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1. Introduction to Symmetry and Chirality

Although symmetry and chirality have been known about for millennia, in the arts,
architecture, and elsewhere they have recently received a mathematical definition estab-
lishing consensual terminology. It is necessary to mention several important contributions.

According to science historian Joseph Gal [1], Pasteur discovered molecular chirality
in 1848, but used the term dissymmetry (a detailed history is given in Gal’s paper). However,
dissymmetry should not be confused with asymmetry, which means a lack of both direct and
indirect symmetry.

The terms chiral and chirality were introduced later, in 1894, by Lord Kelvin [2,3], and
dissymmetry is now obsolete. Quoting Lord Kelvin: I call any geometrical figure, or group of
points, chiral, and say that it has chirality if its image in a plane mirror, ideally realized, cannot be
brought to coincide with itself. This definition is clear, but it is not mathematical, in a modern
sense. It was thought for Euclidean spaces rather than for the spacetime, but it is still
widely used for teaching.

The term chirality was reintroduced in 1946 by Eddington [4], who wrote that the
term was introduced by Kelvin. He also used the terms right-handed and left-handed, and
that seems to have been at the basis of the use of these terms in quantum field theory and
related fields.

Symmetry has been studied extensively in geometric algebra [5,6]. Chirality is inti-
mately related to symmetry. A mathematical definition of symmetry can be found in [7]. It
works in many cases, such as for geometric figures (with or without colors, as encountered
in arts), for functions, probability distributions, graphs, matrices, strings, etc. This defini-
tion assumed the existence of a metric, but in fact, none of the axioms defining a true metric
was necessary to define isometries. Therefore, it works in geometric algebra, for which
intervals are preserved, rather than distances. In particular, it permits definition of what
can be qualified as symmetric or not, as recalled in Definitions 1 and 2. Then, Definition 4
of chirality works in geometric algebra.

Definition 1. An object is a function with its input argument in a metric space [7].

The space of the returned values should be defined by the user. By extension, we retain
here the term object when the metric is not a true one, as it happens in geometric algebra.
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Definition 1 is pertinent in the case of the spacetime, where a physical quantity, called a
field, receives a value at each point of the spacetime. Such a field should not be confused
with a mathematical field, which is an algebraic structure. For example, in physics, a scalar
field is a field returning a scalar value, while in mathematics, a field of scalars is a set over
which is defined a vector space. Then, we retrieve the well-known classical definitions.

Definition 2. An object is symmetric when it is invariant under an isometry which is not the iden-
tity [7].

In physics, Definition 2 corresponds to global symmetry. Local symmetry and gauge
symmetry are other concepts commonly encountered in physics [8]. Nevertheless, supply-
ing them a mathematical definition working outside physics does not fall in the scope of
this paper.

In the Euclidean case, rotations are classified as direct isometries, while a reflection
and the compositions of rotations with an odd number of reflections are classified as
indirect isometries.

The definition of direct and indirect symmetries which is retained here in Definition 3,
is not the classical one related to orientation preserving operators. It is a more general
one [9], which recovers the classical one in the case of Euclidean spaces. It does not require
the existence of a vector space. We recall it below.

Definition 3. (a) An isometry is direct when it can be expressed as a product of squared isometries,
a squared isometry being the composition of an isometry with itself.
(b) An isometry which is not direct is an indirect isometry.

Then, we retrieve the classical definition of chirality.

Definition 4. An object is achiral when it is invariant under an indirect isometry. If no indirect
isometry leaves an object invariant, it is chiral.

In this paper, we show that Definition 3 works in geometric algebra, and that the
isometries of the orthogonal group are classified accordingly in Section 4.5. The main result
is given in Theorem 13.

2. Basic Concepts

The basics of geometric algebra can be found in [10–12]. Here we consider a vector
space V over a field F. In all what follows, we set F = R. The dimension n of V is finite.
The space V is equipped with a non-degenerate quadratic form Q, which is not required to
be positive definite. The signature of Q is (p, q, 0), with p + q = n. In this section, unless
otherwise stated, u, v, x and y are vectors of V.

The quadratic space (V, Q) is endowed with the symmetric bilinear form:

β(u, v) =
1
2
[
Q(u + v)−Q(u)−Q(v)

]
(1)

In the three next subsections, we just list known facts and results that are needed
further in the text.

2.1. The Geometric Product

• For any vector u, Q(u) = β(u, u).
• The inner product between two vectors u and v is: u · v = β(u, v).
• The subspace of isotropic vectors can be non-empty.

It happens for the Minkowski space, where isotropic vectors are called lightlike.
• The interval between two vectors u and v is: S2

u,v = Q(u− v) = (u− v) · (u− v).
The interval Su,v is defined by its square, but this square can be negative.



