

∑
|l|,|j|≤n

j 6=0

∫
R3

λ∂1un
l · u

n
j e−i 2π

T (l+j)t dx =
∫
R3

λ∂1Um
n · P⊥Um

n dx. (39)

We also see that

∑
|l|,|j|≤n

j 6=0

∫
T
〈 f , un

j 〉 e−i 2π
T ls ds ei 2π

T (l+j)t = ∑
|l|≤n
〈 fl ,P⊥Um

n 〉 ei 2π
T lt, (40)

where fl denotes the l’th Fourier coefficient of f . Combining (36)–(40), we conclude that

1
2

∂t

∫
R3
|P⊥Um

n (t, x)|2 dx = −
∫
R3
∇Um

n : ∇P⊥Um
n dx +

∫
R3

λ∂1Um
n · P⊥Um

n dx

− ∑
|k|,|j|,|l|≤n

j 6=0

∫
R3
(un

l−k · ∇un
k ) · u

n
j ei 2π

T (l+j)t dx

+ ∑
|l|≤n
〈 fl ,P⊥Um

n 〉 ei 2π
T lt .

(41)

Observe that we now have a pointwise identity for ∂t
∫
R3 |P⊥Um

n (t, x)|2 dx. To capitalize
on this information, we compute for h ∈ Z the h’th Fourier coefficient on both sides in (41)
to find that∫

T
(−i

2π

T h)
(

1
2

∫
R3
|P⊥Um

n (t, x)|2 dx
)

e−i 2π
T ht dt

=
∫
T

( ∫
R3
−∇Um

n : ∇P⊥Um
n dx + λ∂1Um

n · P⊥Um
n dx

)
e−i 2π

T ht dt

− ∑
|k|,|j|≤n

j 6=0,|h−j|≤n

∫
R3
(un

h−j−k · ∇un
k ) · u

n
j dx + 〈 fh,P⊥Um

n 〉.

(42)

For the purpose of expressing the sum on the right-hand side above in terms of more
well-known quantities, we shall pass to the limit n→ ∞. First, we put

Ym := span
{

ψj
∣∣ j ≤ m

}
⊂W1,2

0,σ(R
3).

Since Ym is a finite dimensional vector space, all norms on Ym are equivalent. From
(20) and (34), we, thus, deduce that {Um

n }∞
n=1 is bounded in the space L2(T; Ym) and

{P⊥Um
n }∞

n=1 in Wγ,2(T; Ym) for all γ ∈ [0, 1
3 ). Consequently, there is a Um ∈ L2(T; Ym)

with P⊥Um ∈Wγ,2(T; Ym) and a subsequence of {Um
n }∞

n=1, which, for simplicity, we still
denote by {Um

n }∞
n=1, such that

Um
n ⇀ Um in L2(T; Ym) as n→ ∞, (43)

∀γ ∈ [0,
1
3
) : P⊥Um

n ⇀ P⊥Um in Wγ,2(T; Ym) as n→ ∞. (44)

It follows from (43) that PUm
n ⇀ PUm in Ym, which, since Ym is finite dimensional,

implies strong convergence PUm
n → PUm in Ym as n → ∞. Moreover, again due to the
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fact that Ym is finite dimensional, Wγ1,2(T; Ym) is compactly embedded in Wγ2,2(T; Ym)
for γ1 > γ2 ≥ 0. Consequently, (44) implies strong convergence P⊥Um

n → P⊥Um in
Wγ,2(T; Ym) as n→ ∞ for every γ ∈ [0, 1/3). We, thus, have

∀γ ∈ [0,
1
3
) : Um

n → Um in Wγ,2(T; Ym) as n→ ∞. (45)

Finally, in view of (20) and (34), we have

∀γ ∈ [0,
1
3
) : ‖Um‖L2(T;D1,2

0,σ(R3))
+ ‖P⊥Um‖Wγ,2(T;L2(R3)3) ≤ c11 (46)

with a constant c11 > 0 independent on m. We shall now pass to the limit n→ ∞ in (42). We
start by verifying that

lim
n→∞ ∑

|k|,|j|≤n
j 6=0,|h−j|≤n

∫
R3
(un

h−j−k · ∇un
k ) · u

n
j dx

=
∫
T

( ∫
R3

Um · ∇Um · P⊥Um dx
)

e−i 2π
T ht dt. (47)

Observe that the right-hand side of (47) is well-defined since W
1
4 ,2(T; Ym) is embedded

in L4(T; Ym) and, thus, Um,∇Um ∈ L4(T; Ym). In fact, letting {uk}k∈Z ⊂ Ym denote the
Fourier coefficients of Um, we have the identity

∫
T

( ∫
R3

Um · ∇Um · P⊥Um dx
)

e−i 2π
T ht dt = ∑

k,j∈Z
j 6=0

∫
R3
(uh−j−k · ∇uk) · uj dx.

We further observe, recalling that un
k = 0 for |k| > n, that

∑
|k|,|j|≤n

j 6=0,|h−j|≤n

∫
R3
(un

h−j−k · ∇un
k ) · u

n
j dx

= ∑
k,j∈Z

j 6=0,|h−j|≤n

∫
R3
(un

h−j−k · ∇un
k ) · u

n
j dx

= ∑
j∈Z
j 6=0

∫
R3

(
∑
k∈Z

un
h−j−k · ∇un

k

)
·
(

un
j χn

h(j)
)

dx

with

χn
h(j) :=

{
1 if |h− j| ≤ n,

0 if |h− j| > n.
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We can, thus, estimate∣∣∣ ∑
|k|,|j|≤n

j 6=0,|h−j|≤n

∫
R3
(un

h−j−k · ∇un
k ) · u

n
j dx−

∫
T

( ∫
R3

Um · ∇Um · P⊥Um dx
)

e−i 2π
T ht dt

∣∣∣
≤
∣∣∣∑

j∈Z
j 6=0

∫
R3

(
∑
k∈Z

[
un

h−j−k − uh−j−k
]
· ∇un

k

)
·
(

un
j χn

h(j)
)

dx
∣∣∣

+
∣∣∣∑

j∈Z
j 6=0

∫
R3

(
∑
k∈Z

uh−j−k · ∇
[
un

k − uk
])
·
(

un
j χn

h(j)
)

dx
∣∣∣

+
∣∣∣∑

j∈Z
j 6=0

∫
R3

(
∑
k∈Z

uh−j−k · ∇uk

)
·
(

un
j χn

h(j)− uj

)
dx
∣∣∣

=: S1 + S2 + S3.

