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Abstract: We consider the time-dependent dynamical system q̈a = −Γa
bc q̇b q̇c − ω(t)Qa(q) where

ω(t) is a non-zero arbitrary function and the connection coefficients Γa
bc are computed from the

kinetic metric (kinetic energy) of the system. In order to determine the quadratic first integrals
(QFIs) I we assume that I = Kab q̇a q̇b + Ka q̇a + K where the unknown coefficients Kab, Ka, K are
tensors depending on t, qa and impose the condition dI

dt = 0. This condition leads to a system
of partial differential equations (PDEs) involving the quantities Kab, Ka, K, ω(t) and Qa(q). From
these PDEs, it follows that Kab is a Killing tensor (KT) of the kinetic metric. We use the KT Kab

in two ways: a. We assume a general polynomial form in t both for Kab and Ka; b. We express
Kab in a basis of the KTs of order 2 of the kinetic metric assuming the coefficients to be functions
of t. In both cases, this leads to a new system of PDEs whose solution requires that we specify
either ω(t) or Qa(q). We consider first that ω(t) is a general polynomial in t and find that in this
case the dynamical system admits two independent QFIs which we collect in a Theorem. Next,
we specify the quantities Qa(q) to be the generalized time-dependent Kepler potential V = −ω(t)

rν

and determine the functions ω(t) for which QFIs are admitted. We extend the discussion to the
non-linear differential equation ẍ = −ω(t)xµ + φ(t)ẋ (µ 6= −1) and compute the relation between
the coefficients ω(t), φ(t) so that QFIs are admitted. We apply the results to determine the QFIs of
the generalized Lane–Emden equation.

Keywords: time-dependent dynamical systems; quadratic first integrals; Killing tensors; kinetic
metric; Kepler potential; oscillator; Lane-Emden equation

1. Introduction

The equations of motion of a dynamical system define in the configuration space a
Riemannian structure with the metric of the kinetic energy (kinetic metric). This metric is
inherent in the structure of the dynamical system; therefore, we expect that it will determine
the first integrals (FIs) of the system which are important in its evolution. On the other
hand a metric is fixed by its symmetries, that is, the linear collineations: Killing vectors
(KVs), homothetic vectors (HVs), conformal Killing vectors (CKVs), affine collineations
(ACs), projective collineations (PCs); the quadratic collineations: second order Killing
tensors (KTs). The question then is how the FIs of the dynamical system and the geometric
symmetries of the kinetic metric are related.

The standard way to determine the FIs of a differential equation is the use of Lie/Noether
symmetries which applies to the point as well as the generalized Lie/Noether symmetries.
The relation of the Lie/Noether symmetries with the symmetries of the kinetic metric
has been considered mostly in the case of point symmetries for autonomous conservative
dynamical systems moving in a Riemannian space. In particular, it has been shown (see,
e.g., [1–4]) that the Lie point symmetries are generated by the special projective algebra of
the kinetic metric whereas the Noether point symmetries are generated by the homothetic
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algebra of the kinetic metric, the latter being a subalgebra of the projective algebra. A recent
clear statement of these results is discussed in [5].

In addition to the autonomous conservative systems this method has been applied
to the time-dependent potentials W(t, q) = ω(t)V(q), that is, for equations of the form
q̈a = −Γa

bc q̇b q̇c −ω(t)V,a(q) (see, e.g., [6–12]). In this case it has been shown that the Lie
point symmetries, the Noether point symmetries and the associated FIs are computed in
terms of the collineations of the kinetic metric plus a set of constraint conditions involving
the time-dependent potential and the collineation vectors. These time-dependent potentials
are important because (among others) they contain the time-dependent oscillator (see,
e.g., [8,10,13–15]) and the time-dependent Kepler potential (see, e.g., [12,16–18]). A further
development in the same line is the extension of this method to time-dependent potentials
W(t, q) with linear damping terms [12]. It has been shown that under a suitable time
transformation the damping term can be removed and the problem reduces to a time-
dependent potential of the form W(t, q) = ω̄(t)V(q) but with different ω̄(t). Finally
the Lie/Noether method has been applied to the study of partial differential equations
(PDEs) [4,19–21].

Besides the aforementioned Lie/Noether method there is a different method which
computes the FIs in terms of the collineations of the kinetic metric without using Lie
symmetries. This method we shall apply in this paper. It has as follows.

One assumes the generic quadratic first integral (QFI) to be of the form (the linear FIs
(LFIs) are also included for Kab = 0)

I = Kab q̇a q̇b + Ka q̇a + K (1)

where the coefficients Kab, Ka, K are tensors depending on the coordinates t, qa and imposes
the condition dI

dt = 0. Using again the equations of motion to replace the quantities q̈a

whenever they appear, this condition leads to a system of PDEs involving the unknown
quantities Kab, Ka, K and the dynamical elements, i.e., the potential and the generalized
forces of the system. The solution of this system of PDEs provides the QFIs (1). For future
reference we shall call this method the direct method.

The system of PDEs consists of two parts: a. The geometric part which is independent
of the dynamical quantities; b. the dynamical part which contains the scalar K and the
dynamical quantities. The main conclusion of the geometric part is that the tensor Kab is a
KT of the kinetic metric whereas the vector Ka is related to the linear collineations of that
metric. The dynamical part involves the scalar K which is determined by a set of constraint
conditions which involve Kab, Ka, K, the potential and the generalized forces. Once K is
computed one gets the corresponding QFI I.

The direct method can always be related to the Noether symmetries. Indeed assuming
that the system has a regular Lagrangian (which is always the case since we assume that
there exists the kinetic energy) it can be shown by using the inverse Noether theorem
(see [22] and section II in [23]) that to each QFI I one determines an associated gauged
generalized Noether symmetry with generator ηa = −2Kab q̇b − Ka and Noether function
f = −Kab q̇a q̇b + K whose Noether integral is the considered QFI. Therefore, we conclude
that all QFIs of the form (1) are Noetherian, provided the Lagrangian is regular, that is,
the dynamical equations can be solved in terms of q̈a.

Moreover, the direct method has been employed in the literature (see [17,24–26]) both
for autonomous and time-dependent dynamical systems. A recent account of this method
in the case of autonomous conservative systems together with relevant references can be
found in [27]. This approach being geometric is powerful and convenient because with
minimal calculations it allows the computation of the FIs by using known results from
differential geometry.

The purpose of the present work is to apply the direct method to compute the QFIs
of time-dependent equations of the form q̈a = −Γa

bc q̇b q̇c −ω(t)Qa(q). Because many well-
known dynamical systems fall in this category we intend to recover in a direct single
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approach all the known results derived from the Lie/Noether symmetry method, which
are scattered in a large number of papers.

As explained above, the solution of the system requires that the tensor Kab is a KT
of the kinetic metric. In general, the computation of the KTs of a metric is a major task.
However, for spaces of constant curvature, this problem has been solved (see [28–30]).
Therefore, in this paper, we restrict our discussion to Euclidean spaces only. Since the KT
Kab is a function of t, qa we suggest two procedures of work: (a). The polynomial method;
(b). the basis method.

In the polynomial method, one assumes a general polynomial form in the variable t
both for the KT Kab and the vector Ka and replaces in the equations of the relevant system.
In the basis method, one first computes a basis of the KTs of order 2 of the kinetic metric and
then expresses in this basis the KT Kab with the coefficients to be functions of t. The vector
Ka and the FIs follow from the solution of the system of PDEs. Both methods are suitable
for autonomous dynamical systems but for time-dependent systems it appears that the
basis method is preferable.

Concerning the quantities ω(t) and Qa(q), again, there are two ways to proceed.

(a) Consider a general form for the function ω(t) and let the quantities Qa unspecified.
In this case, the quantities Qa act as constraints;

(b) Specify the quantities Qa and determine for which functions ω(t) the resulting dy-
namical system admits QFIs.

In the following, we shall consider both the polynomial method and the basis method,
starting from the former. As a first application, we assume the KT Kab = N(t)γab where
N(t) is an arbitrary function and show that we recover all the point Noether integrals
found in [12]. As a second application, we assume that ω(t) = b0 + b1t + ... + b`t` with
b` 6= 0 and ` ≥ 1 whereas the quantities Qa are unspecified. We find that in this case, the
system admits two families of independent QFIs as stated in Theorem 1.

Subsequently, we consider the basis method. This is carried out in two steps. In the first
step, we assume that we know a basis {C(N)ab(q)} of the space of KTs of the kinetic metric
and require that Kab has the form Kab(t, q) = ∑m

N=1 αN(t)C(N)ab(q). In the second step,
we specify the generalized forces to be conservative with the time-dependent Newtonian
generalized Kepler potential V = −ω(t)

rν where ν is a non-zero real constant and r =√
x2 + y2 + z2. This potential for ν = −2, 1 includes, respectively, the three-dimensional

(3d) time-dependent oscillator and the time-dependent Kepler potential. For other values
of ν it reduces to other important dynamical systems, for example, for ν = 2 one obtains
the Newton–Cotes potential (see, e.g., [31]). We determine the QFIs of the time-dependent
generalized Kepler potential and recover in a systematic way the known results concerning
the QFIs of the 3d time-dependent oscillator, the time-dependent Kepler potential and the
Newton–Cotes potential. For easier reference, we collect the results in Table 2 of Section 14.

Using the well-known result that by a reparameterization the linear damping term
φ(t)q̇a of a dynamical equation is absorbed to a time-dependent force of the form ω(t)Qa(q),
we also study the non-linear differential equation ẍ = −ω(t)xµ + φ(t)ẋ (µ 6= −1) and
compute the relation between the coefficients ω(t), φ(t) for which QFIs are admitted. It is
found that a family of ‘frequencies’ ω̄(s) is admitted which for µ = 0, 1, 2 is parameterized
with functions whereas for µ 6= −1, 0, 1, 2 is parameterized with constants. As a further ap-
plication, we study the integrability of the well-known generalized Lane–Emden equation.

The structure of the paper is as follows. In Section 2, we determine the system of
PDEs resulting form the condition dI/dt = 0. In Section 3, we assume that the KT is
proportional to the kinetic metric and derive the point Noether FIs of the time-dependent
dynamical system (2). In Section 4, we consider the polynomial method and define the
general forms of the KT Kab and the vector Ka which lead to a new form of the system of
PDEs. In Section 5, we assume that ω(t) is a general polynomial of t and we find that the
resulting time-dependent system admits two independent QFIs as stated in Theorem 1.
In Section 6, we discuss some special cases of the QFI In of Theorem 1. In Section 7, we
consider the basis method. In Section 8, we find a basis for the KTs in E3 in order to
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apply the basis method to 3d Newtonian systems. In Sections 9–13, we study the time-
dependent generalized Kepler potential and find for which functions ω(t) admits QFIs.
Particularly, in Section 13, we study a special class of time-dependent oscillators with
frequency ω3O(t) as given in Equation (123). We collect our results for the several values
of ν in Table 2 of Section 14. In Section 15, we use the independent LFIs I41i, I42i given
in Equations (125) and (126) to integrate the equations of the time-dependent oscillators
defined in Section 13; the FIs Li, E2, Ai determined in Section 11.1 to integrate the time-
dependent Kepler potential with ω(t) = k

b0+b1t where kb1 6= 0. In Section 16, we consider
the second order non-linear time-dependent differential Equation (154) and show that it
is integrable with an associated QFI given in Equation (175) iff the functions ω(t), φ(t)
are related as shown in Equation (174). For the special values µ = 0, 1, 2 we find also
that there exist additional relations between ω(t), φ(t) for which the resulting differential
equation admits a QFI. For µ = 1 Equation (154) admits the general solution (166) provided
that condition (165) is satisfied. We apply these results in Section 16.1 and we study the
properties of the well-known generalized Lane–Emden equation. Finally, in Section 17, we
draw our conclusions and, in the Appendix A, we give the proof of Theorem 1.