Mathematics 2021, 9, 1521 3 of 12

• The exterior product (or wedge product) of u and v is denoted u ∧ v.
• The geometric product of u and v is: uv = u · v + u ∧ v.
• The geometric product can be extended to an arbitrary number of vectors.

It is associative. It is distributive over the addition of the algebra.
• The symmetric part u · v = v · u of the geometric product uv is a scalar.
• Its antisymmetric part u ∧ v = −v ∧ u, is a bivector.

2.2. Invertible Vectors

• For any vector u, u ∧ u = 0, and uu = u · u.
• For any vectors u and v, u2v2 = (u · v)2 − (u ∧ v)2.
• Two vectors u and v are said to be orthogonal when u · v = 0.
• A unit vector u is such that u · u = ±1.
• The inverse of a vector v, v · v 6= 0 is: v−1 = 1

v·v v. It is such that vv−1 = v−1v = 1.
Isotropic vectors cannot be scaled to unit and cannot be inverted.

2.3. Projections and Reflections

• The projection x‖v of a vector x onto an invertible vector v is: x‖v = (x · v)v−1.
• The rejection part of x is: x⊥v = x− x‖v. Thus, x⊥v = (x ∧ v)v−1.
• x⊥v and v are orthogonal because x⊥v · v = 0; x · x = x‖v · x‖v + x⊥v · x⊥v.
• The reflection σv is an operator which transforms a vector x into its reflected image

through the hyperplane orthogonal to v: σv(x) = −x‖v + x⊥v.
• It is deduced the following expression of σv(x):

σv(x) = −vxv−1 (2)

In the literature, the opposite of the right side of Equation (2) is sometimes called the
sandwiching product.

• A reflection is linear, involutive, and bijective.
• The reflection σv is invariant when v is multiplied by a non-null constant λ: σv = σλv.

Therefore, Equation (2) can be expressed with the unit vector u = 1
|v·v|1/2 v, which is such

that u · u = sgn(v · v) = ±1.

σu(x) = −εuuxu, εu = sgn(u · u) (3)

Lemma 1. Given an invertible vector v, the reflection σv preserves intervals.

Proof. Consider any vector x; σv(x) ·σv(x) = vxv−1 · vxv−1, i.e., σv(x) ·σv(x) = vxv−1vxv−1.
Then, xx = x · x, and it comes that σv(x) · σv(x) = x · x. Similarly, for any two vectors x
and y, σv(x− y) · σv(x− y) = (x− y) · (x− y).

Lemma 2. Given an invertible vector v, the reflection σv preserves the inner product.

Proof. Consider any two vectors x and y. Using Equation (1), express σv(x) · σv(y) as a
linear combination of squared vectors, then apply Lemma 1.

Theorem 1. The composition of any number of reflections is a bijection of V onto V preserving the
inner product.

Proof. Apply Lemma 2 and remember that a reflection is a bijection of V onto V.

According to [10], a product of vectors is a called a versor, and it is called a k-versor
when it is factorized into a product of k vectors. A scalar is a 0-versor. When a versor S
is a product of k vectors, the product expressed in reverse order is denoted S†. An even
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versor S which is such that S†S = +1 is called a rotor. A rotation R is a product of an even
number of reflections which is so that R(x) = S†xS, where S is a rotor.

Reflections and compositions of reflections are operators preserving intervals. It is
why we call these operators isometries, even if the quadratic space is not a true metric
space. Reflections generate a group by their composition, called the real orthogonal group
O(p, q;R), denoted here O(p, q), with p + q = n. When Q is positive definite, q = 0,
and O(p, q) is denoted O(n). Translations are also called isometries because, visibly,
they preserve intervals. Translations are affine transformations, they are not members of
O(p, q). However, a modern treatment of translations exists in geometric algebra [5,6]. The
Euclidean group is a semidirect product of O(n) and the group of translations. According
to Cartan-Dieudonné theorem, any element of the orthogonal group can be generated by at
most n reflections: see [13], or Theorem 3.20 in [14].

Some other classical results are given in the next section. In all subsequent sections,
we neglect translations. Thus, for convenience and by abuse of language, we use the word
isometry as being synonym of a member of the orthogonal group. As for the geometric
product, we do not use any symbol to denote products or compositions of isometries. That
will raise no ambiguity because it will be clear from the context.

3. Basis Vectors, Commutation, Anticommutation and Pseudoscalars
3.1. Basis Vectors

The bilinear form β is defined from the non-degenerate quadratic form Q in Equation (1),
which is always expressible with a n by n nonsingular square matrix B. This latter can be
considered to be symmetric, without loss of generality (Q is invariant when B is replaced
by its transposed Bt or by (B + Bt)/2). The matrix B represents a linear automorphism B
of V onto V. This latter has n real eigenvalues and n eigenvectors. For convenience, we
assume that these n eigenvalues are ordered in non-increasing order, so that the p first
eigenvalues are positive and the q = n− p last eigenvalues are negative.