In order to estimate S1, we utilize the embedding of W
1
4 ,2(T; Ym) into L4(T; Ym) in combination

with (45) to conclude that Um
n → Um in L4(T, Ym) as n→ ∞. Moreover, we recall that

FT

([
Um

n (·, x)−Um(·, x)
]
· ∇Um

n (·, x)
)
(j) = ∑

k∈Z

[
un

j−k(x)− uj−k(x)
]
· ∇un

k (x).

Employing also Plancherel’s identity, we deduce

S1 ≤ c12

∥∥∥∑
k∈Z

[
un

h−j−k − uh−j−k
]
· ∇un

k

∥∥∥
`2(Ym)

∥∥∥un
j

∥∥∥
`2(Ym)

= c13

∥∥∥[Um
n −Um] · ∇Um

n

∥∥∥
L2(T;Ym)

∥∥∥Um
n

∥∥∥
L2(T;Ym)

≤ c14

∥∥∥Um
n −Um

∥∥∥
L4(T;Ym)

∥∥∥Um
n

∥∥∥
L4(T;Ym)

∥∥∥Um
n

∥∥∥
L2(T;Ym)

→ 0 as n→ ∞,

where, in the last inequality, we once more exploit that all norms on Ym are equivalent. In
a similar manner, we verify that S2 → 0 as n → ∞. To estimate S3, we proceed as above
and obtain

S3 ≤ c15‖Um‖2
L4(T;Ym)‖u

n
j χn

h(j)− uj‖`2(Ym)

≤ c15‖Um‖2
L4(T;Ym)

(
‖un

j − uj‖`2(Ym) + ‖uj
(
1− χn

h(j)
)
‖`2(Ym)

)
= c16‖Um‖2

L4(T;Ym)

(∥∥∥Um
n −Um

∥∥∥
L2(T;Ym)

+ ‖uj
(
1− χn

h(j)
)
‖`2(Ym)

)
→ 0 as n→ ∞.

We conclude (47). We are now able to pass to the limit n → ∞ in (42). The limit of the
sum on the right-hand side in (42) is computed in (47). Employing (45) to pass to the limit
n→ ∞ in the other terms, we conclude that∫

T
(−i

2π

T h)
(

1
2

∫
R3
|P⊥Um(t, x)|2 dx

)
e−i 2π

T ht dt

= −
∫
T

( ∫
R3
∇Um : ∇P⊥Um dx + λ∂1Um · P⊥Um dx

)
e−i 2π

T ht dt

−
∫
T

( ∫
R3

Um · ∇Um · P⊥Um dx
)

e−i 2π
T ht dt + 〈 fh,P⊥Um〉.

(48)
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Since ∫
R3
(Um · ∇Um) · P⊥Um dx

=
∫
R3
(PUm · ∇PUm) · P⊥Um dx +

∫
R3
(P⊥Um · ∇PUm) · P⊥Um dx,

we obtain from (48) that

(i
2π

T h)
∫
T

1
2

( ∫
R3
|P⊥Um|2 dx

)
ei 2π
T ht dt

=
∫
T

∫
R3
∇Um : ∇P⊥Um dx ei 2π

T ht dt

− λ
∫
T

∫
R3

∂1Um · P⊥Um dx ei 2π
T ht dt

+
∫
T

∫
R3
(PUm · ∇PUm) · P⊥Um dx ei 2π

T ht dt

+
∫
T

∫
R3
(P⊥Um · ∇PUm) · P⊥Um dx ei 2π

T ht dt

−
∫
T
〈 f ,P⊥Um〉 ei 2π

T ht dt

(49)

for any h ∈ Z. Now, we put

G(t) :=
1
2

∫
R3
|P⊥Um(t, x)|2 dx

and

H(t) :=
∫
R3
∇Um : ∇P⊥Um dx− λ

∫
R3

∂1Um · P⊥Um dx +
∫
R3
(PUm · ∇PUm) · P⊥Um dx

+
∫
R3
(P⊥Um · ∇PUm) · P⊥Um dx− 〈 f ,P⊥Um〉.

From (46), we already know that G ∈ L1(T) with ‖G‖L1(T) ≤ c11
2. From (49), we see that H

is the distributional derivative of G. We shall verify that H ∈ L1(T) and estimate ‖H‖L1(T).
For this purpose, we estimate, recalling (46),∫

T

∣∣∣∫
R3
∇Um : ∇P⊥Um dx

∣∣∣dt ≤ ‖Um‖2
L2(T;D1,2

0,σ(R3))
≤ c11

2 (50)

and ∫
T

∣∣∣∫
R3

∂1Um · P⊥Um dx
∣∣∣dt ≤ ‖Um‖L2(T;D1,2

0,σ(R3))
‖P⊥Um‖L2(T;L2(R3)) ≤ c11

2. (51)

Employing Lemma 1, (6), and Hölder’s inequality, we find, recalling again (46), that∫
T

∣∣∣∫
R3
(PUm · ∇PUm) · P⊥Um dx

∣∣∣dt

≤
∫
T
‖PUm‖6‖∇PUm‖2‖P⊥Um(t)‖3 dt

≤ ‖∇PUm‖2
2

∫
T
‖∇P⊥Um(t)‖

1
2
2 ‖P⊥Um(t)‖

1
2
2 dt

≤ ‖∇PUm‖2
2‖P⊥Um‖

1
2

L2(T;D1,2
0,σ(R3))

‖P⊥Um‖
1
2
L2(T;L2(R3))

≤ c11
3.

(52)
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Similarly, we estimate∫
T

∣∣∣∫
R3
(P⊥Um · ∇PUm) · P⊥Um dx

∣∣∣dt

≤ ‖∇PUm‖2

∫
T
‖P⊥Um(t)‖2

4 dt

≤ ‖∇PUm‖2

∫
T
‖P⊥Um(t)‖

1
2
2 ‖∇P⊥Um(t)‖

3
2
2 dt

≤ ‖∇PUm‖2‖P⊥Um‖
1
2
L2(T;L2(R3))

‖P⊥Um‖
3
2

L2(T;D1,2
0,σ(R3))

≤ c11
3.

(53)

Finally, we observe that∫
T

∣∣∣〈 f ,P⊥Um〉
∣∣∣dt ≤ ‖ f ‖L2(T;D−1,2

0 (R3))
‖P⊥Um‖L2(T;D1,2

0,σ(R3))

≤ c11‖ f ‖L2(T;D−1,2
0 (R3))

.
(54)

By (50)–(54), it follows that H ∈ L1(T). We, thus, deduce G ∈W1,1(T) with

‖G‖W1,1(T) ≤ c11
2 + λc11

2 + c11
3 + c11‖ f ‖L2(T;D−1,2

0 (R3))
.