2. The System of Equations

We consider the dynamical system

q̈a = −Γa
bc q̇b q̇c −ω(t)Qa(q) (2)

where Γa
bc are the Riemannian connection coefficients determined by the kinetic metric γab

(kinetic energy) of the system and −ω(t)Qa(q) are the time-dependent generalized forces.
Einstein summation convention is assumed and the metric γab is used for lowering and
raising the indices.

We next consider a function I(t, qa, q̇a) of the form

I = Kab(t, q)q̇a q̇b + Ka(t, q)q̇a + K(t, q) (3)

where Kab is a symmetric tensor, Ka is a vector and K is an invariant.
We demand I be a FI of (2) by imposing the condition

dI
dt

= 0. (4)

Using the dynamical Equations (2) to replace q̈a whenever it appears, we find the
system of equations

K(ab;c) = 0 (5)

Kab,t + K(a;b) = 0 (6)

−2ωKabQb + Ka,t + K,a = 0 (7)

K,t −ωKaQa = 0 (8)

Ka,tt + ω
(

KbQb
)

,a
− 2ω,tKabQb − 2ωKab,tQb = 0 (9)

K[a;b],t − 2ω
(

K[a|c|Q
c
)

;b]
= 0 (10)

where the last two Equations (9) and (10) express the integrability conditions K,[at] = 0 and
K,[ab] = 0, respectively, for the scalar K. We also note that round and square brackets indi-
cate symmetrization and antisymmetrization, respectively, of the enclosed indices; indices
enclosed between vertical lines are overlooked by symmetrization or antisymmetrization
symbols; a comma indicates partial derivative and a semicolon Riemannian covariant
derivative.

Equation (5) implies that Kab is a KT of order 2 (possibly zero) of the kinetic metric γab.
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The solution of the system requires the function ω(t) and the quantities Qa(q) both
being quantities which are characteristic of the given dynamical system. There are two
ways to proceed.

(a) Consider a general form for the function ω(t) and let the quantities Qa(q) unspecified.
In this case the quantities Qa(q) act as constraints.

(b) Specify the quantities Qa(q) and determine for which functions ω(t) the resulting
dynamical system admits FIs.

However, before continuing with this kind of considerations, we first proceed with
the simple geometric choice Kab = N(t)γab where N(t) is an arbitrary smooth function.
By specifying the KT Kab as above both the function ω(t) and the quantities Qa(q) stay
unspecified and act as constraints.

3. The Point Noether FIs of the Time-Dependent Dynamical System (2)

We consider the simplest choice

Kab = N(t)γab (11)

where N(t) is an arbitrary smooth function. This choice is purely geometric; therefore, the
function ω(t) and the quantities Qa(q) are unspecified and act as constraints, whereas the
vector Ka is identified with a collineation of the kinetic metric. With this Kab, the system of
Equations (5)–(10) become (Equation (5) vanishes trivially)

N,tγab + K(a;b) = 0 (12)

−2ωNQa + Ka,t + K,a = 0 (13)

K,t −ωKaQa = 0 (14)

Ka,tt + ω
(

KbQb
)

,a
− 2ω,tNQa − 2ωN,tQa = 0 (15)

K[a;b],t − 2ωNQ[a;b] = 0. (16)

We consider the following cases.

3.1. Case Ka = Ka(q) is the HV of γab with Homothety Factor ψ

In this case, Ka,t = 0 and K(a;b) = ψγab where ψ is an arbitrary constant.
Equation (12) gives

N,t = −ψ =⇒ N = −ψt + c

where c is an arbitrary constant.
Equation (16) implies that (take ω 6= 0)

Q[a;b] = 0 =⇒ Qa = V,a

where V = V(q) is an arbitrary potential.
Replacing in (13) we find that

K,a = 2ω(−ψt + c)V,a =⇒ K = 2ω(−ψt + c)V + M(t)

where M(t) is an arbitrary function.
Substituting the function K(t, q) in (14) we get

ωKaV,a − 2ω,t(−ψt + c)V + 2ωψV −M,t = 0. (17)

The remaining condition (15) is just the partial derivative of (17), and hence is satis-
fied trivially.
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Moreover, since ω 6= 0, Equation (17) can be written in the form

KaV,a − 2(ln ω),t(−ψt + c)V + 2ψV − M,t

ω
= 0 (18)

which implies that

2(ln ω),t(−ψt + c) = c1 (19)

M,t = c2ω (20)

where c1, c2 are arbitrary constants.
Therefore, Equation (18) becomes

KaV,a + (2ψ− c1)V − c2 = 0. (21)

The QFI is

I1 = (−ψt + c)γab q̇a q̇b + Ka(q)q̇a + 2ω(−ψt + c)V + M(t) (22)

where Qa = V,a and the quantities ω(t), M(t), V(q), Ka(q) satisfy the conditions (19)–(21).

3.2. Case Ka = −M(t)S,a(q) Where S,a Is the Gradient HV of γab

In this case S;ab = ψγab and M(t) 6= 0 is an arbitrary function.
Equation (12) implies N,t = ψM.
From Equation (16) we find that there exists a potential function V(q) such that

Qa = V,a.
Replacing the above results in (13) we obtain

K,a = 2ωNV,a + M,tS,a =⇒ K = 2ωNV + M,tS + C(t)

where C(t) is an arbitrary function.
Substituting in (14) we get (take ωM 6= 0)

ωMS,aV,a + 2ω,tNV + 2ωψMV + M,ttS + C,t = 0 =⇒

S,aV,a + 2ψV +
2(ln ω),tN

M
V +

M,tt

ωM
S +

C,t

ωM
= 0

which implies that

2(ln ω),tN
M

= d1 (23)

M,tt

ωM
= m (24)

C,t

ωM
= k (25)

S,aV,a + (2ψ + d1)V + mS + k = 0 (26)

where d1, m, k are arbitrary constants. The remaining condition (15) is satisfied identically.
The QFI is

I2 = Nγab q̇a q̇b −MS,a q̇a + 2ωNV + M,tS + C(t) (27)

where Qa = V,a, N,t = ψM and the conditions (23)–(26) must be satisfied.

3.3. Case Qa = V,a and Ka = −M(t)V,a(q) Where V,a Is the Gradient HV of γab

Equation (12) implies N,t = ψM where ψ is the homothety factor of V,a.
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From Equation (13), we obtain

K,a = 2ωNV,a + M,tV,a =⇒ K = 2ωNV + M,tV + C(t)

where C(t) is an arbitrary function.
Substituting in (14) we get (take ωM 6= 0)

ωMV,aV,a + 2ω,tNV + 2ωψMV + M,ttV + C,t = 0 =⇒

V,aV,a + 2ψV +
2(ln ω),tN

M
V +

M,tt

ωM
V +

C,t

ωM
= 0

which implies that

M,tt

ωM
+

2(ln ω),tN
M

= d2 (28)

C,t

ωM
= k (29)

V,aV,a + (2ψ + d2)V + k = 0 (30)

where d2, k are arbitrary constants. The remaining conditions are satisfied identically.
The QFI is

I3 = Nγab q̇a q̇b −MV,a q̇a + (2ωN + M,t)V + C (31)

where Qa = V,a, N,t = ψM and the conditions (28)–(30) must be satisfied.

The above results reproduce Theorem 2 of [12] which states that the point Noether
symmetries of the time-dependent potentials of the form ω(t)V(q) are generated by the
homothetic algebra of the kinetic metric (provided the Lagrangian is regular).

It is interesting to observe that the QFIs (22), (27) and (31) produced by point Noether
symmetries can be also produced by generalized (gauged) Noether symmetries using the
inverse Noether theorem. This proves that a Noether FI may not associated with a unique
Noether symmetry.

4. The Polynomial Method for Computing the QFIs

In the polynomial approach, one assumes a polynomial form in t of the KT Kab(t, q)
and the vector Ka(t, q) and solves the resulting system for given ω(t), Qa(q). One applica-
tion of this method can be found in [27] where a general theorem is given which allows the
finding of the QFIs of an autonomous conservative dynamical system. In the present work,
we generalize the considerations made in [27] and assume that the quantity Kab(t, q) has
the form

Kab(t, q) = C(0)ab(q) +
n

∑
N=1

C(N)ab(q)
tN

N
(32)

where C(N)ab, N = 0, 1, ..., n, is a sequence of arbitrary KTs of order 2 of the kinetic met-
ric γab.

This choice of Kab and Equation (6) indicate that we set

Ka(t, q) =
m

∑
M=0

L(M)a(q)t
M (33)

where L(M)a(q), M = 0, 1, ..., m, are arbitrary vectors.
We note that both powers n, m in the above polynomial expressions may be infinite.
Substituting (32) and (33) in the system of Equations (5)–(10) (Equation (5) is identically

zero since C(N)ab are KTs) we obtain the system of equations
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0 = C(1)ab + C(2)abt + ... + C(n)abtn−1 + L(0)(a;b) + L(1)(a;b)t + ... + L(m)(a;b)t
m (34)

0 = −2ωC(0)abQb − 2ωC(1)abQbt− ...− 2ωC(n)abQb tn

n
+ L(1)a + 2L(2)at + ... + mL(m)atm−1 + K,a (35)

0 = K,t −ωL(0)aQa −ωL(1)aQat− ...−ωL(m)aQatm (36)

0 =

(
−2C(0)abQb − 2C(1)abQbt− ...− 2C(n)abQb tn

n

)
ω,t − 2ωC(1)abQb − 2ωC(2)abQbt− ...− 2ωC(n)abQbtn−1 +

+2L(2)a + 6L(3)at + ... + m(m− 1)L(m)atm−2 + ω
(

L(0)bQb
)

,a
+ ω

(
L(1)bQb

)
,a

t + ... + ω
(

L(m)bQb
)

,a
tm (37)

0 = 2ω
(

C(0)[a|c|Q
c
)

;b]
+ 2ω

(
C(1)[a|c|Q

c
)

;b]
t + ... + 2ω

(
C(n)[a|c|Q

c
)

;b]

tn

n
− L(1)[a;b] −

−2L(2)[a;b]t− ...−mL(m)[a;b]t
m−1. (38)

In this system of PDEs the pairs ω(t), Qa(q) are not specified. As we explained in the
introduction, we shall fix a general form of ω and find the admitted QFIs in terms of the
(unspecified) Qa. In the following section, we choose ω(t) to be a general polynomial in t;
however, any other choice is possible.

5. The Case ω(t) = b0 + b1t + · · ·+ b`t` with b` 6= 0, ` ≥ 1

We assume that

ω(t) = b0 + b1t + ... + b`t`, b` 6= 0, ` ≥ 1 (39)

where ` is the degree of the polynomial. Substituting the function (39) in the system of
Equations (34)–(38) we find that there are two independent QFIs as given in Theorem 1
(the proof of Theorem 1 is in the Appendix A).

Theorem 1. The independent QFIs of the time-dependent dynamical system (2) where ω(t) =
b0 + b1t + ... + b`t` with b` 6= 0 and ` ≥ 1 are the following:

Integral 1.