The quadratic space (V, Q) has n basis vectors ei, 1 ≤ i ≤ n. These latter can be
chosen as the eigenvectors associated with the eigenvalues of the linear automorphism B.
It follows that ei · ej = β(ei, ej) = 0 when i 6= j. Then, the n eigenvectors are normalized:
ei · ei = +1 for 1 ≤ i ≤ p, and ei · ei = −1 for (p + 1) ≤ i ≤ n.

3.2. Commutation and Anticommutation

Theorem 2. The product of any two vectors u and v cannot commute when (u · u)(v · v) < 0.
The product of two invertible vectors commute if and only if they are colinear.

Proof. Let u and v be two vectors of V. If u and v are colinear, uv = vu.
Conversely, we assume that vu = uv. Thus, u ∧ v = 0, uv = u · v, and uvvu =

(u · u)(v · v) = (u · v)2.
It follows that the quantity (u · u)(v · v) cannot be negative.
We assume that u and v are invertible and that vu = uv. Then, v = uvu−1, i.e.,

v = u u·v
u·u .

Corollary 1. The reflections σu and σv, respectively along the invertible vectors u and v, are equal
if and only u and v are colinear.

Proof. Obviously, the colinearity of u and v implies that σu = σv.
Conversely, if we assume that σu = σv, we have both σu(v) = −uvu−1 and σv(v) = −v,

from which uvu−1 = v, i.e., uv = vu = u · v. Apply Theorem 2.

Any two distinct basis vectors ei and ej are orthogonal. We deduce that eiej = −ejei.
This is the anticommutation rule, a cornerstone in the theory of Clifford algebras.

Theorem 3. The product of two distinct reflections σu and σv, respectively along the invertible
vectors u and v, is commutative if and only if u and v are othogonal. If so, it is involutive.



Mathematics 2021, 9, 1521 5 of 12

Proof. We define εu = sgn(u · u) and εv = sgn(v · v), and we assume that u and v are unit
vectors, without loss of generality. From Equation (3), we obtain that vuxuv = uvxvu for
any vector x. We deduce that 4(u · v)x(u ∧ v) = (uv + vu)x(uv− vu) = uvxuv− vuxvu.
Setting x = u, we obtain (u · v)u(u ∧ v) = 0. Thus, either u · v = 0 or u(u ∧ v) = 0.
However, in this latter situation, we would have u(uv) = u(u · v), meaning that u and v
are colinear, and that σu = σv due to Corollary 1.

Conversely, if u · v = 0, uv = −vu, vuxuv = uvxvu, and σvσu = σuσv.
If σvσu is commutative, it is involutive because (σvσu)2 = (σvσu)(σuσv).

3.3. Pseudoscalars

Lemma 3. The wedge product of m vectors of V, v1 ∧ . . . ∧ vm, is null when one of these vectors is
linearly dependent on the other ones.

Proof. Express each of the m vectors with the basis vectors and develop the product. Each
term contains twice one of the basis vectors, so, all terms are null.

Definition 5. We define the following n-blade, of grade n:
ω = e1e2 . . . en, i.e., ω = e1 ∧ e2 ∧ . . . ∧ en.

Theorem 4. The following properties of ω stand:
(a) For any v ∈ V, ω ∧ v = 0, ω† ∧ v = 0; wv = (−1)n−1vw, w†v = (−1)n−1vw†.
(b) When n is odd, ω commutes with any multivector, and when n is even, ω commutes with

even grade multivectors and it anticommutes with odd grade multivectors. Same conclusions for
ω†.

(c) ω2 = (−1)q+ n(n−1)
2 ; (ω†)2 = (−1)q+ n(n−1)

2 ; ω† = (−1)
n(n−1)

2 ω; ω†ω = ωω† =
(−1)q.

(d) ω and ω† are pseudoscalars.

Proof. (a) v is linearly dependent on the n basis vectors: apply Lemma 3.
(a)–(c) Apply the anticommutation rule; ωei = (−1)n−1eiω, and ω†ei = (−1)n−1eiω

†,
1 ≤ i ≤ n.

(d) ω is a pseudoscalar, but not a scalar, because its sign changes under a sign change
of anyone of the basis vectors. Similarly, ω† is a pseudoscalar.

4. Direct and Indirect Isometries

Here, we retain Definition 3 as the general definition of direct and indirect isometries
(see Section 1). The subset of O(p, q) containing the direct isometries is denoted OD(p, q).
It is not empty because it contains the identity. The subset of O(p, q) containing the indirect
isometries is denoted OI(p, q). The members of the orthogonal group can be classified as
direct or indirect, as shown further.

4.1. Case of a Single Reflection

Theorem 5. A single reflection cannot be decomposed into an even number of reflections.

Proof. The proof is immediate in the case of Euclidean spaces, but it is recalled that the
meaning of indirect isometries is the one of Definition 3. We consider a reflection σu along
an invertible vector u. We assume that σu is a product of 2m reflections, m ≥ 1.