Since W1,1(T) is continuously embedded in L∞(T), we conclude that

‖P⊥Um‖L∞(T;L2(R3)) = 4‖G‖
1
2
L∞(T) ≤ c17 (55)

with c17 = c17(λ, ‖ f ‖) independent on m.
We now verify that Um is an approximate solution to (1). For any Φ ∈ Xm

n0
, we have∫

T

∫
R3
−Um

n · ∂tΦ +∇Um
n : ∇Φ− λ∂1Um

n ·Φ + (Um
n · ∇Um

n ) ·Φ dxdt =
∫
T
〈 f , Φ〉dt (56)

for n ≥ n0. We can pass to the limit n→ ∞ in (56) in the same manner as we derived (49)
by passing to the limit n→ ∞ in (42). In particular, we can utilize (45) to show

∀Φ ∈
⋃

n0∈N
Xm

n0
:

∫
T

∫
R3
−Um · ∂tΦ +∇Um : ∇Φ− λ∂1Um ·Φ + (Um · ∇Um) ·Φ dxdt

=
∫
T
〈 f , Φ〉dt.

(57)

We summarize at this point that Um ∈ L2(T; D1,2
0,σ(R3)

)
is an approximate solution to (1)

that satisfies (46) and (55).
To obtain a proper weak solution to (1), we let m→ ∞. By (46), the sequence {Um}∞

m=1
is bounded in L2(T; D1,2

0,σ(R3)
)
. Thus, there is a U ∈ L2(T; D1,2

0,σ(R3)
)

and a subsequence
of {Um}∞

m=1, which, for simplicity, we still denote by {Um}∞
m=1, which converges weakly

towards U as m→ ∞. In view of (46) and (55), we see that

γ ∈ [0,
1
3
) : P⊥U ∈Wγ,2(T; L2(R3)3) ∩ L∞(T; L2(R3)3), (58)
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and we can pick any γ ∈ (0, 1
3 ) and choose the subsequence in such a way that

Um ⇀ U in L2(T; D1,2
0,σ(R

3)
)
,

P⊥Um ⇀ P⊥U in Wγ,2(T; L2(R3)3),
P⊥Um ⇀∗ P⊥U in L∞(T; L2(R3)3) as m→ ∞,

(59)

where ⇀∗ denotes convergence with respect to the weak*-topology of L∞(T; L2(R3)3). For
K ⊂ R3 a compact set, Wγ,2(T; L2(R3)3) ∩ L2(T; D1,2

0 (R3)3) is compactly embedded in
L2(T; L2(K)3); see for example [14] (Chapter II, §2, Theorem 2.2). Moreover, D1,2

0,σ(R3) is
compactly embedded in L2(K)3. We, therefore, also have

∀K ⊂ R3, K compact : P⊥Um → P⊥U in L2(T; L2(K)3),
∀K ⊂ R3, K compact : PUm → PU in L2(K)3.

(60)

By virtue of (57) and (59)–(60), it can now be shown that U is a weak solution to (1).
Consider first Φ ∈ Xm0

n0 for some n0, m0 ∈ N. With this test function fixed, we pass to the
limit m → ∞ in (57). It is easy to pass to the limit in the terms that are linear in Um. To
verify that we can also pass to the limit in the nonlinear term, we first compute∫

T

∫
R3
(Um · ∇Um) ·Φ dxdt =

∫
T

∫
R3
(PUm · ∇Φ) · PUm dxdt

+
∫
T

∫
R3
(PUm · ∇Φ) · P⊥Um dxdt

+
∫
T

∫
R3
(P⊥Um · ∇Φ) · PUm dxdt

+
∫
T

∫
R3
(P⊥Um · ∇Φ) · P⊥Um dxdt.

(61)

We can estimate∣∣∣∫
T

∫
R3
(PUm · ∇Φ) · PUm dxdt−

∫
T

∫
R3
(PU · ∇Φ) · PU dxdt

∣∣∣
≤ c18‖PUm −PU‖L2(K)

(
‖PU‖L2(K) + ‖PUm‖L2(K)

)
with K :=

⋃
j≤m0

supp ψj and c18 independent on m. Similarly, we estimate∣∣∣∫
T

∫
R3
(PUm · ∇Φ) · P⊥Um dxdt−

∫
T

∫
R3
(PU · ∇Φ) · P⊥U dxdt

∣∣∣
≤ c19

(
‖PUm −PU‖L2(K)‖P⊥Um‖L2(T;L2(K))

+ ‖PU‖L2(K)‖P⊥Um −P⊥U‖L2(T;L2(K))

)
,

and ∣∣∣∫
T

∫
R3
(P⊥Um · ∇Φ) · PUm dxdt−

∫
T

∫
R3
(P⊥U · ∇Φ) · PU dxdt

∣∣∣
≤ c20

(
‖PUm −PU‖L2(K)‖P⊥Um‖L2(T;L2(K))

+ ‖PU‖L2(K)‖P⊥Um −P⊥U‖L2(T;L2(K))

)
.
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Finally, we also have∣∣∣∫
T

∫
R3
(P⊥Um · ∇Φ) · P⊥Um dxdt−

∫
T

∫
R3
(P⊥U · ∇Φ) · P⊥U dxdt

∣∣∣
≤ c21‖P⊥Um −PU‖L2(T;L2(K))

(
‖P⊥U‖L2(T;L2(K)) + ‖P⊥Um‖L2(T;L2(K))

)
.

Clearly, K ⊂ R3 is compact. Thus, the estimates above together with (60) imply that we
can pass to the limit m→ ∞ in (61) to obtain

lim
m→∞

∫
T

∫
R3
(Um · ∇Um) ·Φ dxdt =

∫
T

∫
R3
(U · ∇U) ·Φ dxdt.

Returning to (57), we find, after letting m→ ∞, that

∀Φ ∈
⋃

n0,m0∈N
Xm0

n0 :

∫
T

∫
R3
−U · ∂tΦ +∇U : ∇Φ− λ∂1U ·Φ + (U · ∇U) ·Φ dxdt =

∫
T
〈 f , Φ〉dt.