In =

(
C(0)ab +

n

∑
k=1

tk

k
C(k)ab

)
q̇a q̇b +

n

∑
k=0

tkL(k)a q̇a +
n

∑
k=0

`

∑
r=0

(
L(k)aQabr

tk+r+1

k + r + 1

)
+ G(q)

where n = 0, 1, 2, ..., C(0)ab is a KT, the KTs C(N)ab = −L(N−1)(a;b) for N = 1, ..., n, L(n)a is a KV,
G(q) is an arbitrary function defined by the condition

G,a = 2b0C(0)abQb − L(1)a (40)

s is an arbitrary constant defined by the condition

L(n)aQa = s (41)

and the following conditions are satisfied

∑`−1
s=0

[
− 2(r+s)b(r+s≤`)

n−s C(n−s≥0)abQb − 2b(r+s≤`)C(n−s>0)abQb + b(r+s≤`)

(
L(n−s−1≥0)bQb

)
,a

]
= 0, r = 1, 2, ..., ` (42)

−
`

∑
s=1

[
2sbs

n− s
C(n−s≥0)abQb

]
+

`

∑
s=0

[
−2bsC(n−s>0)abQb + bs

(
L(n−s−1≥0)bQb

)
,a

]
= 0 (43)
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k(k− 1)L(k)a −∑`
s=1

[
2sbs

k−s−1 C(k−s−1≥0)abQb
]
+ ∑`

s=0

[
−2bsC(k−s−1>0)abQb + bs

(
L(k−s−2≥0)bQb

)
,a

]
= 0 (44)

with k = 2, 3, ...n.
Integral 2.

Ie = Ie(` = 1) = −eλtL(a;b) q̇
a q̇b + λeλtLa q̇a +

(
b0 −

b1

λ

)
eλtLaQa + b1teλtLaQa

where L(a;b) is a KT,
(

LbQb
)

,a
= λ3

b1
La and λ3La = −2b1L(a;b)Qb.

We note that the FI Ie exists only when ω(t) = b0 + b1t, that is, for ` = 1.

6. Special Cases of the QFI In

The parameter n in the case Integral 1 of Theorem 1 runs over all positive integers,
i.e., n = 0, 1, 2, .... This results in a sequence of QFIs I0, I1, I2, ..., one QFI In for each value
n. A significant characteristic of this sequence is that Ik < Ik+1, that is, each QFI Ik where
k = 0, 1, 2, ... can be derived from the next QFI Ik+1 as a subcase.

In the following, we consider some special cases of the QFI In for small values of n.

6.1. The QFI I0

For n = 0 we have

I0 = C(0)ab q̇a q̇b + L(0)a q̇a + b`s
t`+1

`+ 1
+ ... + b1s

t2

2
+ b0st

where C(0)ab is a KT, L(0)a is a KV, L(0)aQa = s and C(0)abQb = 0.
This QFI consists of the independent FIs

I0a = C(0)ab q̇a q̇b, I0b = L(0)a q̇a + b`s
t`+1

`+ 1
+ ... + b1s

t2

2
+ b0st.

6.2. The QFI I1

For n = 1 the conditions (41)–(44) become

L(1)aQa = s (45)(
L(0)bQb

)
,a

= −2(`+ 1)L(0)(a;b)Q
b (46)

kbkC(0)abQb = −(`− k + 1)bk−1L(0)(a;b)Q
b, k = 1, ..., `. (47)

Since b` 6= 0 the last condition for k = ` gives

C(0)abQb = − b`−1
`b`

L(0)(a;b)Q
b

and the remaining equations become[
(`− k + 1)bk−1 −

kbkb`−1
`b`

]
L(0)(a;b)Q

b = 0, k = 1, ..., `− 1.

The last set of equations exists only for ` ≥ 2. From these equations, using mathemati-
cal induction, we prove after successive substitutions that(

b0 −
b``−1

``b`−1
`

)
L(0)(a;b)Q

b = 0.

The QFI is (I0 is a subcase of I1)
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I1 =
(
−tL(0)(a;b) + C(0)ab

)
q̇a q̇b + tL(1)a q̇a + L(0)a q̇a + sb`

t`+2

`+ 2
+
(

sb`−1 + b`L(0)aQa
) t`+1

`+ 1
+ ... +

+
(

sb0 + b1L(0)aQa
) t2

2
+ b0L(0)aQat + G(q)

where C(0)ab, L(0)(a;b) are KTs, L(1)a is a KV, L(1)aQa = s,
(

L(0)bQb
)

,a
= −2(`+ 1)L(0)(a;b)Qb,

C(0)abQb = − b`−1
`b`

L(0)(a;b)Qb,
[
(`− k + 1)bk−1 −

kbkb`−1
`b`

]
L(0)(a;b)Qb = 0

where k = 1, ..., `− 1 and G,a = 2b0C(0)abQb − L(1)a.

For some values of the degree ` of the polynomial ω(t) we have:

(1) For ` = 1.

We have ω = b0 + b1t and the QFI is

I1 =
(
−tL(0)(a;b) + C(0)ab

)
q̇a q̇b + tL(1)a q̇a + L(0)a q̇a + sb1

t3

3
+
(

sb0 + b1L(0)aQa
) t2

2
+ b0L(0)aQat + G(q)

where C(0)ab, L(0)(a;b) are KTs, L(1)a is a KV, L(1)aQa = s,
(

L(0)bQb
)

,a
= −4L(0)(a;b)Qb,

C(0)abQb = − b0
b1

L(0)(a;b)Qb and G,a = 2b0C(0)abQb − L(1)a.

(2) For ` = 2.

We have ω = b0 + b1t + b2t2 and the QFI is

I1 =
(
−tL(0)(a;b) + C(0)ab

)
q̇a q̇b + tL(1)a q̇a + L(0)a q̇a + sb2

t4

4
+
(

sb1 + b2L(0)aQa
) t3

3

+
(

sb0 + b1L(0)aQa
) t2

2
+ b0L(0)aQat + G(q)

where C(0)ab, L(0)(a;b) are KTs, L(1)a is a KV, L(1)aQa = s,
(

L(0)bQb
)

,a
= −6L(0)(a;b)Qb,

C(0)abQb = − b1
2b2

L(0)(a;b)Qb,
(

b0 −
b2

1
4b2

)
L(0)(a;b)Qb = 0 and G,a = 2b0C(0)abQb − L(1)a.

(3) For ` = 3.

We have ω = b0 + b1t + b2t2 + b3t3 and the QFI is

I1 =
(
−tL(0)(a;b) + C(0)ab

)
q̇a q̇b + tL(1)a q̇a + L(0)a q̇a + sb3

t5

5
+
(

sb2 + b3L(0)aQa
) t4

4
+
(

sb1 + b2L(0)aQa
) t3

3
+

+
(

sb0 + b1L(0)aQa
) t2

2
+ b0L(0)aQat + G(q)

where C(0)ab, L(0)(a;b) are KTs, L(1)a is a KV, L(1)aQa = s,
(

L(0)bQb
)

,a
= −8L(0)(a;b)Qb,

C(0)abQb = − b2
3b3

L(0)(a;b)Qb,
(

b0 − b1b2
9b3

)
L(0)(a;b)Qb = 0,

(
b1 −

b2
2

3b3

)
L(0)(a;b)Qb = 0 and

G,a = 2b0C(0)abQb − L(1)a.
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7. The Basis Method for Computing QFIs

As it has been explained in the introduction, in the basis method instead of consid-
ering the KT Kab to be given as a polynomial in t with coefficients arbitrary KTs (see
Equation (32)) one defines the KT Kab(t, q) by the requirement

Kab(t, q) =
m

∑
N=1

αN(t)C(N)ab(q) (48)

where αN(t) are arbitrary smooth functions and the m linearly independent KTs C(N)ab(q)
constitute a basis of the space of KTs of the kinetic metric γab(q). In this case, one does not
assume a form for the vector Ka(t, q) which is determined from the resulting system of
Equations (5)–(10).

The basis method has been used previously by Katzin and Levine in [17] in order to
determine the QFIs for the time-dependent Kepler potential. As we shall apply the basis
method to 3d Newtonian systems, we need a basis of KTs (and other collineations) of the
Euclidean space E3.

8. The Geometric Quantities of E3

In E3 the general KT of order 2 has independent components

C11 =
a6

2
y2 +

a1

2
z2 + a4yz + a5y + a2z + a3

C12 =
a10

2
z2 − a6

2
xy− a4

2
xz− a14

2
yz− a5

2
x− a15

2
y + a16z + a17

C13 =
a14

2
y2 − a4

2
xy− a1

2
xz− a10

2
yz− a2

2
x + a18y− a11

2
z + a19 (49)

C22 =
a6

2
x2 +

a7

2
z2 + a14xz + a15x + a12z + a13

C23 =
a4

2
x2 − a14

2
xy− a10

2
xz− a7

2
yz− (a16 + a18)x− a12

2
y− a8

2
z + a20

C33 =
a1

2
x2 +

a7

2
y2 + a10xy + a11x + a8y + a9

where aI with I = 1, 2, . . . , 20 are arbitrary real constants.
The vector La generating the KT Cab = L(a;b) is

La =

 −a15y2 − a11z2 + a5xy + a2xz + 2(a16 + a18)yz + a3x + 2a4y + 2a1z + a6
−a5x2 − a8z2 + a15xy− 2a18xz + a12yz + 2(a17 − a4)x + a13y + 2a7z + a14

−a2x2 − a12y2 − 2a16xy + a11xz + a8yz + 2(a19 − a1)x + 2(a20 − a7)y + a9z + a10

 (50)

and the generated KT is

Cab =

 a5y + a2z + a3 − a5
2 x− a15

2 y + a16z + a17 − a2
2 x + a18y− a11

2 z + a19
− a5

2 x− a15
2 y + a16z + a17 a15x + a12z + a13 −(a16 + a18)x− a12

2 y− a8
2 z + a20

− a2
2 x + a18y− a11

2 z + a19 −(a16 + a18)x− a12
2 y− a8

2 z + a20 a11x + a8y + a9

 (51)

which is a subcase of the general KT (49) for a1 = a4 = a6 = a7 = a10 = a14 = 0.
We note that the covariant expression of the most general KT Mij of order 2 of E3 is

(see [32,33])

Mij = (εikmε jln + ε jkmεiln)Amnqkql + (Bl
(iε j)kl + λ(iδj)k − δijλk)qk + Dij (52)

where Amn, Bl
i , Dij are constant tensors all being symmetric and Bl

i also being traceless;
λk is a constant vector; εijk is the 3d Levi-Civita symbol. This result is obtained from the
solution of the Killing tensor equation in the Euclidean space.

Observe that Amn, Dij have each six independent components; Bl
i has five independent

components; λk has three independent components. Therefore, Mij depends on 6 + 6 + 5 +
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3 = 20 arbitrary real constants, a result which is in accordance with the one given above in
Equation (49).

9. The Time-Dependent Newtonian Generalized Kepler Potential

The time-dependent Newtonian generalized Kepler potential is V = −ω(t)
rν where

ν is a non-zero real constant and r = (x2 + y2 + z2)
1
2 . This potential contains (among

others) the 3d time-dependent oscillator [8,10,13–15] for ν = −2, the time-dependent
Kepler potential [12,16–18] for ν = 1 and the Newton–Cotes potential for ν = 2 [31].
The integrability of these systems has been studied in numerous works over the years
using various methods, mainly the Noether symmetries. Our purpose is to recover the
results of these works—and also new ones—using the basis method.

The Lagrangian of the system is

L =
1
2
(ẋ2 + ẏ2 + ż2) +

ω(t)
rν

(53)

and the corresponding Euler–Lagrange equations are

ẍ = −νω(t)
rν+2 x, ÿ = −νω(t)

rν+2 y, z̈ = −νω(t)
rν+2 z. (54)

For this system the Qa = νqa

rν+2 where qa = (x, y, z) whereas the ω(t) is unspecified. We
shall determine those ω(t) for which the resulting FIs are not combinations of the angular
momentum.

The LFIs and the QFIs of the autonomous generalized Kepler potential, that is, ω(t) =
k = const, have been determined in [27] using the direct method and are listed in Table 1.