Let σvi be these reflections, 1 ≤ i ≤ 2m, each σvi being a reflection along the invertible
vector vi.

The image of each basis vector ei, 1 ≤ i ≤ n, is: σu(ei) = (−1)2m(v2m . . . v1)ei
(v−1

1 . . . v−1
2m).

Then, the product Π of the n images is: Π = σu(e1)...σu(en) = (v2m . . . v1)ω
(v−1

1 . . . v−1
2m), where ω is the pseudoscalar introduced in Section 3.3. Discarding if n

is even or odd, from Theorem 4b, ω commutes with any even grade multivector, and thus
it commutes with any product of an even number of vectors because such product is a
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linear combination of even grade multivectors. Therefore, the product of these n images is
Π = ω.

However, the product of the n images should be: Π = (−1)n(ue1u−1) . . . (uenu−1),
i.e., Π = (−1)n(uωu−1). From Theorem 4b, ω commutes with u when n is odd, and
ω anticommutes with u when n is even. In both cases, Π = −ω, a contradiction (the
pseudoscalar ω is not null because ω4 = 1).

Corollary 2. A single reflection is an indirect isometry.

Proof. A product of squared isometries is the product of an even number of isometries.
Then, apply Theorem 5.

Corollary 3. The set OI(p, q) is not empty: it contains at least the single reflections.
When n = 1, all vectors are colinear, OI(1, 0) and OI(0, 1) contains only one reflection each.

4.2. Square Root of a Rotation

Lemma 4. Let u and v be two unit vectors of V, so that u · u = v · v. Either u + v or u− v is
invertible. Both can be invertible.

Proof. We define εu = u · u and εv = v · v. We assume that εu = εv and we assume
that both (u + v) · (u + v) = 0 and (u− v) · (u− v) = 0. Then, εu + εv + 2u · v = 0 and
εu + εv − 2u · v = 0. By summation, εu + εv = 0, a contradiction.

Lemma 5. Let σu and σv be the reflections respectively associated with the invertible unit vectors
u and v. When u · u and v · v have the same sign:

• (a) If (u + v) · (u + v) 6= 0, the operators R1 = σ(u+v)σu and R2 = σvσ(u+v) are equal.
• (b) If (u− v) · (u− v) 6= 0, the operators R3 = σ(u−v)σu and R4 = σvσ(u−v) are equal.

Proof. We define εu = sgn(u · u) and εv = sgn(v · v).
• (a): (u + v) · (u + v) 6= 0. The reflected images x1 of a vector x by R1 and x2 by R2 are:

x1 = εu
(u+v)·(u+v) (u + v)uxu(u + v), and x2 = εv

(u+v)·(u+v)v(u + v)x(u + v)v.

[(u + v) · (u + v)](x1 − x2) = (u + v)uxu(u + v)− v(u + v)x(u + v)v.

[(u + v) · (u + v)](x1 − x2)=(εu − εv)(x + vuxuv), then R1(x)=R2(x) when εu = εv.
• (b): (u− v) · (u− v) 6= 0. Replacing u + v by u− v, in case (a), we obtain:

[(u− v) · (u− v)](x1 − x2)=(εu − εv)(x + vuxuv), then R3(x)=R4(x) when εu = εv.

Theorem 6. Let σvσu be the composition of the reflections σu and σv, respectively associated with
the unit vectors u and v. When sgn(u · u) = sgn(v · v), σvσu is a rotation, and it can be written
as the square of an isometry. It is a direct isometry.

Proof. [σvσu](x) = εuεvvuxuv. It is assumed that εu = sgn(u · u) and εv = sgn(v · v)
are equal.

(a) We assume that (u + v) · (u + v) 6= 0.
From Lemma 5a, R1 = σ(u+v)σu and R2 = σvσ(u+v) are equal, thus R2R1 is a square.

[R2R1](x) = εuεv
[(u+v)·(u+v)]2 v(u + v)

[
(u + v)uxu(u + v)

]
(u + v)v = εuεvvuxuv.

Thus, for any vector x, [σvσu](x) = [R2R1](x), therefore σvσu is a square.
(b) We assume that (u− v) · (u− v) 6= 0.
The proof is the same as in case (a), using Lemma 5b rather than Lemma 5a:

R3 = σ(u−v)σu and R4 = σvσ(u−v) are equal, R3R4 is a square, and σvσu is a square.
From Lemma 4, necessarily either case (a) or case (b) occurs, therefore the rotation

σvσu is a square. According to Definition 3, it is a direct isometry.



Mathematics 2021, 9, 1521 7 of 12

In the Euclidean case, Theorem 6 means that a rotation in the plane containing u and
v is the product of two equal rotations of half the angle defined by u and v. Since the sense
of neither u nor v is meaningful, two supplementary angles are considered.