(62)

To finalize the proof, we need to extend the identity above to all Φ ∈ C∞
0,σ(T×R3). For this

purpose, we put

Φj,k(t, x) :=
(

1 +
(2π

T
)2|k|2

)− 1
2

ei 2π
T kt ψj(x)

and utilize that
{

Φj,k
∣∣ k, j ∈ Z

}
is an orthonormal basis in W1,2(T; W1,2

0,σ(R3)
)
. Con-

sider Φ ∈ C∞
0,σ(T× R3). Let 〈·, ·〉W1,2(T;W1,2(R3)3) denote the canonical inner product of

W1,2(T; W1,2(R3)3) and define

Φm(t, x) := ∑
|k|,|j|≤m

〈Φ, Φj,k〉W1,2(T;W1,2(R3)3)Φj,k.

We, then, use Φm as a test function in (62) and pass to the limit m→ ∞. Observe that∣∣∣∫
T

∫
R3

U · ∂tΦ−U · ∂tΦm dxdt
∣∣∣ = ∣∣∣∫

T

∫
R3
P⊥U · ∂tΦ−P⊥U · ∂tΦm dxdt

∣∣∣
≤ ‖P⊥U‖L2(T;L2(R3))‖Φ−Φm‖W1,2(L2(R3)),

whence

lim
m→∞

∫
T

∫
R3

U · ∂tΦm dxdt =
∫
T

∫
R3

U · ∂tΦ dxdt.

We also note that∣∣∣∫
T

∫
R3
(U · ∇U) ·Φ− (U · ∇U) ·Φm dxdt

∣∣∣
≤
∫
T
‖U(t)‖6‖∇U(t)‖2‖Φ(t)−Φm(t)‖3 dt

≤ c22 ‖U‖2
L2(T;D1,2

0,σ(R3))
sup
t∈T
‖Φ−Φm‖W1,2

0,σ(R3)

≤ c23 ‖U‖2
L2(T;D1,2

0,σ(R3))
‖Φ−Φm‖W1,2(W1,2

0,σ(R3))
,

which implies

lim
m→∞

∫
T

∫
R3
(U · ∇U) ·Φm dxdt =

∫
T

∫
R3
(U · ∇U) ·Φ dxdt.
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It is now easy to verify, after inserting Φm as a test function in (62) and passing to the
limit m → ∞, that U and Φ satisfy (13). Thus, recalling (58), we have shown that U ∈
L2(T; D1,2

0,σ(R3)
)

is a weak time-periodic solution to (1) that satisfies (14)–(16).

Remark 3. Observe that the condition γ > 1
3 is needed to conclude that (33) is not dictated by

the regularity of the data f . In other words, assuming more regularity on the data f will not lead
to any improvement in (16) and, thereby, to better regularity of the solution u, at least not in the
proof above.

Proof of Theorem 1. As noted in Section 2.3, the quotient mapping Π : R→ T, employed
as a pull-back operator, yields a bijection between T -time-periodic functions defined on
R and functions defined on the torus T. Employing this bijection, and recalling (6), one
readily verifies that Theorem 1 follows from Theorem 2.

Remark 4. We shall briefly compare Theorem 2 with the similar well-known result for the the
initial-value Navier–Stokes problem

∂tu− ∆u− λ∂1u +∇p+ u · ∇u = f in (0, T)×R3,

div u = 0 in (0, T)×R3,

u(0, ·) = u0 in R3.

(63)

The existence of a weak solution u ∈ L2(0, T; D1,2
0,σ(R3)

)
to (63) was originally shown by Leray

in [2]. A proof based on a Galerkin approximation was given by Hopf in [1]. Compared to the proof
of Theorem 2 above, which is also based on a Galerkin approximation, it is much simpler in the proof
of Hopf to obtain u ∈ L∞(0, T; L2(R3)3). Indeed, multiplying (63)1 with u and performing for
arbitrary t ∈ (0, t) the formal integration∫ t

0

∫
R3

∂tu · u− ∆u · u− λ∂1u · u +∇p · u + (u · ∇u) · u dxdt =
∫ t

0

∫
R3

f · u dxdt,

one finds, after a formal integration by parts and a simple estimate, that

‖u(t)‖2 ≤ ‖u(0)‖2 + 2‖ f ‖L2(0,T;D−1,2
0 (R3))

‖u‖L2(0,T;D1,2
0,σ(R3))

. (64)

The computation above can only be performed formally at first; however, since it is valid on the
finite-dimensional level in the Galerkin approximation, it eventually leads to the validity of (64)
also for the final weak solution u. Since ‖u(0)‖2 equals the prescribed quantity u0, (64) implies
that ‖u(t)‖2 is bounded independently on t and, thus, u ∈ L∞(0, T; L2(R3)3). In contrast, in
the time-periodic case, there is no information available on ‖u(0)‖2. Consequently, the simple
argument that yields u ∈ L∞(0, T; L2(R3)3) for the initial-value problem cannot be used in the
time-periodic case.

Remark 5. It may seem surprising at first that Theorem 2 only establishes that the projection P⊥u
lies in L∞(0, T ; L2(R3)3) and not u itself, which, as shown above, can be proved rather easily for
the corresponding initial-value problem. A short investigation, however, reveals that u cannot
in general belong to L∞(0, T ; L2(R3)3) in the time-periodic case. If, for example, the prescribed
data f is time independent, the Galerkin method employed in the proof of Theorem 2 may yield a
time-independent weak solution u, that is, a steady-state solution to{

− ∆u− λ∂1u +∇p+ u · ∇u = f in R3,

div u = 0 in R3.
(65)

Indeed, it is easy to verify that the vector ξ0 = (ξ#, ξ∗, ξ0) ∈ Rm×n ×Rm×n ×Rm in (19) may
be chosen such that ξ# = ξ∗ = 0, if f is time independent. By explicitly choosing ξ0 in this
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way, the existence part of the proof reduces completely to the proof of [13] (Theorem IX.4.1), which
yields a weak so-called Leray solution to (65). Provided f is of compact support and possesses a
certain amount of regularity, it was shown by Finn [15], in the case λ 6= 0, that such a solution
does not belong to L2(R3)3 when

∫
R3 f dx 6= 0; see also [13] (Theorem IX.7.2). Consequently,

u /∈ L∞(0, T; L2(R3)3) in this case. If we further assume that f is sufficiently small, we can use
result by Korolev and Šverák [16] to derive u /∈ L∞(0, T; L2(R3)3) also in the case λ = 0.

4. Regularity Properties

The purpose of this section is to show that the weak solution from Theorem 2 is
continuous in time with respect an appropriate topology. Continuity in time is needed to
conclude that the solution is in fact time-periodic in a classical pointwise fashion. It is easy
to verify that a completely analogous statement follows for the solution in Theorem 1.