Table 1. The LFIs/QFIs of the autonomous generalized Kepler potential for ω(t) = k = const.

V = − k
rν LFIs and QFIs

∀ ν L1 = yż− zẏ, L2 = zẋ− xż, L3 = xẏ− yẋ, Hν = 1
2 (ẋ2 + ẏ2 + ż2)− k

rν

ν = −2 Bij = q̇i q̇j − 2kqiqj

ν = −2, k > 0 I3a± = e±
√

2kt(q̇a ∓
√

2kqa)

ν = −2, k < 0 I3a± = e±i
√
−2kt(q̇a ∓ i

√
−2kqa)

ν = 1 Ri = (q̇j q̇j)qi − (q̇jqj)q̇i − k
r qi

ν = 2 I1 = −H2t2 + t(q̇iqi)− r2

2 , I2 = −H2t + 1
2 (q̇

iqi)

In Table 1, Hν is the Hamiltonian of the system, Li are the components of the angular
momentum, Ri are the components of the Runge–Lenz vector and Bij are the components
of the Jauch–Hill–Fradkin tensor.
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Using Qa = νqa

rν+2 , conditions (5)–(10) become (see [17])

K(ab;c) = 0 (55)

K(a;b) + Kab,t = 0 (56)

K,a −
2νω

rν+2 Kabqb + Ka,t = 0 (57)

K,t −
νω

rν+2 Kaqa = 0 (58)

Ka,tt + νω

(
Kbqb

rν+2

)
,a

− 2νω,t

rν+2 Kabqb − 2νω

rν+2 Kab,tqb = 0 (59)

K[a;b],t − 2νω

(K[a|c|qc

rν+2

)
;b]

= 0. (60)

From the Lagrangian (53), we infer that the kinetic metric is δij = diag(1, 1, 1).
According to the basis approach, the KT Kab(t, q) of (55) is the KT given by (49) but

the 20 arbitrary constants aI are assumed to be time-dependent functions aI(t).
Condition (56) gives

Ka,b + Kb,a = −2Kab,t =⇒

K1,1 = −K11,t (61)

K2,2 = −K22,t (62)

K3,3 = −K33,t (63)

K1,2 + K2,1 = −2K12,t (64)

K1,3 + K3,1 = −2K13,t (65)

K2,3 + K3,2 = −2K23,t. (66)

From the first three conditions (61)–(63) we find

K1 = − ȧ6

2
xy2 − ȧ1

2
xz2 − ȧ4xyz− ȧ5xy− ȧ2xz− ȧ3x + A(y, z, t)

K2 = − ȧ6

2
yx2 − ȧ7

2
yz2 − ȧ14xyz− ȧ15xy− ȧ12yz− ȧ13y + B(x, z, t)

K3 = − ȧ1

2
zx2 − ȧ7

2
zy2 − ȧ10xyz− ȧ11xz− ȧ8yz− ȧ9z + C(x, y, t)

where A, B, C are arbitrary functions.
Substituting these results in (64)–(66) we obtain

0 = ȧ10z2 − 3ȧ6xy− 2ȧ4xz− 2ȧ14yz− 2ȧ5x− 2ȧ15y + 2ȧ16z + 2ȧ17 + A,2 + B,1 (67)

0 = ȧ14y2 − 2ȧ4xy− 3ȧ1xz− 2ȧ10yz− 2ȧ2x + 2ȧ18y− 2ȧ11z + 2ȧ19 + A,3 + C,1 (68)

0 = ȧ4x2 − 2ȧ14xy− 2ȧ10xz− 3ȧ7yz− 2(ȧ16 + ȧ18)x− 2ȧ12y− 2ȧ8z + 2ȧ20 + B,3 + C,2. (69)

By taking the second partial derivatives of (67) with respect to (wrt) x, y, of (68) wrt
x, z and of (69) wrt y, z we find that

a1 = c1, a6 = c2, a7 = c3

are arbitrary constants.
Then, Equations (67)–(69) become

0 = ȧ10z2 − 2ȧ4xz− 2ȧ14yz− 2ȧ5x− 2ȧ15y + 2ȧ16z + 2ȧ17 + A,2 + B,1 (70)

0 = ȧ14y2 − 2ȧ4xy− 2ȧ10yz− 2ȧ2x + 2ȧ18y− 2ȧ11z + 2ȧ19 + A,3 + C,1 (71)

0 = ȧ4x2 − 2ȧ14xy− 2ȧ10xz− 2(ȧ16 + ȧ18)x− 2ȧ12y− 2ȧ8z + 2ȧ20 + B,3 + C,2. (72)
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By suitable differentiations of the above equations, we obtain

A,22 = 2ȧ14z + 2ȧ15

A,33 = 2ȧ10y + 2ȧ11

B,11 = 2ȧ4z + 2ȧ5

B,33 = 2ȧ10x + 2ȧ8

C,11 = 2ȧ4y + 2ȧ2

C,22 = 2ȧ14x + 2ȧ12.

Then,

A = ȧ14zy2 + ȧ10yz2 + ȧ15y2 + ȧ11z2 + σ1(t)yz + σ2(t)y + σ3(t)z + σ4(t)

B = ȧ4zx2 + ȧ10xz2 + ȧ5x2 + ȧ8z2 + τ1(t)xz + τ2(t)x + τ3(t)z + τ4(t)

C = ȧ4yx2 + ȧ14xy2 + ȧ2x2 + ȧ12y2 + η1(t)xy + η2(t)x + η3(t)y + η4(t)

where σk(t), τk(t), ηk(t) for k = 1, 2, 3, 4 are arbitrary functions.
Substituting in (70)–(72) we find

(70) =⇒ a10 = c4, σ1 = −τ1 − 2ȧ16, σ2 = −τ2 − 2ȧ17

(71) =⇒ a14 = c5, η1 = −σ1 − 2ȧ18, η2 = −σ3 − 2ȧ19

(72) =⇒ a4 = c6, τ1 = −η1 + 2(ȧ16 + ȧ18), τ3 = −η3 − 2ȧ20

from which we finally have

a10 = c4, a14 = c5, a4 = c6, τ1 = 2ȧ18, η1 = 2ȧ16, σ1 = −2(ȧ16 + ȧ18),

τ2 = −σ2 − 2ȧ17, η2 = −σ3 − 2ȧ19, η3 = −τ3 − 2ȧ20

where c4, c5, c6 are arbitrary constants.
Therefore, the KT Kab is

K11 =
c2

2
y2 +

c1

2
z2 + c6yz + a5y + a2z + a3

K12 =
c4

2
z2 − c2

2
xy− c6

2
xz− c5

2
yz− a5

2
x− a15

2
y + a16z + a17

K13 =
c5

2
y2 − c6

2
xy− c1

2
xz− c4

2
yz− a2

2
x + a18y− a11

2
z + a19 (73)

K22 =
c2

2
x2 +

c3

2
z2 + c5xz + a15x + a12z + a13

K23 =
c6

2
x2 − c5

2
xy− c4

2
xz− c3

2
yz− (a16 + a18)x− a12

2
y− a8

2
z + a20

K33 =
c1

2
x2 +

c3

2
y2 + c4xy + a11x + a8y + a9

and the vector Ka is

K1 = ȧ15y2 + ȧ11z2 − ȧ5xy− ȧ2xz− 2(ȧ16 + ȧ18)yz− ȧ3x + σ2y + σ3z + σ4

K2 = ȧ5x2 + ȧ8z2 − ȧ15xy + 2ȧ18xz− ȧ12yz− (σ2 + 2ȧ17)x− ȧ13y + τ3z + τ4 (74)

K3 = ȧ2x2 + ȧ12y2 + 2ȧ16xy− ȧ11xz− ȧ8yz− (σ3 + 2ȧ19)x− (τ3 + 2ȧ20)y− ȧ9z + η4.

Replacing the above results in the constraint (60) we find the following set of equations:

a2 = a12, a5 = a8, a11 = a15, a16 = a18 = 0 (75)

(ν− 1)a2 = 0, (ν− 1)a5 = 0, (ν− 1)a11 = 0 (76)

(ν + 2)a17 = 0, (ν + 2)a19 = 0, (ν + 2)a20 = 0, (ν + 2)(a3 − a9) = 0, (ν + 2)(a3 − a13) = 0 (77)
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ä2 = ä5 = ä11 = 0, σ̇2 = −ä17, σ̇3 = −ä19, τ̇3 = −ä20. (78)

We consider three cases depending on the value of ν:

- ∀ν. The general case.
- ν = 1. Time-dependent Kepler potential.
- ν = −2. Time-dependent 3d oscillator.

The Newton–Cotes potential (ν = 2) is contained as a subcase of the general case.

10. The General Case

This case holds for any value of ν and conditions (75)–(78) give

a2 = a5 = a8 = a11 = a12 = a15 = a16 = a17 = a18 = a19 = a20 = 0,

a3 = a9 = a13, σ2 = c7, σ3 = c8, τ3 = c9

where c7, c8, c9 are arbitrary constants.
Substituting in the constraint (59), we find that

...
a 3 = 0, (ν− 2)ωȧ3 − 2ω̇a3 = 0 (79)

σ̈4 = τ̈4 = η̈4 = 0, ωσ4 = ωτ4 = ωη4 = 0 =⇒ σ4 = τ4 = η4 = 0.

Therefore, the KT Kab becomes

Kab =

 c2
2 y2 + c1

2 z2 + c6yz + a3
c4
2 z2 − c2

2 xy− c6
2 xz− c5

2 yz c5
2 y2 − c6

2 xy− c1
2 xz− c4

2 yz
c4
2 z2 − c2

2 xy− c6
2 xz− c5

2 yz c2
2 x2 + c3

2 z2 + c5xz + a3
c6
2 x2 − c5

2 xy− c4
2 xz− c3

2 yz
c5
2 y2 − c6

2 xy− c1
2 xz− c4

2 yz c6
2 x2 − c5

2 xy− c4
2 xz− c3

2 yz c1
2 x2 + c3

2 y2 + c4xy + a3

 (80)

and the vector

Ka =

 −ȧ3x + c7y + c8z
−c7x− ȧ3y + c9z
−c8x− c9y− ȧ3z

. (81)

Since the ten parameters a3(t) and cA where A = 1, 2, . . . , 9 are independent (i.e., they
generate different FIs) we consider the following two cases.

10.1. a3(t) = 0

In this case, the conditions (79) are satisfied identically leaving the function ω(t) free.
Therefore, the KT (80) becomes

Kab =

 c2
2 y2 + c1

2 z2 + c6yz c4
2 z2 − c2

2 xy− c6
2 xz− c5

2 yz c5
2 y2 − c6

2 xy− c1
2 xz− c4

2 yz
c4
2 z2 − c2

2 xy− c6
2 xz− c5

2 yz c2
2 x2 + c3

2 z2 + c5xz c6
2 x2 − c5

2 xy− c4
2 xz− c3

2 yz
c5
2 y2 − c6

2 xy− c1
2 xz− c4

2 yz c6
2 x2 − c5

2 xy− c4
2 xz− c3

2 yz c1
2 x2 + c3

2 y2 + c4xy


and the vector (81) becomes the general non-gradient KV

Ka =

 c7y + c8z
−c7x + c9z
−c8x− c9y

.

Then, the constraint (58) implies that (since Kaqa = 0) K = G(x, y, z) which when
replaced in (57) gives (since Kabqb = 0) G,a = 0. Hence K = const ≡ 0.