Corollary 4. A product of rotations is a rotation, and it is a direct isometry.

Proof. Apply Theorem 6, or see this corollary as a consequence of Theorem 1 in [9]: a
product of direct isometries is a direct isometry.

In the case of R1,3, which is used to modelize the spacetime in special relativity, the
vectors with a positive square are called timelike, and the vectors with a negative square
are called spacelike. and the vectors with a null square are called lightlike. In Theorem 6,
the case where u ∈ V− and v ∈ V− correspond to spatial rotations. The case where the
rotation is in a plane defined by one timelike vector and one spacelike vector is a boost, and
corresponds to a hyperbolic rotation [15]. Other cases targeted by Theorem 6 correspond
to compositions of rotations and boosts. Thus, boosts are direct isometries, as mentioned
in [16].

4.3. Full Reflection and Reversal Operators

Definition 6. We denote by σei the reflection along the basis vector ei, 1 ≤ i ≤ n, and we define
the full reflection as the product: σω = σen σen−1 . . . σe1 .

Theorem 7. (a) The full reflection is an involution which transforms any vector of V into its
opposite. (b) It commutes with any isometry of O(p, q).

Proof. (a) For any x ∈ V, σω(x) = (−1)nω†xω(−1)q, where ω is the pseudoscalar defined
in Section 3.3. Applying Theorem 4b,c, it comes that σω(x) = −x. Thus, σω is an involution.

(b) Let σu(x) = −uxuεu be the image of x by the reflection along a unit vector u, with
εu = u2.

We have σω(x)σu(x) = σu(x)σω(x) because w†(uxu)w = u(w†xw)u (see Theorem 4b).
Then, any isometry of O(p, q) being a product of reflections, it commutes with σω .

Theorem 8. When n is odd, σω is an indirect isometry.

Proof. The proof is immediate in the case of Euclidean spaces, but it is recalled that the
meaning of indirect isometries is the one of Definition 3. We assume that σω is a product
of 2m reflections, m ≥ 1. Let σvi be these reflections, 1 ≤ i ≤ 2m, each σvi being a
reflection along the invertible vector vi. The image of each basis vector ei, 1 ≤ i ≤ n,
is: σω(ei) = (−1)2m(v2m . . . v1)ei(v−1

1 . . . v−1
2m). Then, the product Π of the n images is:

Π = σω(e1)...σω(en) = (v2m . . . v1)ω(v−1
1 . . . v−1

2m). Discarding if n is even or odd, from
Theorem 4b, ω commutes with any even grade multivector, and thus it commutes with
any product of an even number of vectors because such product is a linear combination of
even grade multivectors. Therefore, the product of these n images is Π = ω. However, this
product should be: Π = (−e1) . . . (−en) = (−1)nω, a contradiction when n is odd.

Theorem 9. Assuming that the signature of the quadratic form is such that p ≥ 1 and q ≥ 1, the
isometry Sp,p+1 = σep+1 σep = σep σep+1 , is an involution, and it is an indirect isometry.

Proof. When p = 0 or q = 0, Sp,p+1 does not exist, so we assume that p ≥ 1 and q ≥ 1.
From Theorem 3, σep σep+1 = σep+1 σep , and Sp,p+1 is involutive.
(a) Case where p and q are odd (thus, p− 1, q− 1, and n, are even).
The full reflection is written: σω = (σen σen−1) . . . (σep+3 σep+2)Sp,p+1 (σep−1 σep−2) . . .

(σe2 σe1).
In this product, the reflections are sequentially grouped into n/2 pairs. Except Sp,p+1,

these pairs of reflections generate rotations because their two supporting basis vectors
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have their squares with the same sign (see Theorem 6). It follows that σω is a product of
a rotation by Sp,p+1 and by another rotation. If Sp,p+1 would be a product of squares, σω

would also be a product of squares, a contradiction (Theorem 8), thus Sp,p+1 is an indirect
isometry.

(b) Case where p is odd and q is even.
We consider V as a subspace of a larger space, of odd dimensionality, with a quadratic

form of signature (p, q + 1, 0), so that there is one more unit basis vector of negative square,
en+1. From part (a) of the proof, Sp,p+1 cannot be written as a product of squares. Thus,
Sp,p+1 cannot be written as a product of squares in V: it is an indirect isometry.

(c) Case where p is even and q is odd. The proof is similar to part (b), with a quadratic
form of signature (p + 1, q, 0).

(d) Case where p and q are even. The proof is similar to parts (b) and (c), with a
quadratic form of signature (p + 1, q + 1, 0).

Theorem 10. When n is even:
(a) When p and q are even, σω is a direct isometry.
(b) When p and q are odd, σω is an indirect isometry.