From the weak formulation (13), time regularity of the solution in a relatively weak
topology can be derived almost directly. More specifically, we have:

Lemma 2. Let f ∈ L2(T; D−1,2
0 (R3)3) and λ ∈ R. The weak time-periodic solution u ∈

L2(T; D1,2
0,σ(R3)

)
from Theorem 2 satisfies

∀N ∈ N : u ∈W1,1(T; D−1,2
0,σ (BN)

)
(66)

with

∀ϕ ∈ D1,2
0,σ(BN) :

− 〈∂tu(t), ϕ〉 =
∫
R3
∇u(t) : ∇ϕ− λ∂1u(t) · ϕ +

(
u(t) · ∇u(t)

)
· ϕ− 〈 f (t), ϕ〉dx

(67)

for a.e. t ∈ T.

Proof. Let N ∈ N. For t ∈ T, we let g(t) ∈ D−1,2
0,σ (BN) denote the functional

〈g(t), ϕ〉 :=
∫
R3
∇u(t) : ∇ϕ− λ∂1u(t) · ϕ +

(
u(t) · ∇u(t)

)
· ϕ dx− 〈 f (t), ϕ〉.

We can estimate

|〈g(t), ϕ〉|

≤ ‖∇u(t)‖2‖∇ϕ‖2 + λ‖∇u(t)‖2‖ϕ‖2 +
∣∣∣∫

R3

(
u(t) · ∇ϕ

)
· u(t)dx

∣∣∣+ | f (t)|−1,2‖∇ϕ‖2

≤ c1
(
‖∇u(t)‖2 + ‖u(t)‖2

L4(BN) + | f (t)|−1,2
)
‖∇ϕ‖2

≤ c2
(
‖∇u(t)‖2 + ‖∇u(t)‖2

2 + | f (t)|−1,2
)
‖∇ϕ‖2,

with c2 = c2(N). It follows that g ∈ L1(T; D−1,2
0,σ (BN)

)
. Since u ∈ L2(T; D1,2

0,σ(R3)
)
, we

immediately obtain u ∈ L1(T; D−1,2
0,σ (BN)

)
. To show (66) and (67), we, therefore, only

need to verify −∂tu = g. For this purpose, we want to use, for arbitrary k ∈ Z and
ϕ ∈ D1,2

0,σ(BN), Φ(t, x) := ϕ(x) ei 2π
T kt as a test function in the weak formulation (13). Since

Φ(t, x) is not admissible as a test function, we first approximate ϕ ∈ D1,2
0,σ(BN) by a sequence

{ϕn}∞
n=1 ⊂ C∞

0,σ(BN) in the |·|1,2-norm. Using Φn(t, x) := ϕn(x) ei 2π
T kt as a test function

and subsequently letting n→ ∞, it is easy to verify that

i
2π

T k
∫
T

∫
R3

u(t, x) · ϕ(x)dx ei 2π
T kt dt

=
∫
T

( ∫
R3
∇u : ∇ϕ− λ∂1u · ϕ + (u · ∇u) · ϕ dx

)
ei 2π
T kt−〈 f , ϕ〉 ei 2π

T kt dt.
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We deduce that

i
2π

T k
∫
T

u(t) ei 2π
T kt dt =

∫
T

g(t) ei 2π
T kt dt

as identity in D−1,2
0,σ (BN). Since k ∈ Z is arbitrary, the injectivity of the Fourier transform

implies −∂tu = g.

From Lemma 2 and the embedding of W1,1(T; D−1,2
0,σ (BN)

)
in C

(
T; D−1,2

0,σ (BN)
)
, we

have, at this point, already established a continuity property of the solution from Theorem 2.
We can, however, improve on this property. For this purpose, we need the following lemma:

Lemma 3. Assume that u ∈ L∞(T; L2
σ(R3)

)
satisfies

∀N ∈ N : u ∈W1,1(T; D−1,2
0,σ (BN)

)
. (68)

Then there is a subset N ⊂ T of measure zero such that

∀ϕ ∈ D1,2
0,σ(R

3) ∀s, t ∈ T \ N : 〈u(t), ϕ〉 − 〈u(s), ϕ〉 =
∫ t

s
〈∂tu(τ), ϕ〉dτ (69)

and u ∈ C
(
T \ N ; L2

w(R3)3), where L2
w(R3)3 denotes the space L2(R3)3 endowed with the weak

topology.

Proof. It is well-known that for any function u ∈ W1,1(T; D−1,2
0,σ (BN)

)
there is a subset

NN ⊂ T of measure zero such that

∀s, t ∈ T \ NN : u(t)− u(s) =
∫ t

s
∂tu(τ)dτ (70)

as identity in D−1,2
0,σ (BN). It follows that u ∈ C

(
T \ NN ; D−1,2

0,σ (BN)
)
. We now put N :=⋃

N∈NNN . It is easy to deduce that (69) is a consequence of (70). We verify that u ∈
C
(
T \ N ; L2

w(R3)3). For this purpose, let h ∈ L2(R3)3 and consider u(t), which by assump-
tion lies in L2

σ(R3), as a linear functional on L2(R3)3. According to the Helmholtz–Weyl
decomposition (see for example [12], Theorem III.1.2), we can write h as h = H +∇p with
H ∈ L2

σ(R3) and p ∈W1,2
loc(R

3). Let {ϕn}∞
n=1 ⊂ C∞

0,σ(R3) with limn→∞ ϕn = H in L2(R3)3.
For any t ∈ T \ N and sequence {tm}∞

m=1 ⊂ T \ N with limm→∞ tm = t, we deduce∣∣〈u(tm), h〉 − 〈u(t), h〉
∣∣ = ∣∣〈u(tm), H〉 − 〈u(t), H〉

∣∣
≤
∣∣〈u(tm), H − ϕn〉

∣∣+ ∣∣〈u(tm)− u(t), ϕn〉
∣∣+ ∣∣〈u(t), ϕn − H〉

∣∣
≤ 2‖u‖L∞(T;L2(R3))‖H − ϕn‖2 + ‖u(tm)− u(t)‖D−1,2

0,σ (BN)
|ϕn|1,2

provided N is so large that supp ϕn ⊂ BN . For arbitrary ε > 0, we can now choose n
sufficiently large and, subsequently, utilize that u ∈ C

(
T \ NN ; D−1,2

0,σ (BN)
)

to deduce∣∣〈u(tm), h〉 − 〈u(t), h〉
∣∣ < ε

for sufficiently large m.