The QFI I = Kab q̇a q̇b + Ka q̇a leads only to the three components Li of the angular
momentum. We note that I contains nine independent parameters, each of them defining
an FI: (a) c7, c8, c9 lead to the components L1 = yż− zẏ, L2 = zẋ− xż, L3 = xẏ− yẋ of the
angular momentum (LFIs); (b) c1, c2, c3, c4, c5, c6 lead to the products (QFIs depending on
Li) L2

1, L2
2, L2

3, L1L2, L1L3 and L2L3.
We have the following result.
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Proposition 1. The time-dependent generalized Kepler potential V(t, q) = −ω(t)
rν for a general

smooth function ω(t) admits only the LFIs of the angular momentum Li. Independent QFIs in
general do not exist, they are all quadratic combinations of Li.

10.2. cA = 0 where A = 1, 2, . . . , 9

In this case, the conditions (79) imply that a3(t) = b0 + b1t + b2t2 and

ω(ν)(t) = k
(

b0 + b1t + b2t2
) ν−2

2 (82)

where k, b0, b1, b2 are arbitrary constants and the index (ν) denotes the dependence of ω(t)
on the value of ν.

Since cA = 0 the quantities (80) and (81) become

Kab = a3δab, Ka = −ȧ3qa.

Substituting in the remaining constraints (57) and (58), we find

K = b2r2 − 2k(b0 + b1t + b2t2)ν/2

rν
.

The QFI is

Jν = (b0 + b1t + b2t2)

[
q̇i q̇i

2
− k(b0 + b1t + b2t2)

ν−2
2

rν

]
− b1 + 2b2t

2
qi q̇i +

b2r2

2
. (83)

We note that the resulting time-dependent generalized Kepler potential

V = −ων(t)
rν

, ων = k
(

b0 + b1t + b2t2
) ν−2

2 (84)

is a subcase of the Case III potential of [18] if we set the function

U
(

r
φ

)
= k1

r2

φ2 −
kφν

rν

with

φ =
√

b0 + b1t + b2t2, k1 =
b0b2

2
−

b2
1

8
.

Then, the associated QFI (3.13) of [18] (for K1 = K2 = 0) reduces to the QFI Jν.
For some values of ν, we have the following results:

- ν = 1 (time-dependent Kepler potential).

The ω(1)(t) = k
(
b0 + b1t + b2t2)−1/2 and the QFI J1 = E3 (see Section 11.2 below).

- ν = 2 (Newton–Cotes potential [31]).

The ω(2) = k = const and the QFI is

J2 = (b0 + b1t + b2t2)

(
q̇i q̇i

2
− k

r2

)
− b1 + 2b2t

2
qi q̇i +

b2

2
r2

= b0H2 − b1 I2 − b2 I1.

This expression contains the independent QFIs

H2 =
q̇i q̇i

2
− k

r2 , I1 = −t2H2 + tqi q̇i −
r2

2
, I2 = −tH2 +

qi q̇i
2
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where H2 is the Hamiltonian of the system. These are the FIs found in [27] (see also Table 1)
in the case of the autonomous generalized Kepler potential for ν = 2.

- ν = −2 (time-dependent oscillator).

The ω(−2) = k
(
b0 + b1t + b2t2)−2 and the QFI is

J−2 = (b0 + b1t + b2t2)

[
q̇i q̇i

2
− k

(b0 + b1t + b2t2)2 r2
]
− b1 + 2b2t

2
qi q̇i +

b2r2

2
.

This is the trace of the QFIs (111) found below for a3(t) = b0 + b1t + b2t2. Substituting
this a3(t) in (110) and (111) we find, respectively, that the ω = ω(−2) with constant
k = − 1

8 (b
2
1 − 4b2b0 + 2c0) and the QFIs are

Iij = Λij(a3 = b0 + b1t + b2t2) = (b0 + b1t + b2t2)
(
q̇i q̇j − 2ωqiqj

)
− (b1 + 2b2t)q(i q̇j) + b2qiqj. (85)

Therefore, the trace Tr[Iij] = I11 + I22 + I33 = 2J−2. Note that r2 = qiqi.

We infer the following new general result which includes the time-dependent Kepler
potential and the time-dependent oscillator as subcases.

Proposition 2 (3d time-dependent generalized Kepler potentials which admit FIs). For all
functions ω(t) the time-dependent generalized Kepler potential V(t, q) = −ω(t)

rν admits the LFIs of
the angular momentum and QFIs which are products of the components of the angular momentum.

However for the function ω(t) = ω(ν)(t) = k
(
b0 + b1t + b2t2) ν−2

2 the resulting time-dependent
generalized Kepler potential admits the additional QFI Jν given by (83).

11. The Time-Dependent Kepler Potential

In this case, ν = 1 and conditions (75)–(78) give

a16 = a17 = a18 = a19 = a20 = 0, a5 = a8, a2 = a12, a3 = a9 = a13, a11 = a15

ä2 = ä5 = ä11 = 0

σ2 = c7, σ3 = c8, τ3 = c9.

Then, constraint (59) gives
...
a 3 = 0, σ4 = τ4 = η4 = 0

and
a3ω2 = c10, a2ω = c11, a5ω = c12, a11ω = c13

where c10, c11, c12, c13 are arbitrary constants.
Finally, we have

K11 =
c2

2
y2 +

c1

2
z2 + c6yz + a5y + a2z + a3

K12 =
c4

2
z2 − c2

2
xy− c6

2
xz− c5

2
yz− a5

2
x− a11

2
y

K13 =
c5

2
y2 − c6

2
xy− c1

2
xz− c4

2
yz− a2

2
x− a11

2
z

K22 =
c2

2
x2 +

c3

2
z2 + c5xz + a11x + a2z + a3

K23 =
c6

2
x2 − c5

2
xy− c4

2
xz− c3

2
yz− a2

2
y− a5

2
z

K33 =
c1

2
x2 +

c3

2
y2 + c4xy + a11x + a5y + a3
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and

K1 = ȧ11y2 + ȧ11z2 − ȧ5xy− ȧ2xz− ȧ3x + c7y + c8z

K2 = ȧ5x2 + ȧ5z2 − ȧ11xy− ȧ2yz− c7x− ȧ3y + c9z

K3 = ȧ2x2 + ȧ2y2 − ȧ11xz− ȧ5yz− c8x− c9y− ȧ3z

where

ä2 = ä5 = ä11 = 0,
...
a 3 = 0, a3ω2 = c10, a2ω = c11, a5ω = c12, a11ω = c13. (86)

From the last conditions follow that in order QFIs to be admitted the function ω(t)
can have only three possible forms:

- ω(t) a general function;
- ω(t) = ω2K(t) =

c11
b0+b1t where c11b1 6= 0;

- ω(t) = ω3K(t) = k
(b0+b1t+b2t2)1/2 where k 6= 0 and b2

1 − 4b2b0 6= 0.

This result confirms the results found previously in [12,17,18]. We note that the time-
dependent Kepler potential V = −ω2K(t)

r is a subcase of the Case II potential of [18] for

µ0 = c11 and φ = b0 + b1t, whereas the potential V = −ω3K(t)
r is a subcase of the Case III

potential of [18] (see Section 10.2).
In the following, we discuss the cases for the special functions ω2K(t) and ω3K(t)

because the case for a general function ω(t) reproduces the results of Section 10.1.

11.1. ω(t) = ω2K(t) =
c11

b0+b1t , c11b1 6= 0

In that case, conditions (86) give

a2 = b0 + b1t, a3 =
c10

c2
11
(b0 + b1t)2, a5 =

c12

c11
(b0 + b1t), a11 =

c13

c11
(b0 + b1t).

Substituting the resulting vector Ka and the KT Kab in (58) we find the solution

K(q, t) = −2c10b1t
c11r

+ G(q).

Replacing this solution in the remaining constraint (57) we find

G(x, y, z) = −2c10b0

c11r
− c13x + c12y + c11z

r
+

c10b2
1

c2
11

r2.

Therefore,

K(x, y, z, t) =
c10b2

1r2

c2
11
− 2c10(b0 + b1t)

c11r
− c13x + c12y + c11z

r
.

The QFI is

I =
c3

2
L2

1 +
c1

2
L2

2 +
c2

2
L2

3 − c4L1L2 − c5L1L3 − c6L2L3 − c9L1 + c8L2 − c7L3 +
2c10

c2
11

E2 +

+
c13

c11
A1 +

c12

c11
A2 + A3
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where ω2K(t) =
c11

b0+b1t and

Li ≡ qi+1q̇i+2 − qi+2q̇i+1 (87)

E2 ≡ (b0 + b1t)2
[

q̇i q̇i
2
− c11

r(b0 + b1t)

]
− b1(b0 + b1t)qi q̇i +

b2
1r2

2
(88)

R̃i ≡ (q̇j q̇j)qi − (q̇jqj)q̇i −
c11

r(b0 + b1t)
qi (89)

Ai ≡ (b0 + b1t)R̃i + b1(qi+2Li+1 − qi+1Li+2). (90)

We note that i = 1, 2, 3, qi = (x, y, z) and qi ≡ qi+3k for all k ∈ N, that is

x = q1 = q4 = q7 = ..., y = q2 = q5 = q8 = ..., z = q3 = q6 = q9.

The QFI I contains the already found LFIs Li of the angular momentum; the QFI E2
which for b1 = 0 reduces to the Hamiltonian of the Kepler potential V = − c11

b0r ; the QFIs

Ai which may be considered as a generalization of the Runge–Lenz vector Ri

(
k = c11

b0

)
for

time-dependence ω2K(t) =
c11

b0+b1t . Indeed we have Ai(b1 = 0) = b0Ri

(
k = c11

b0

)
.

The expressions (88)–(90) are written compactly as follows

E2 ≡ c2
11

[
1

ω2
2K

(
q̇i q̇i

2
− ω2K

r

)
− 1

2
d
dt

(
1

ω2K

)2
qi q̇i +

d2

dt2

(
1

ω2K

)2 r2

4

]
(91)

R̃i ≡ (q̇j q̇j)qi − (q̇jqj)q̇i −
ω2K

r
qi (92)

Ai ≡ c11

[
1

ω2K
R̃i −

(ln ω2K)
·

ω2K
(qi+2Li+1 − qi+1Li+2)

]
(93)

where ω2K(t) =
c11

b0+b1t .

We remark that only five of the seven FIs E2, Li, Ai are functionally independent
because they are related as follows

A · L = 0, 2E2L2 + c2
11 = A2. (94)

For b1 = 0, b0 6= 0 we have ω2K = c11
b0
≡ k = const, E2 = b2

0 H, R̃i = Ri and Ai = b0Ri

where H is the Hamiltonian and Ri the Runge–Lenz vector for the Kepler potential V = − k
r .

Then, as expected, Equation (94) reduces to the well-known relation

2HL2 + k2 = R2.

11.2. ω(t) = ω3K(t) = k
(b0+b1t+b2t2)1/2 , k 6= 0, b2

1 − 4b2b0 6= 0

In that case (observe that if b2
1 − 4b2b0 = 0, this case reduces to the case of the

Section 11.1 because equation b0 + b1t + b2t2 = 0 has a double root t0 and can be factored
in the form b2(t− t0)

2), conditions (86) give

a2 = a5 = a11 = 0, c11 = c12 = c13 = 0, a3 =
c10

k2 (b0 + b1t + b2t2).

Substituting the Ka and Kab of that case in (58) we find the solution

K(q, t) = − 2c10

rω3K
+ G(q).