Proof. It is recalled that the meaning of indirect isometries is the one of Definition 3.
(a) When p and q are even, σω = (σen σen−1) . . . (σep+2 σep+1) (σep σep−1) . . . (σe2 σe1).
In this product, the reflections are sequentially grouped into n/2 pairs, so that each of

these pairs of reflections generates a rotation because their two supporting basis vectors
have their squares with the same sign (see Theorem 6). It follows that σω is a product of
rotations, and as such it can be written as a product of squares.

(b) When p and q are odd, n is even. As in part (a) of the proof of Theorem 9,
we have σω = (σen σen−1) . . . (σep+3 σep+2)Sp,p+1 (σep−1 σep−2) . . . (σe2 σe1), where Sp,p+1 is an
indirect isometry and the (n/2)−1 other pairs of reflections generate rotations. If σω would
be a product of squares, we could write Sp,p+1 as a product of squares, a contradiction.
Therefore, σω is an indirect isometry.

Definition 7. We define two reversal operators, σω+ and σω− .
When p ≥ 1, σω+ = σep σep−1 . . . σe1 . When q ≥ 1, σω− = σen σen−1 . . . σep+1 .

Theorem 11. The following properties stand:
σω+ is an involution. It inverts the sign of the p first components of any vector.
σω− is an involution. It inverts the sign of the q last components of any vector.
The two reversal operators commute: σω−σω+ = σω+σω− = σω.

Proof. Use Theorem 3 and Equation (3).

In the case where R1,3 is used to modelize the spacetime (mainly in special relativity),
σω+ is the time reversal, and σω− is the parity reversal.

In the case where R3,1 is used to modelize the spacetime (mainly in general relativity),
σω+ is the parity reversal, and σω− is the time reversal.

4.4. Case of Non-Existence of a Square Root

Theorem 12. Let σvσu be the composition of the reflections σu and σv, respectively associated with
the invertible vectors u and v. When sgn(u · u) 6= sgn(v · v), σvσu is an indirect isometry, and it
has no square root.

Proof. We assume that p ≥ 1 and q ≥ 1 (if not, all squared vectors have the same sign,
σvσu cannot exist). We remember that the indirect isometry Sp,p+1 = σep+1 σep (also equal
to σep σep+1), is an involution (Theorem 9). We observe that for any two invertible vectors
u and v with their squares of opposite signs, the product of reflections σvσu is an indirect
isometry because, when u2 > 0 and v2 < 0, σvσu = (σvσep+1)(σep+1 σep)(σep σu), and when
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u2 < 0 and v2 > 0, σvσu = (σvσep)(σep σep+1)(σep+1 σu), which means in both cases that σvσu
is a product of a rotation by an indirect isometry and by a rotation, whence σvσu is an
indirect isometry.

It is not a product of squares, so it cannot be a square.

This non-existence of a square root is to compare with the case where sgn(u · u) =
sgn(v · v), for which the square root exists (Theorem 6).

4.5. Classification of Isometries

This classification is based on Definition 3. We know that the identity is a direct
isometry because it is the square of any reflection, and that a product of rotations is a direct
isometry (see Corollary 4).

We also know that a single reflection is an indirect isometry (see Corollary 2), and that
the full reflection is an indirect isometry, except when p and q are even, in which case the
full reflection is a direct isometry (Theorems 8 and 10).

The full classification of the isometries of O(p, q) is performed with Theorem 13, with
the help of Lemma 6.

Lemma 6. T being any isometry of O(p, q), T and Sp,p+1TSp,p+1 either are both direct isometries
or are both indirect isometries.

Proof. We remember that Sp,p+1 is an involution (Theorem 9). We assume that T is a
direct isometry, so that it can be written: T = T2

mT2
m−1 . . . T2

1 , where Tk, 1 ≤ k ≤ m, are any
isometries. If Sp,p+1TSp,p+1 would be an indirect isometry, we would have Sp,p+1TSp,p+1 =

(Sp,p+1TmSp,p+1)
2(Sp,p+1Tm−1Sp,p+1)

2 . . . (Sp,p+1T1Sp,p+1)
2, where the right side of this

equality is a product of squares, a contradiction.
We assume that T is an indirect isometry, so that it cannot be written as a product of

squares. If Sp,p+1TSp,p+1 could be written as a product of squares, i.e., Sp,p+1TSp,p+1 =

T2
mT2

m−1 . . . T2
1 , where Tk, 1 ≤ k ≤ m, are any isometries, we would have: T = Sp,p+1

(Sp,p+1TSp,p+1)Sp,p+1, i.e.,:
T = (Sp,p+1TmSp,p+1)

2(Sp,p+1Tm−1Sp,p+1)
2 . . . (Sp,p+1T1Sp,p+1)

2,
where the right side of this equality is a product of squares, a contradiction.

Before proving Theorem 13, which classifies the isometries of O(p, q), we recall that
a product of direct isometries is a direct isometry, and that a product of a direct isometry
by an indirect isometry (or conversely), is an indirect isometry. This is true in general, not
only in quadratic spaces [9].