Finally, we can show that the solution u from Theorem 2 can in fact be modified
on the null set N in such a way that u becomes continuous on the whole torus. Since
u = Pu +P⊥u and Pu is time independent, if suffices to establish continuity only for P⊥u.
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Theorem 3. Let f ∈ L2(T; D−1,2
0 (R3)3) and λ ∈ R. The weak time-periodic solution u ∈

L2(T; D1,2
0,σ(R3)

)
from Theorem 2 can be modified on a set of measure zero such that

P⊥u ∈ C
(
T; L2

w(R3)3), (71)

where again L2
w(R3)3 denotes the space L2(R3)3 endowed with the weak topology.

Proof. Theorem 2 yields P⊥u ∈ L∞(T; L2
σ(R3)

)
. Thus, after possibly modifying P⊥u

on a set of measure zero, we may assume that K := {P⊥u(t) | t ∈ T} is a bounded
subset of L2

σ(R3). Consequently, by Alaoglu’s theorem, K is a compact subset of L2
w(R3)3.

By Lemma 2, P⊥u satisfies (68) and we can, thus, employ Lemma 3. We let N denote
the null set from Lemma 3 and consider some t ∈ N . Since N is a null set, there is a
sequence {tn}∞

n=1 ⊂ T \N with limn→∞ tn = t. The compactness of K implies the existence
of an element ut

⊥ ∈ L2
σ(R3) and a subsequence of {tn}∞

n=1, for simplicity still denoted
{tn}∞

n=1, such that limn→∞ P⊥u(tn) = ut
⊥ in L2

w(R3)3. Let {sm}∞
m=1 ⊂ T \ N be another

sequence with limm→∞ sm = t. We shall verify that also limm→∞ P⊥u(sm) = ut
⊥ in L2

w(R3)3.
Consider, for this purpose, an arbitrary h ∈ L2(R3)3, which by the Helmholtz–Weyl
decomposition can be decomposed as h = H +∇p with H ∈ L2

σ(R3) and p ∈ W1,2
loc(R

3).
Let {ϕk}∞

k=1 ⊂ C∞
0,σ(R3) with limk→∞ ϕk = H in L2(R3)3. We have

〈P⊥u(sm)− ut
⊥, h〉 = 〈P⊥u(sm)− ut

⊥, H〉
= 〈P⊥u(sm)− ut

⊥, H − ϕk〉
+ 〈P⊥u(sm)−P⊥u(tn), ϕk〉
+ 〈P⊥u(tn)− ut

⊥, ϕk〉.

(72)

Let ε > 0. Recalling (69) to estimate the second term on the right-hand side in (72), we
choose first k and then n so large that

|〈P⊥u(sm)− ut
⊥, h〉| < ε

for sufficiently large m. We conclude that limm→∞ P⊥u(sm) = ut
⊥ in L2

w(R3)3. We have
thereby identified ut

⊥ as the unique limit lims∈T\N , s→t P⊥u(s) in L2
w(R3)3. Consequently,

u⊥(t) :=

{
P⊥u(t) if t ∈ T \ N ,

ut
⊥ if t ∈ N

is well-defined. We verify that u⊥ ∈ C
(
T; L2

w(R3)3). Let t ∈ T, h ∈ L2(R3)3, and {tn}∞
n=1 ⊂

T with limn→∞ tn = t. If tn ∈ T \ N , put t̃n := tn. If tn ∈ N , we choose t̃n ∈ T \ N such
that

∣∣〈u⊥(tn)− u⊥(t̃n), h〉
∣∣ < 1

n . Then,∣∣〈u⊥(tn)− u⊥(t), h〉
∣∣ ≤ ∣∣〈u⊥(tn)− u⊥(t̃n), h〉

∣∣+ ∣∣〈u⊥(t̃n)− u⊥(t), h〉
∣∣→ 0 as n→ ∞.

Hence, u⊥ ∈ C
(
T; L2

w(R3)3). Since u⊥ is a modification of P⊥u on a null set, we conclude
the lemma.

Remark 6. It was originally shown by Hopf in [1] that the weak solution to the Navier–Stokes
initial-value problem established by Leray in [2] belongs to the space C

(
[0, T); L2

w(R3)3). The proof
of Theorem 3 essentially follows the proof in [1]; see also [17], Lemma 2.2.

5. Existence of a Pressure

We end by constructing a pressure term p associated to the weak solution from
Theorem 2. The existence of such a pressure term implies that the weak solution is, in
fact, a solution in a standard sense of distributions. It is easy to verify that a completely
analogous statement follows for the solution in Theorem 1.
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Two methods for constructing the pressure are given. The first method, presented
in Theorem 4 below, is very general. It requires no more regularity on the data than was
needed in Theorem 2 to show the existence of a weak solution. Moreover, it does not exploit
that (1) is a whole-space problem and can, thus, be easily adapted to more general domains.
It does, however, only produce a pressure with very little regularity in the time variable.

Theorem 4. Let f ∈ L2(T; D−1,2
0 (R3)3) and λ ∈ R. Let u ∈ L2(T; D1,2

0,σ(R3)
)

be a weak
solution to (1) that satisfies

Pu ∈ D1,2
0,σ(R

3), (73)

P⊥u ∈ L2(T; D1,2
0,σ(R

3)
)
∩ L∞(T; L2

σ(R3)
)
. (74)

Then there is a

p ∈ D′
(
T×R3) (75)

(see Remark 7 for the definition of the space D′
(
T×R3)) such that

∀Φ ∈ C∞
0 (T×R3)3 :∫

T

∫
R3
−u · ∂tΦ +∇u : ∇Φ− λ∂1u ·Φ + (u · ∇u) ·Φ dxdt =

∫
T
〈 f , Φ〉dt− 〈∇p, Φ〉.

(76)

Remark 7. We use D′
(
T×R3) to denote the dual space of D

(
T×R3), which is defined as the

vector space C∞
0
(
T×R3) equipped with the canonical inductive limit topology. In other words,

D′
(
T× R3) is the space of distributions on T× R3. For p ∈ D′

(
T× R3), the gradient ∇p

is defined in the standard distributional sense. We do not need specific properties of the space
D′
(
T×R3) as it is only used to characterize the pressure in (75).

Proof of Theorem 4. In the proof, we utilize the Fourier transform. The function spaces in
the following will, therefore, all be complexified. As a consequence, the pressure term p

that will be constructed may be a complex-valued distribution. It is obvious, however, that
the real part of p will also satisfy (76).