When this solution is introduced in the remaining constraint (57) gives G(x, y, z) =
b2c10

k2 r2. Therefore,

K(x, y, z, t) =
b2c10

k2 r2 − 2c10

rω3K
.
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The QFI is

I =
c3

2
L2

1 +
c1

2
L2

2 +
c2

2
L2

3 − c4L1L2 − c5L1L3 − c6L2L3 − c9L1 + c8L2 − c7L3 +
2c10

k2 E3

where

E3 ≡ (b0 + b1t + b2t2)

[
q̇i q̇i

2
− k

r(b0 + b1t + b2t2)1/2

]
− b1 + 2b2t

2
qi q̇i +

b2r2

2
(95)

is the only new independent QFI. This QFI is written equivalently

E3 = k2

[
1

ω2
3K

(
q̇i q̇i

2
− ω3K

r

)
− 1

2
d
dt

(
1

ω3K

)2
qi q̇i +

d2

dt2

(
1

ω3K

)2 r2

4

]
. (96)

For b1 = b2 = 0, E2 reduces to the well-known Hamiltonian of the time-independent
Kepler potential.

We note also that the QFIs (88) and (95) can be written compactly as (see Equation (2.86)
in [17])

Eµ = k2

[
1

ω2
µK

(
q̇i q̇i

2
−

ωµK

r

)
− 1

2
d
dt

(
1

ωµK

)2
qi q̇i +

d2

dt2

(
1

ωµK

)2 r2

4

]
(97)

where µ = 2, 3, ω2K(t) = k
b0+b1t and ω3K(t) = k

(b0+b1t+b2t2)1/2 .

Proposition 3 (Time-dependent Kepler potentials which admit additional FIs [17]). The
time-dependent Kepler potential V(t, q) = −ω(t)

r for the function ω2K(t) =
c11

b0+b1t , c11b1 6= 0

and the function ω3K(t) = k
(b0+b1t+b2t2)1/2 where k 6= 0 and b2

1 − 4b2b0 6= 0 admits additional
QFIs given by (88), (90) and (95), respectively.

12. The 3d Time-Dependent Oscillator

In this case, ν = −2 and conditions (75)–(78) give

a2 = a5 = a8 = a11 = a12 = a15 = a16 = a18 = 0

and
σ̇2 = −ä17, σ̇3 = −ä19, τ̇3 = −ä20. (98)

Then, the constraint (59) implies that

σ̈4 − 2ωσ4 = 0, τ̈4 − 2ωτ4 = 0, η̈4 − 2ωη4 = 0, (99)

...
a 3 − 8ωȧ3 − 4ω̇a3 = 0,

...
a 9 − 8ωȧ9 − 4ω̇a9 = 0,

...
a 13 − 8ωȧ13 − 4ω̇a13 = 0, (100)

...
a 17 − 8ωȧ17 − 4ω̇a17 = 0,

...
a 19 − 8ωȧ19 − 4ω̇a19 = 0,

...
a 20 − 8ωȧ20 − 4ω̇a20 = 0. (101)
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Therefore,

K11 =
c2

2
y2 +

c1

2
z2 + c6yz + a3

K12 =
c4

2
z2 − c2

2
xy− c6

2
xz− c5

2
yz + a17

K13 =
c5

2
y2 − c6

2
xy− c1

2
xz− c4

2
yz + a19

K22 =
c2

2
x2 +

c3

2
z2 + c5xz + a13 (102)

K23 =
c6

2
x2 − c5

2
xy− c4

2
xz− c3

2
yz + a20

K33 =
c1

2
x2 +

c3

2
y2 + c4xy + a9

and

K1 = −ȧ3x + σ2y + σ3z + σ4

K2 = −(σ2 + 2ȧ17)x− ȧ13y + τ3z + τ4 (103)

K3 = −(σ3 + 2ȧ19)x− (τ3 + 2ȧ20)y− ȧ9z + η4.

Before we proceed with considering various subcases it is important that we discuss
the ordinary differential equations (ODEs) (100) and (101).

12.1. The Lewis Invariant

Equations of the form
...
a − 8ωȧ− 4ω̇a = 0 (104)

where a = a(t) can be written as follows

aä− 1
2

ȧ2 − 4ωa2 = c0 = const. (105)

By putting a = −ρ2 where ρ = ρ(t), Equation (105) becomes

ρ̈− 2ωρ− c0

2ρ3 = 0. (106)

For 2ω(t) = −ψ2(t), Equation (106) is written

ρ̈ + ψ2ρ− c0

2ρ3 = 0. (107)

Equation (107) is the auxiliary Equation (see [8,34,35]) that should be introduced in
order to derive the Lewis invariant for the one-dimensional (1d) time-dependent oscillator

ẍ + ψ2x = 0. (108)

By eliminating the ψ2 using (108) and multiplying with the factor xρ̇− ρẋ Equation (107)
gives

ρ̈− ρ

x
ẍ− c0

2ρ3 = 0 =⇒
[

1
2
(xρ̇− ρẋ)2 +

c0

4

(
x
ρ

)2
]·

= 0 =⇒

I ≡ 1
2
(xρ̇− ρẋ)2 +

c0

4

(
x
ρ

)2
= const (109)

which is the well-known Lewis invariant for the 1d time-dependent harmonic oscillator or,
equivalently, a FI for the two-dimensional (2d) time-dependent system with equations of
motion (107) and (108).
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12.2. The System of Equations (98)–(101)

The conditions (99) are not involved into the conditions (98), (100) and (101). This
means that the parameters σ4, τ4, η4 give different independent FIs from the remaining
parameters a3, a9, a13, a17, a19, a20. Therefore, without loss of generality they can be treated
separately. This leads to the following two cases.

12.2.1. a3 6= 0, σ4 = τ4 = η4 = 0

Because the ODEs (100) and (101) are independent (i.e., each one leads to a different
FI) and are of the same form without loss of generality we assume

a9 = k1a3, a13 = k2a3, a17 = k3a3, a19 = k4a3, a20 = k5a3

where k1, k2, k3, k4, k5 are arbitrary constants.
From the discussion of Section 12.1 and the assumption a3 6= 0 condition (100) con-

cerning a3(t) becomes (see Equation (9.2) in [8])
...
a 3 − 8ωȧ3 − 4ω̇a3 = 0 =⇒ a3 ä3 −

1
2

ȧ2
3 − 4ωa2

3 = c0 =⇒ ω(t) =
ä3

4a3
− 1

8

(
ȧ3

a3

)2
− c0

4a2
3

(110)

where c0 is an arbitrary constant and a3(t) is an arbitrary non-zero function.
Moreover, conditions (98) become

σ2 = −ȧ17, σ3 = −ȧ19, τ3 = −ȧ20

because any additional constant (in general σ2 = −ȧ17 + m1 where m1 is a constant) leads
to the usual LFIs of the angular momentum.

Then the KT (102) and the vector (103) become (we set c1 = ... = c6 = 0 because they
generate the already-found FIs of the angular momentum)

Kab = a3

 1 k3 k4
k3 k2 k5
k4 k5 k1

, Ka = −ȧ3

 x + k3y + k4z
k3x + k2y + k5z
k4x + k5y + k1z

.

Substituting in the constraints (57) and (58) we find

K =
ȧ2

3 + 2c0

4a3

(
x2 + k2y2 + k1z2 + 2k3xy + 2k4xz + 2k5yz

)
.

Using Equation (110) we can write ȧ2
3+2c0
4a3

= ä3
2 − 2ωa3.

The QFI is

I = a3

(
ẋ2 + k2ẏ2 + k1ż2 + 2k3 ẋẏ + 2k4 ẋż + 2k5ẏż

)
− ȧ3(x + k3y + k4z)ẋ−

−ȧ3(k3x + k2y + k5z)ẏ− ȧ3(k4x + k5y + k1z)ż +

+

(
ä3

2
− 2ωa3

)(
x2 + k2y2 + k1z2 + 2k3xy + 2k4xz + 2k5yz

)
.

This expression contains six QFIs which are the components of the symmetric tensor
(see Equations (1.4) and (6.24) in [8])

Λij = a3
(
q̇i q̇j − 2ωqiqj

)
− ȧ3q(i q̇j) +

ä3

2
qiqj. (111)

This tensor for a3 = const 6= 0 reduces to the Jauch–Hill–Fradkin tensor Bij for
ω = − c0

4a2
3
= const.

If we make the transformation (see Section 12.1) a3(t) = −ρ2(t) and 2ω(t) = −ψ2(t),
Equation (54) becomes

q̈a − 2ωqa = 0 =⇒ q̈a + ψ2qa = 0 (112)
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and the QFIs (111) give

Λij = −(ρq̇i − ρ̇qi)
(
ρq̇j − ρ̇qj

)
− c0

2
ρ−2qiqj (113)

where the condition (110) takes the form (107).
The symmetric tensor (113) may be thought of as a 3d generalization of the 1d

Lewis invariant (109). Moreover, Equation (113) coincides with Equation (8) in [14] and
Equation (1.4) in [8] when c0 = 2.

12.2.2. a3 = a9 = a13 = a17 = a19 = a20 = 0, σ4 6= 0

In this case, the conditions (100) and (101) vanish identically; the conditions (98) imply
that σ2 = c7, σ3 = c8 and τ3 = c9.

Since the remaining ODEs (99) are all independent (i.e., each one generates an inde-
pendent FI) and of the same form without loss of generality we assume

τ4 = k1σ4, η4 = k2σ4

where k1, k2 are arbitrary constants.
From (99) for σ4 6= 0 we get

ω(t) =
σ̈4

2σ4
. (114)

The parameters cA where A = 1, 2, ..., 9 produce the FIs of the angular momentum
and we fix them to zero. Therefore

Kab = 0, Ka = σ4(1, k1, k2).

Substituting in the remaining constraints (57) and (58) we find

K = −σ̇4(x + k1y + k2z).

The QFI is
I = σ4 ẋ− σ̇4x + k1(σ4ẏ− σ̇4y) + k2(σ4ż− σ̇4z)

which contains the irreducible LFIs (see Equation (6.25) in [8])

I4i = f q̇i − ḟ qi (115)

where f (t) is an arbitrary non-zero function satisfying (114). We note that the LFIs (115)

can be derived directly from the equations of motion for ω(t) = f̈
2 f .

From the above two cases, we arrive at the following conclusion.

Proposition 4 (3d time-dependent oscillators which admit additional FIs). For the function

ω(t) = ä3
4a3
− 1

8

(
ȧ3
a3

)2
− c0

4a2
3

where a3(t) 6= 0, c0 is an arbitrary constant and the function

ω(t) = f̈
2 f where f (t) 6= 0 the resulting 3d time-dependent oscillator V(t, q) = −ω(t)r2 admits

the QFIs (111) and the LFIs (115), respectively.

13. A Special Class of Time-Dependent Oscillators

In Proposition 4, it has been shown that the time-dependent oscillator (ν = −2) for
the frequency

ω1O(t) =
f̈

4 f (t)
− 1

8

(
ḟ
f

)2

− c0

4 f 2 (116)
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where f (t) is an arbitrary non-zero function admits the six QFIs

Λij = f (t)
(
q̇i q̇j − 2ωqiqj

)
− ḟ q(i q̇j) +

f̈
2

qiqj (117)

and for the frequency

ω2O(t) =
g̈

2g(t)
(118)

where g(t) is an arbitrary non-zero function admits the three LFIs

I4i = g(t)q̇i − ġqi. (119)

We consider the class of the 3d time-dependent oscillators for which ω1O(t) = ω2O(t).
These oscillators admit both the six QFIs Λij and the three LFIs I4i.