However, we recall that Definition 3 of direct and indirect isometries is not the classi-
cal one.

Theorem 13. A product of reflections is classified as direct or indirect as follows:
(a) When the product contains an odd number of reflections, it is an indirect isometry.
When the product contains an even number of reflections:
(b) It is a direct isometry when an even number of the squares of the supporting vectors have a

negative sign, and the squares of the other supporting vectors have a positive sign.
(c) It is an indirect isometry when an odd number of the squares of the supporting vectors have

a negative sign, and the squares of the other supporting vectors have a positive sign.

Proof. (a) We assume that the product of an odd number of reflections can be written as a
product of squares. If so, one of these reflections can be decomposed into an even number
of reflections, a contradiction (see Theorem 5).

• (b) and (c), case p = 0 or q = 0. All vectors have their squares with a common sign.
In case (b), a product of an even number of reflections is a direct isometry because it is

a product of rotations (Corollary 4).
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In case (c), a product of an odd number of reflections is a product of a rotation by a
single reflection, so it cannot be a direct isometry because a single reflection is an indirect
isometry (Corollary 2).

• (b) and (c), case p ≥ 1 and q ≥ 1. We notice that given an isometry T, of direct
or indirect nature, multiplying T on its right or on its left by any rotation, gives another
isometry, T′, but T and T′ have the same direct or indirect nature because a rotation is a
direct isometry.

We are in the case where T contains an even number of reflections, so that their product
can be partitioned into pairs of consecutive reflections. We consider a pair of consecutive
reflections σu and σv, supported respectively by the invertible vectors, u and v.

When u2 > 0 and v2 < 0, σvσu = (σvσep+1)(σep+1 σep)(σep σu), and when u2 < 0 and
v2 > 0, σvσu = (σvσep)(σep σep+1)(σep+1 σu), If there is no such pair, T is a product of rotations,
and case (b) of the theorem is proved. If there are such pairs, each one is an indirect isometry
(see Theorem 12), and rewriting T with replacement of each of them by a triplet of pairs
as above, does not change the direct or indirect nature of T, because each triplet of pairs
contains two rotations and one occurrence of the indirect isometry Sp,p+1 (see Theorem 9).

The expression of T contains now only rotations and one or several occurrences of
Sp,p+1. When two occurrences of Sp,p+1 are consecutive in T, their product is the identity,
and it can be removed from T (that does not change the direct or indirect nature of T). If no
occurrence of Sp,p+1 remains, only rotations remain, and case (b) of the theorem is proved.

If it happens that the rightmost occurrence of Sp,p+1 in T is followed on the right by a
product of rotations, we multiply T on its right by the inverse of this product of rotations,
so that only the identity remains at the right of the rightmost occurrence of Sp,p+1. We
perform similarly on the left, so that only the identity remains at the left of the leftmost
occurrence of Sp,p+1. These identities are removed, and as noticed previously, it remains the
expression of another isometry, T′, so that T and T′ have the same direct or indirect nature.

At this step of the proof, T′ has one occurrence of Sp,p+1 at its left and one at its right.
If these latter two occurrences of Sp,p+1 coincide, i.e., only one occurrence of Sp,p+1 remains,
T′ and T are indirect isometries, and case (c) is proved. We multiply T′ on its left by Sp,p+1,
and on its right by Sp,p+1. That changes neither the even or odd parity of the number of
occurrences Sp,p+1, nor the direct or indirect nature of T′ (see Lemma 6). Remembering that
Sp,p+1 is involutive, we remove the identity on the left of T′ and the identity on its right.
As noticed previously, the rotations which stand now at the right and at the left of T′ can
be eliminated, and we retrieve again Sp,p+1 at the right and at the left of T′. We return at
the beginning of the current step of the proof, with several occurrences of Sp,p+1 decreased
by two units. This step of the proof is repeated until it remains either one occurrence of
Sp,p+1, which proves case (c), or none, which proves case (b).

4.6. Comments on the Classification of Isometries

When p ≥ 1 and q ≥ 1, the real orthogonal group O(p, q) is a Lie group containing
four connected components [17]. These components can be identified with the involutive
operators defined in Section 4.3.

1. The component containing the identity, I.
2. The component containing the reversal operator σω+ .
3. The component containing the reversal operator σω− .
4. The component containing the full reflection σω = σω+σω− = σω−σω+ .

When p = 0 or q = 0, case (c) of Theorem 13 cannot be encountered. It means that the
product of two indirect isometries is always a direct isometry. When q = 0, as it happens
in the Euclidean case, O(p, q) contains only the components 1 and 2. The component 1 is
the direct subgroup (that is, the special orthogonal group SO(n), or rotation group), and
the component 2 contains the indirect isometries. When p = 0, O(p, q) contains only the
components 1 and 3.