We proceed with the proof. Put v := Pu and w := P⊥u. The fact that u is a weak
solution to (1) implies that w satisfies

∀Φ ∈ C∞
0,σ(T×R3) :∫

T

∫
R3
−w · ∂tΦ +∇w : ∇Φ− λ∂1w ·Φ

+

(
P⊥[w · ∇w] + w · ∇v + v · ∇w

)
·Φ dxdt =

∫
T
〈P⊥ f , Φ〉dt

(77)

and v satisfies

∀ϕ ∈ C∞
0,σ(R3) :∫

R3
∇v : ∇ϕ− λ∂1v · ϕ +

(
v · ∇v + P

[
w · ∇w

])
· ϕ dxdt = 〈P f , ϕ〉.

(78)
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We shall construct a pressure term for the weak formulations (77) and (78) separately. We
start with (77). Observe that∫

T
|w · ∇w|−1,2 dt =

∫
T

sup
ϕ∈C∞

0 (R3)3

|ϕ|1,2≤1

∣∣∣∫
R3

(
w · ∇w

)
· ϕ dx

∣∣∣dt

=
∫
T

sup
ϕ∈C∞

0 (R3)3

|ϕ|1,2≤1

∣∣∣∫
R3

w⊗ w : ∇ϕ dx
∣∣∣dt

≤ c1

∫
T
‖w(t)‖2

4 dt

≤ c2

∫
T
‖w(t)‖

1
2
2 ‖∇w(t)‖

3
2
2 dt

≤ c3 ‖w‖
1
2
L∞(T;L2(R3))

‖w‖L2(T;D1,2
0,σ(R3))

,

where the second-last inequality is due to Lemma 1. It follows that

w · ∇w ∈ L1(T; D−1,2
0 (R3)3). (79)

By a similar computation we find that∫
T
|w · ∇v|−1,2 dt =

∫
T

sup
ϕ∈C∞

0 (R3)3

|ϕ|1,2≤1

∣∣∣∫
R3

v⊗ w : ∇ϕ dx
∣∣∣dt

≤ c4

∫
T
‖v‖6 ‖w(t)‖3 dt

≤ c5 ‖∇v‖2

∫
T
‖w(t)‖

1
2
2 ‖∇w(t)‖

1
2
2 dt

≤ c6 |v|1,2 ‖w‖
1
2
L∞(T;L2(R3))

‖w‖L2(T;D1,2
0,σ(R3))

,

and thus

w · ∇v ∈ L1(T; D−1,2
0 (R3)3). (80)

Analogously, we deduce

v · ∇w ∈ L1(T; D−1,2
0 (R3)3). (81)

We now expand u ∈ L2(T; D1,2
0,σ(R3)

)
in a Fourier series

{uk}k∈Z ∈ `2(Z; D1,2
0,σ(R

3)
)
. (82)

Observe that v = u0. Consequently, {uk}k 6=0 is the Fourier series of w, whence

{uk}k 6=0 ∈ `2(Z; L2(R3)3). (83)

We further put

H := P⊥
[
u · ∇u

]
= P⊥[w · ∇w] + w · ∇v + v · ∇w.

The definition of H requires that we identify u · ∇u as an element of a function space
on which P⊥ is well-defined. For this purpose, we may, for example, choose the space
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L1(T; W−1,2
0 (R3)3). In view of (79)–(81), H ∈ L1(T; D−1,2

0 (R3)3). We can therefore expand
H into a Fourier series

{Hk}k∈Z ∈ `∞(Z; D−1,2
0 (R3)3). (84)

Observe that H0 = FT[H](0) = PH = 0. Finally, we also expand f into a Fourier series

{ fk}k∈Z ∈ `2(Z; D−1,2
0 (R3)3). (85)

For k ∈ Z \ {0} and N ∈ N, we define

LN
k : W1,2

0 (BN)
3 → C,

LN
k (ϕ) :=

∫
R3
−ik

2π

T u−k · ϕ +∇u−k : ∇ϕ− λ∂1u−k · ϕ dx + 〈H−k, ϕ〉 − 〈 f−k, ϕ〉.
(86)

Recalling that uk = FT[w](k) and, thus, uk ∈ L2(R3)3, it is easy to see that LN
k is a

bounded linear functional on W1,2
0 (BN)

3. Consider now an element ϕ ∈ C∞
0,σ(R3). The

function Φ(t, x) := ϕ(x) e
2π
T kt is then admissible as a test function in (77), which implies

that LN
k (ϕ) = 0. Thus, LN

k vanishes on C∞
0,σ(R3). By a well-known theorem, see for

example [12] (Corollary III.5.1), which easily extends by linearity to complexified vector
spaces, it follows that there is pN

k ∈ L2(BN) such that LN
k = ∇pN

k ; that is,

∀ϕ ∈ C∞
0 (BN)

3 : LN
k (ϕ) = −

∫
R3

pN
k div ϕ dx. (87)

Clearly, pN
k can be chosen such that ∫

BN

pN
k dx = 0.

Consequently—see for example [12] (Theorem III.3.1)—there is a ϕ ∈W1,2
0 (BN)

3 with the
properties div ϕ = −pN

k and |ϕ|1,2 ≤ c7‖pN
k ‖2. Inserting this particular ϕ in (87), we find

that ‖pN
k ‖

2
2 = LN

k (ϕ). It follows that

‖pN
k ‖2 ≤ c8

(
|k|‖u−k‖2 + ‖∇u−k‖2 + |H−k|−1,2 + | f−k|−1,2

)
with c8 = c8(N). Recalling (82)–(85), we see that

{1
k
pN

k
}

k 6=0 ∈ `2(Z; L2(BN)
)
.

We can, thus, define

PN := −i
T
2π

F−1
T

[{1
k
pN

k
}

k 6=0

]
∈ L2(T; L2(BN)

)
. (88)

Consider now N, M ∈ N with N < M. For any ϕ ∈ C∞
0 (BN)

3, it follows from (87)
that 〈PN(·), div ϕ〉L2(BN) = 〈PM(·), div ϕ〉L2(BN) as an equality in L2(T;C). Consequently,

∇PN(t) = ∇PM(t) in D−1,2
0 (BN)

3 for almost all t ∈ T. We, therefore, find that PN(t) =
PM(t) + c(N, M, t) in L2(BN) for some function c(N, M, ·) ∈ L2(T). Letting

P̃1(t) := P1(t), P̃N+1(t) := PN+1(t) + c(N, N + 1, t) +
(
P̃N(t)−PN(t)

)
,
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we inductively obtain a sequence {P̃N}∞
N=1 with P̃M = P̃N in L2(T; L2(BN)

)
for M ≥ N.