The condition ω1O(t) = ω2O(t) relates the functions f (t), g(t) as follows

ω3O(t) =
f̈

4 f (t)
− 1

8

(
ḟ
f

)2

− c0

4 f 2 =
g̈

2g(t)
. (120)

It can be easily proved that

g = f 1/2 cos θ, θ̇ =
( c0

2

)1/2
f−1 =⇒ θ(t) =

( c0

2

)1/2 ∫ dt
f (t)

(121)

and
g = f 1/2 sin θ, θ̇ =

( c0

2

)1/2
f−1 =⇒ θ(t) =

( c0

2

)1/2 ∫ dt
f (t)

(122)

satisfy the requirement (120) for any non-zero function f (t). In other words, all the time-
dependent oscillators with frequency

ω3O(t) =
f̈

4 f (t)
− 1

8

(
ḟ
f

)2

− c0

4 f 2 (123)

admit the six QFIs

Λij = f (t)
(
q̇i q̇j − 2ωqiqj

)
− ḟ q(i q̇j) +

f̈
2

qiqj (124)

and the six LFIs

I41i =
( c0

2

)1/2
f−1/2qi sin θ +

(
f 1/2q̇i −

ḟ
2

f−1/2qi

)
cos θ (125)

I42i = −
( c0

2

)1/2
f−1/2qi cos θ +

(
f 1/2q̇i −

ḟ
2

f−1/2qi

)
sin θ. (126)

These are the LFIs Jk
3 , Jk

4 derived in Equations (44) and (45) in [10] using Noether point
symmetries and Noether’s theorem.

We note that
dI42i
dθ

= I41i (127)

and
Λij = I41i I41j + I42i I42j. (128)

Next, we consider the LFIs of the angular momentum Li = qi+1q̇i+2 − qi+2q̇i+1 which
can be expressed equivalently as components of the totally antisymmetric tensor

Lij = qi q̇j − qj q̇i = εijkLk (129)
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where εijk is the 3d Levi-Civita symbol and Li = Li since the kinetic metric γij = δij. Then
(see Equation (51) in [10])

Lij =

(
2
c0

)1/2(
I41i I42j − I41j I42i

)
. (130)

Proposition 5. For the class of 3d time-dependent oscillators with potential V(t, q) = −ω(t)r2

where ω(t) is defined in terms of an arbitrary non-zero (smooth) function f (t) as in (123), the only
independent FIs are the LFIs I41i, I42i.

In order to recover the results of [10], we assume a time-dependent oscillator with
ω3O(t) given by (123) and we write the non-zero function f (t) in the form f (t) = ρ2(t).
Then Equation (123) becomes

ω3O(t) =
ρ̈

2ρ
− c0

4ρ4 . (131)

The relations (121) and (122) become

g = ρ cos θ, θ̇ =
( c0

2

)1/2
ρ−2 =⇒ θ(t) =

( c0

2

)1/2 ∫ dt
ρ2 (132)

g = ρ sin θ, θ̇ =
( c0

2

)1/2
ρ−2 =⇒ θ(t) =

( c0

2

)1/2 ∫ dt
ρ2 (133)

and the LFIs (125) and (126) take the form

I41i =
( c0

2

)1/2
ρ−1qi sin θ + (ρq̇i − ρ̇qi) cos θ (134)

I42i = −
( c0

2

)1/2
ρ−1qi cos θ + (ρq̇i − ρ̇qi) sin θ. (135)

These latter expressions for c0 = 2 coincide with the independent LFIs (44) and (45)
found in [10].

Finally, we note that if we consider in this special class of oscillators the simple case
f = 1, we find ω3O(t) = const = − c0

4 ≡ k which is the 3d autonomous oscillator (for k < 0).
Then it can be shown that the exponential LFIs I3i± (see Table 1) found in [27] can be written
in terms of I41i, I42j. Indeed we have I3i±(k > 0) = I41i ∓ iI42i and I3i±(k < 0) = I41i ± iI42i.

14. Collection of Results

We collect the results concerning the time-dependent generalized Kepler potential
for all values of ν in Table 2. We note that for ν = −2, 1, 2 the dynamical system is the
time-dependent 3d oscillator, the time-dependent Kepler potential and the Newton–Cotes
potential, respectively. Concerning notation, we have qi = (x, y, z), qi ≡ qi+3k for all k ∈ N
and R̃i = (q̇j q̇j)qi − (q̇jqj)q̇i − k

r(b0+b1t) qi.
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Table 2. The LFIs/QFIs of the time-dependent generalized Kepler potential V = −ω(t)
rν .

ν ω(t) LFIs and QFIs

∀ ν

∀ ω Li = qi+1 q̇i+2 − qi+2 q̇i+1, Lij = qi q̇j − qj q̇i = εijk Lk

k Hν = 1
2 q̇i q̇i − k

rν

ων = k
(
b0 + b1t + b2t2) ν−2

2 Jν = (b0 + b1t + b2t2)
(

q̇i q̇i
2 −

ων
rν

)
− b1+2b2t

2 qi q̇i +
b2r2

2

−2

k Bij = q̇i q̇j − 2kqiqj

k > 0 I3a± = e±
√

2kt(q̇a ∓
√

2kqa)

k < 0 I3a± = e±i
√
−2kt(q̇a ∓ i

√
−2kqa)

k
(b0+b1t+b2t2)2 Iij = (b0 + b1t + b2t2)

(
q̇i q̇j − 2ωqiqj

)
− (b1 + 2b2t)q(i q̇j) + b2qiqj

f̈
4 f (t) −

1
8

(
ḟ
f

)2
− c0

4 f 2

Lij =
(

2
c0

)1/2(
I41i I42j − I41j I42i

)
,

Λij = f (t)
(
q̇i q̇j − 2ωqiqj

)
− ḟ q(i q̇j) +

f̈
2 qiqj = I41i I41j + I42i I42j,

I41i =
( c0

2

)1/2 f−1/2qi sin θ +
(

f 1/2 q̇i − ḟ
2 f−1/2qi

)
cos θ,

I42i = −
( c0

2

)1/2 f−1/2qi cos θ +
(

f 1/2 q̇i − ḟ
2 f−1/2qi

)
sin θ

where θ =
( c0

2

)1/2 ∫ f−1dt
g̈

2g(t) I4i = g(t)q̇i − ġqi

1

k Ri = (q̇j q̇j)qi − (q̇jqj)q̇i − k
r qi

k
b0+b1t

E2 = (b0 + b1t)2
[

q̇i q̇i
2 −

k
r(b0+b1t)

]
− b1(b0 + b1t)qi q̇i +

b2
1r2

2 ,
Ai = (b0 + b1t)R̃i + b1(qi+2Li+1 − qi+1Li+2)
where R̃i = (q̇j q̇j)qi − (q̇jqj)q̇i − k

r(b0+b1t) qi

k
(b0+b1t+b2t2)1/2 E3 = (b0 + b1t + b2t2)

[
q̇i q̇i

2 −
k

r(b0+b1t+b2t2)1/2

]
− b1+2b2t

2 qi q̇i +
b2r2

2

2 k I1 = −H2t2 + t(q̇iqi)− r2

2 , I2 = −H2t + 1
2 (q̇

iqi)

15. Integrating the Equations

In this section, we use the independent LFIs I41i, I42i to integrate the equations of
the special class of 3d time-dependent oscillators (ν = −2) defined in Section 13 with
ω(t) given by (123). We also use the FIs Li, E2, Ai to integrate the time-dependent Kepler
potential (ν = 1) with ω(t) = k

b0+b1t where kb1 6= 0 (see Section 11.1).

15.1. The 3d Time-Dependent Oscillator with ω(t) Given by (123)

Using the LFIs (125) and (126) we find

qi(t) =
(

2
c0

)1/2
f 1/2

(
I41i sin θ − I42i cos θ

)
(136)

where I41i, I42i, i = 1, 2, 3, are arbitrary constants (real or imaginary) and θ(t) =
( c0

2
)1/2∫

f−1dt.
The solution (136) coincides with the solution (52) in [10].
In the case of the 1d time-dependent oscillator, if we set 2ω(t) = −ψ2(t), c0 = 2 and

f (t) = ρ2(t), Equation (54) and the defining relation (123) for ω(t) become

ẍ = −ψ2x (137)

ρ̈ = −ψ2ρ + ρ−3. (138)

The LFIs (134) and (135) become

I41 = ρ−1x sin θ + (ρẋ− xρ̇) cos θ (139)

I42 = −ρ−1x cos θ + (ρẋ− xρ̇) sin θ. (140)
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The general solution (136) is

x(t) = ρ(t)
(

I41 sin θ − I42 cos θ
)

(141)

where θ̇ = ρ−2 and ρ(t) is a given non-zero function which defines ψ(t) through (138). This
is the 1d solution (9) in [10].

15.2. The Solution of the Time-Dependent Kepler Potential with ω2K(t) = k
b0+b1t Where kb1 6= 0

In Section 11.1, it is shown that this system admits the following FIs:

L1 = yż− zẏ, L2 = zẋ− xż, L3 = xẏ− yẋ

E2 = (b0 + b1t)2
[

q̇i q̇i
2
− k

r(b0 + b1t)

]
− b1(b0 + b1t)qi q̇i +

b2
1r2

2

Ai = (b0 + b1t)R̃i + b1(qi+2Li+1 − qi+1Li+2)

where R̃i = (q̇j q̇j)qi − (q̇jqj)q̇i − k
r(b0+b1t) qi. The components of the generalized Runge–

Lenz vector are written

A1 = (b0 + b1t)(ẏL3 − żL2) + b1(zL2 − yL3)−
k
r

x

A2 = (b0 + b1t)(żL1 − ẋL3) + b1(xL3 − zL1)−
k
r

y

A3 = (b0 + b1t)(ẋL2 − ẏL1) + b1(yL1 − xL2)−
k
r

z.

Since the angular momentum is an FI, the motion is on a plane. We choose, without
loss of generality, the plane z = 0 and on that the polar coordinates x = r cos θ, y = r sin θ.
Then,

L1 = L2 = 0, L3 = r2θ̇, E2 = (b0 + b1t)2
[

ṙ2 + r2θ̇2

2
− k

r(b0 + b1t)

]
− b1(b0 + b1t)rṙ+

b2
1r2

2

A1 = L3

[
(b0 + b1t)ṙ− b1r

]
sin θ +

[
(b0 + b1t)L3rθ̇ − k

]
cos θ

A2 = −L3

[
(b0 + b1t)ṙ− b1r

]
cos θ +

[
(b0 + b1t)L3rθ̇ − k

]
sin θ, A3 = 0.

Using the relation θ̇ = L3
r2 to replace θ̇, the above relations are written

E2 = (b0 + b1t)2

[
ṙ2

2
+

L2
3

2r2 −
k

r(b0 + b1t)

]
− b1(b0 + b1t)rṙ +

b2
1r2

2
(142)

A1 = L3

[
(b0 + b1t)ṙ− b1r

]
sin θ +

[
(b0 + b1t)

L2
3

r
− k
]

cos θ (143)

A2 = −L3

[
(b0 + b1t)ṙ− b1r

]
cos θ +

[
(b0 + b1t)

L2
3

r
− k
]

sin θ. (144)

By multiplying Equation (143) with cos θ and (144) with sin θ we find that

1
r
=

k
L2

3(b0 + b1t)
(1 + k1 cos θ + k2 sin θ) =⇒ r =

L2
3(b0 + b1t)

k(1 + k1 cos θ + k2 sin θ)
(145)

where k1 ≡ A1
k and k2 ≡ A2

k .
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Applying the transformation k1 = α cos β and k2 = α sin β, Equation (145) is written
(see also Section 5 in [17])

1
r
=

ω2K

L2
3

[
1 + α cos(θ − β)

]
=⇒ r =

L2
3ω−1

2K
1 + α cos(θ − β)

(146)

which for ω2K(t) = const (standard Kepler problem) reduces to the analytical equation of
a conic section in polar coordinates. In that case α is the eccentricity.

It is also worthwhile mentioning that the relation (94) becomes

2E2L2
3 + k2 = α2k2 =⇒ 2E2L2

3 = k2(α2 − 1).

Moreover, Equation (142) gives[
d
dt

(
r

b0 + b1t

)]2
= −2(b0 + b1t)−2

[
L2

3
2r2 −

k
r(b0 + b1t)

− E2

(b0 + b1t)2

]
.