In the case of R1,3, which is used to modelize the spacetime in special relativity, the
Lorentz group is isomorphic to O(1, 3). The time reversal T can be identified with σω+ , and
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the parity inversion P can be identified σω− . The components of the full Lorentz group are
as follows.

1. The component 1 is the proper orthochronous Lorentz group.
2. The component 2 contains the antichronous proper Lorentz transformations.
3. The component 3 contains the orthochronous improper Lorentz transformations.
4. The component 4 contains the antichronous improper Lorentz transformations.

The even/odd paradigm which states that the product of two indirect isometries
should be a direct isometry does not work anymore (Theorem 13). In the case of the
Lorentz group, it means that PT is classified as an indirect isometry (this result was proved
in [16] using a matrix representation of the Lorentz group). This is a consequence of
Definition 3.

The direct versus indirect classification based on Definition 3 may appear to be coun-
terintuitive. To support that, we observe that {I, σω+ , σω− , σω}, a discrete subrgoup of
O(p, q), is isomorphic to the Klein 4-group, as shown in Figure 1.

I R G B
I I R G B
R R I B G
G G B I R
B B G R I

I σω+ σω− σω

I I σω+ σω− σω

σω+ σω+ I σω σω−
σω− σω− σω I σω+

σω σω σω− σω+ I

I T P PT
I I T P PT
T T I PT P
P P PT I T

PT PT P T I

Figure 1. The Cayley table of the Klein 4-group. On the left: the general case, with three colors:
R: Red, G: Green, B: Blue. On the middle: case of the discrete subgroup of O(p, q): {I, σω+ , σω− , σω}.
On the right: case of the discrete subgroup of the Lorentz group: {I, T, P, PT}.

In Figure 1, the three colors R, G, B, play equivalent roles. There is no reason to classify
B (or R, or G), with I. Thus, it is more natural to classify σω+ , σω− and σω together, as
indirect isometries, rather than to follow the even/odd paradigm, which intuitively leads
to classify σω (or PT) with I, as a direct isometry, as it happens in the Euclidean case.

Anyway, whichever terminology is used, the four components of O(p, q) are known
since a long time. However, the direct versus indirect definition of isometries presented
in Section 4, works for any metric space, not only for quadratic spaces. This definition
induced general rules of composition of isometries, except for the composition of indi-
rect isometries [9]. These latter, presented in Section 4.5 (Theorem 13), are specific to
quadratic spaces.

5. Discussion

Here, due to their importance, we must give a rough idea of how the terms chirality,
right-handed and left-handed are used in modern physics. For a rigorous and pedagogical
presentation, see [8]. Chirality is often related to the so-called γ5 matrix, denoted here
in contravariant notation. This matrix is generally defined as γ5 = ±iγ0γ1γ2γ3, where
i is the imaginary number of square −1, and where the four gamma matrices γ0, γ1, γ2,
and γ3, generate a matrix representation of the Clifford algebra Cl1,3(R). Here, we notice
that in our presentation of geometric algebra, we did not encounter imaginary numbers.
The gamma matrices satisfy to the anticommutation rules. Their squares are respectively
+1, −1, −1, −1, using an abuse of notation for matrices that we retain in the rest of this
paragraph. In the (1/2, 0) ⊕ (0, 1/2) representation of the Lorentz group, the gamma
matrices have 4 lines and 4 columns, and act on Dirac bispinors, which are elements of C4.
The Dirac bispinors goes back to 1928, when Dirac predicted the existence of the positron,
using a four components vector, each component being a complex wavefunction (there are
two wavefunctions for the electron, with spins +1/2 and −1/2, and two for the positron,
with spins +1/2 and −1/2). However, at this time, neither spinors, nor Clifford algebra,
and nor chirality were mentioned by Dirac. In a particular basis called the Weyl basis, the
matrices (1− γ5)/2 and (1 + γ5)/2 respectively projects Dirac bispinors to obtain their
left-handed part (their two first components, associated with the eigenvalue −1) and their
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right-handed part (their two last components, associated with the eigenvalue +1). This
appears to be the main explanation why γ5 is called the chirality operator. To conclude about
the physical concept of chirality, we can say that despite its mathematical foundations, it is
unclear how to use it as a general definition of chirality.

Then, in 1952, Weyl explained in his book what are symmetry and chirality, their
importance in nature, arts and science, and their strong relation with groups [18]. This book
is sometimes cited as a reference for a definition of symmetry, but no unifying mathematical
definition of symmetry and chirality was given there.

Finally, a dozen mathematical structures were named chiral in 2004 by Beilinson
and Drinfeld [19], such as chiral algebra and chiral homology, without reference to older
chirality concepts. Investigating the relations between these mathematical structures and
Definition 4 of chirality, is out of the scope of this paper.

To conclude, as noticed in [20], there is a need for consensual mathematical definitions
in the field of symmetry and chirality, in order to avoid ambiguities in the literature.
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