At this point, we can define an element in P ∈ L2(T; L2
loc(R

3)
)

via P(t, x) := P̃N(t, x) if
|x| ≤ N. We can consider P as an element in D′

(
T×R3) and put

π := ∂tP ∈ D′
(
T×R3). (89)

We now verify that π, as defined above, is a valid pressure term corresponding to the weak
formulation (77). For this purpose, we consider Φ ∈ C∞

0 (T×R3)3 and observe that

〈∇π, Φ〉 = 〈P, ∂t div Φ〉 =
∫
T

∫
R3

P(t, x) · ∂t div Φ(t, x)dxdt

=
∫
T

∫
R3

PN(t, x) · ∂t div Φ(t, x)dxdt

for N ∈ N with supp(Φ) ⊂ BN ×T. Recalling (88), it follows that

〈∇π, Φ〉 = −i
T
2π

∫
T

〈
F−1

T

[{1
k
pN

k
}

k 6=0

]
, ∂t div Φ(t, ·)

〉
L2(BN)

dt.

Recall that, in this proof, we regard L2(BN) as a vector space over C, which is the reason
the complex conjugation of ∂t div Φ(t, x) appears in the equation above. By Parseval’s
identity, we deduce that

〈∇π, Φ〉 = ∑
k∈Z\{0}

−i
T
2π

〈1
k
pN

k ,−i
2π

T k div Φk
〉

L2(BN)
,

where {Φk}k∈Z ∈ `2(Z; L2(R3)3) is the Fourier transform FT
[
Φ
]

of Φ with respect to the
t-variable. Clearly, Φk enjoys the same regularity as Φ with respect to the x-variable. In
other words, Φk ∈ C∞

0 (R3)3. Recalling (87), we, therefore, see that

〈∇π, Φ〉 = ∑
k∈Z\{0}

〈
pN

k ,−div Φk
〉

L2(BN)

= ∑
k∈Z\{0}

LN
k (Φk)

= ∑
k∈Z\{0}

∫
R3
−ik

2π

T u−k ·Φk +∇u−k : ∇Φk − λ∂1u−k ·Φk dx

+ 〈H−k, Φk〉 − 〈 f−k, Φk〉.

(90)

A Parseval-type identity holds for all terms on the right-hand side above. For example,
utilizing Fubini’s theorem and the fact that the Fourier series ∑k∈Z\{0} Φk ei 2π

T kt converges

pointwise for each t ∈ T towards P⊥Φ in the topology of D1,2
0 (R3), we obtain

∑
k∈Z\{0}

〈H−k, Φk〉 = ∑
k∈Z\{0}

〈 ∫
T

H(t) ei 2π
T kt dt, Φk

〉

=
∫
T

〈
H(t), ∑

k∈Z\{0}
Φk ei 2π

T kt
〉

dt =
∫
T
〈H(t),P⊥Φ〉dt.

Recalling that PH = 0, the above identity implies

∑
k∈Z\{0}

〈H−k, Φk〉 =
∫
T
〈H(t), Φ〉dt

=
∫
T

∫
R3

(
P⊥[w · ∇w] + w · ∇v + v · ∇w

)
·Φ(t, x)dxdt.
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Applying a similar computation in the other terms on the right-hand side in (90), we obtain

〈∇π, Φ〉 =
∫
T

∫
R3
−w · ∂tΦ +∇w : ∇Φ− λ∂1w ·Φ

+

(
P⊥[w · ∇w] + w · ∇v + v · ∇w

)
·Φ dxdt−

∫
T
〈P⊥ f , Φ〉dt.

(91)

We have, thus, constructed in π a pressure term for the weak formulation (77). The existence
of a pressure term for the weak formulation (78) follows a by standard argument. More
specifically, we define on the real-valued vector space C∞

0 (R3)3 the linear functional

L : C∞
0 (R3)3 → R,

L(ϕ) :=
∫
R3
∇v : ∇ϕ− λ∂1v · ϕ +

(
v · ∇v + P

[
w · ∇w

])
· ϕ dxdt− 〈P f , ϕ〉.

In view of (73) and (79), it is standard to show for each bounded domain Ω ⊂ R3 that the
restriction L|C∞

0 (Ω)3 extends to a bounded linear functional on D1,2
0 (Ω)3. Consequently—

see for example [12] (Corollary III.5.1)—there is p ∈ L2
loc(R

3) such that L = ∇p in the sense
of distributions. We can trivially extend p to a time-independent element of L2

loc(T×R3).
Then ∇p ∈ D′(T×R3)3, and for each Φ ∈ C∞

0 (T×R3)3 we have 〈∇p,P⊥Φ〉 = 0. Thus,

〈∇p, Φ〉 = 〈∇p,PΦ〉

=
∫
R3
∇v : ∇PΦ− λ∂1v · PΦ +

(
v · ∇v + P

[
w · ∇w

])
· PΦ dxdt− 〈P f ,PΦ〉.

(92)

We finally put

p := π + p

and observe for arbitrary Φ ∈ C∞
0 (T×R3)3, by recalling u = v + w and (91)–(92), that∫

T

∫
R3
−u · ∂tΦ +∇u : ∇Φ− λ∂1u ·Φ + (u · ∇u) ·Φ dxdt−

∫
T
〈 f , Φ〉dt

=
∫
T

∫
R3
−(v + w) · ∂tΦ + (∇v +∇w) : ∇Φ− λ(∂1v + ∂1w) ·Φ

+
(
(v + w) · ∇(v + w)

)
·Φ dxdt

−
∫
T
〈P⊥ f , Φ〉dt−

∫
T
〈P f , Φ〉dt

=
∫
T

∫
R3
−w · ∂tΦ +∇w : ∇Φ− λ∂1w ·Φ

+

(
P⊥[w · ∇w] + w · ∇v + v · ∇w

)
·Φ dxdt−

∫
T
〈P⊥ f , Φ〉dt

+
∫
R3
∇v : ∇PΦ− λ∂1v · PΦ +

(
v · ∇v + P

[
w · ∇w

])
· PΦ dxdt− 〈P f ,PΦ〉

= 〈∇π, Φ〉+ 〈∇p, Φ〉
= 〈∇p, Φ〉.

We have, thus, established (76) and, thereby, the theorem.
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