Finally, in the polar plane the equations of motion (54) for ν = 1 become

r̈− rθ̇2 +
ω2K

r2 = 0 (147)

rθ̈ + 2ṙθ̇ = 0. (148)

Equation (148) implies the FI of the angular momentum L3 = r2θ̇. It can be easily
checked that the solution (145) satisfies Equation (147) by replacing θ̈ from (148) and θ̇ with
L3
r2 . The solution (145) into the FI L3 gives

∫ k2dt
L3

3(b0 + b1t)2
=
∫ dθ

(1 + k1 cos θ + k2 sin θ)2 =⇒ k
L2

3(b0 + b1t)
= − b1L3

k

∫ dθ

(1 + k1 cos θ + k2 sin θ)2 . (149)

Substituting (149) in (145) we obtain

1
r
= − b1L3

k
(1 + k1 cos θ + k2 sin θ)

∫ dθ

(1 + k1 cos θ + k2 sin θ)2 (150)

which coincides with Equation (5.17) in [17].

16. A Class of 1d Non-Linear Time-Dependent Equations

In this section, we use the well-known result [12] that the non-linear dynamical system

q̈a = −Γa
bc q̇b q̇c −ω(t)Qa(q) + φ(t)q̇a (151)

is equivalent to the linear dynamical system (without damping term)

d2qa

ds2 = −Γa
bc

dqb

ds
dqc

ds
− ω̄(s)Qa(q) (152)

where φ(t) is an arbitrary function such that

s(t) =
∫

e
∫

φ(t)dtdt, ω̄(s) = ω(t(s))
(

dt
ds

)2
⇐⇒ ω(t) = ω̄(s(t))e2

∫
φ(t)dt. (153)

We apply this result to the following problem:
Consider the second order differential equation

ẍ = −ω(t)xµ + φ(t)ẋ (154)
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where the constant µ 6= −1 and determine the relation between the functions ω(t), φ(t) for which
the equation admits a QFI; therefore, it is integrable.

This problem has been considered previously in [36,37] (see Equation (28a) in [36] and
Equation (17) in [37]) and has been answered partially using different methods. In [36], the
author used the Hamiltonian formalism where one looks for a canonical transformation to
bring the Hamiltonian in a time-separable form. In [37], the author used a direct method
for constructing FIs by multiplying the equation with an integrating factor. In [37], it is
shown that both methods are equivalent and that the results of [37] generalize those of [36].
In the following, we shall generalize the results of [37]; in addition, we discuss a number
of applications.

Equation (154) is equivalent to the equation

d2x
ds2 = −ω̄(s)xµ, µ 6= −1 (155)

where the function ω̄(s) is given by (153).
Replacing Q1 = xµ in the system of Equations (5)–(10) (in 1d Euclidean space, the KT

condition (5) K(ab;c) = 0 becomes K11,1 = 0 =⇒ K11 = K11(s), that is, it is an arbitrary
function of s), we find that K11 = K11(s) and the following conditions

K1(s, x) = −dK11

ds
x + b1(s) (156)

K(s, x) = 2ω̄K11
xµ+1

µ + 1
+

d2K11

ds2
x2

2
− db1

ds
x + b2(s) (157)

0 =

(
2 dω̄

ds K11

µ + 1
+

2ω̄ dK11
ds

µ + 1
+ ω̄

dK11

ds

)
xµ+1 − ω̄b1xµ +

+
d3K11

ds3
x2

2
− d2b1

ds2 x +
db2

ds
(158)

where b1(s), b2(s) are arbitrary functions. Then, the general QFI (3) becomes

I = K11(s)
(

dx
ds

)2
+ K1(s, x)

dx
ds

+ K(s, x). (159)

We consider the solution of the system (156)–(158) for various values of µ.
As will be shown for µ 6= −1 results a family of ‘frequencies’ ω̄(s) parameterized with

constants. However, for the specific values µ = 0, 1, 2 there results a family of ‘frequencies’
ω̄(s) parameterized with functions.

(1) Case µ = 0.

We find the QFI

I = K11

(
dx
ds

)2
− dK11

ds
x

dx
ds

+ b1(s)
dx
ds

+ c3x2 + 2ω̄(s)K11x− db1

ds
x +

∫
b1(s)ω̄(s)ds (160)

where K11 = c1 + c2s + c3s2, c1, c2, c3 are arbitrary constants and the functions b1(s), ω̄(s)
satisfy the condition

d2b1

ds2 = 2
dω̄

ds
K11 + 3ω̄

dK11

ds
. (161)

Using the transformation (153), Equations (160) and (161) become
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I =

[
c1 + c2

∫
e
∫

φ(t)dtdt + c3

(∫
e
∫

φ(t)dtdt
)2
]

e−2
∫

φ(t)dt ẋ2 −
[

c2 + 2c3

∫
e
∫

φ(t)dtdt
]

e−
∫

φ(t)dtxẋ +

+b1(s(t))e−
∫

φ(t)dt ẋ + c3x2 + 2ω(t)

[
c1 + c2

∫
e
∫

φ(t)dtdt + c3

(∫
e
∫

φ(t)dtdt
)2
]

e−2
∫

φ(t)dtx−

−ḃ1e−
∫

φ(t)dtx +
∫

b1(s(t))ω(t)e−
∫

φ(t)dtdt (162)

and

b̈1 − φḃ1 = 2e−
∫

φ(t)dt(ω̇− 2φω)

[
c1 + c2

∫
e
∫

φ(t)dtdt + c3

(∫
e
∫

φ(t)dtdt
)2
]
+

+3ω

[
c2 + 2c3

∫
e
∫

φ(t)dtdt
]

. (163)

(2) Case µ = 1.

We again derive the results of the time-dependent oscillator (see Table 2 for ν = −2)
in one dimension. Using the transformation (153), we deduce that the original equation

ẍ = −ω(t)x + φ(t)ẋ (164)

for the frequency
ω(t) = −ρ−1ρ̈ + φ(ln ρ)· + ρ−4e2

∫
φ(t)dt (165)

admits the general solution

x(t) = ρ(t)(A sin θ + B cos θ) (166)

where ρ(t) ≡ ρ(s(t)) and θ(s(t)) =
∫

ρ−2(t)e
∫

φ(t)dtdt.

(3) Case µ = 2.

We find the function ω̄ = K−5/2
11 and the QFI

I = K11(s)
(

dx
ds

)2
− dK11

ds
x

dx
ds

+ (c4 + c5s)
dx
ds

+
2
3

K−3/2
11 x3 +

d2K11

ds2
x2

2
− c5x (167)

where c4, c5 are arbitrary constants and the function K11(s) is given by

d3K11

ds3 = 2(c4 + c5s)K−5/2
11 . (168)

Using the transformation (153), the above results become

ω(t) = K−5/2
11 e2

∫
φ(t)dt (169)

I = K11e−2
∫

φ(t)dt ẋ2 − K̇11e−2
∫

φ(t)dtxẋ +

[
c4 + c5

∫
e
∫

φ(t)dtdt
]

e−
∫

φ(t)dt ẋ +
2
3

K−3/2
11 x3 +

+
(
K̈11 − φK̇11

)
e−2

∫
φ(t)dt x2

2
− c5x (170)

and
...
K11 − 3φK̈11 − φ̇K̇11 + 2φ2K̇11 = 2

[
c4 + c5

∫
e
∫

φ(t)dtdt
]

e3
∫

φ(t)dtK−5/2
11 (171)

where the function K11 = K11(s(t)).
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We note that for µ = 2 Equation (154), or to be more specific its equivalent (155),
arises in the solution of Einstein field equations when the gravitational field is spherically
symmetric and the matter source is a shear-free perfect fluid (see, e.g., [38–43]).

(4) Case µ 6= −1.

In this case, b1 = b2 = 0, K11 = c1 + c2s + c3s2 and ω̄(s) = (c1 + c2s + c3s2)−
µ+3

2

where c1, c2, c3 are arbitrary constants.
The QFI (159) becomes

I = (c1 + c2s + c3s2)

(
dx
ds

)2
− (c2 + 2c3s)x

dx
ds

+
2

µ + 1
(c1 + c2s + c3s2)−

µ+1
2 xµ+1 + c3x2 (172)

and the function
ω̄(s) = (c1 + c2s + c3s2)−

µ+3
2 . (173)

It can be checked that (172) and (173) for µ = 0, 1, 2 give results compatible with the ones
we found for these values of µ.

Using the transformation (153), we deduce that the original system (154) is integrable
iff the functions ω(t), φ(t) are related as follows

ω(t) =

[
c1 + c2

∫
e
∫

φ(t)dtdt + c3

(∫
e
∫

φ(t)dtdt
)2
]− µ+3

2

e2
∫

φ(t)dt. (174)

In this case, the associated QFI (172) is

I =

[
c1 + c2

∫
e
∫

φ(t)dtdt + c3

(∫
e
∫

φ(t)dtdt
)2
]

e−2
∫

φ(t)dt ẋ2 −
[

c2 + 2c3

∫
e
∫

φ(t)dtdt
]

e−
∫

φ(t)dtxẋ +

+
2

µ + 1

[
c1 + c2

∫
e
∫

φ(t)dtdt + c3

(∫
e
∫

φ(t)dtdt
)2
]− µ+1

2

xµ+1 + c3x2. (175)

These expressions generalize the expressions given in [37]. Indeed, if we introduce
the notation ω(t) ≡ α(t), φ(t) ≡ −β(t), then Equations (174) and (175) for c3 = 0 become
Equarions (25) and (26) of [37].

16.1. The Generalized Lane–Emden Equation

Consider the 1d generalized Lane–Emden Equation (see Equation (6) in [44])

ẍ = −ω(t)xµ − k
t

ẋ (176)

where k is an arbitrary constant. This equation is well-known in the literature because of its
many applications in astrophysical problems (see Refs. in [44]). In general, to find explicit
analytic solutions of Equation (176) it is a major task. For example, such solutions have only
been found for the special values µ = 0, 1, 5, in the case that the function ω(t) = 1 and the
constant k = 2. New, exact solutions, or at least the Liouville integrability, of Equation (176)
are guaranteed, if we find a way to determine its FIs. We see that Equation (176) is a subcase
of the original Equation (154) for φ(t) = − k

t ; therefore, we can apply the results found
earlier in Section 16.

In what follows, we only discuss the fourth case where µ 6= −1 in order to compare our
results with those found in Table 1 of [44]. In particular, for φ(t) = − k

t the function (174)
and the associated QFI (175) become

ω(t) = t−2k
(

c1 + c2M + c3M2
)− µ+3

2 (177)

and

I = t2k
(

c1 + c2M + c3M2
)

ẋ2 − tk(c2 + 2c3M)xẋ +
2

µ + 1

(
c1 + c2M + c3M2

)− µ+1
2 xµ+1 + c3x2 (178)
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where the function M(t) =
∫

t−kdt.
Concerning the form of the function M(t) there are two cases to consider: (a) k = 1;

(b) k 6= 1.

(a) Case k = 1.

We have M = ln t and Equations (177) and (178) give

ω(t) = t−2
[
c1 + c2 ln t + c3(ln t)2

]− µ+3
2 (179)

and

I = t2
[
c1 + c2 ln t + c3(ln t)2

]
ẋ2 − t(c2 + 2c3 ln t)xẋ +

+
2

µ + 1

[
c1 + c2 ln t + c3(ln t)2

]− µ+1
2 xµ+1 + c3x2. (180)

We consider the following subcases:

- c2 = c3 = 0, c1 6= 0.

Equations (179) and (180) give the function ω(t) = At−2 and the QFI (divide I
with 2c1)

I =
t2

2
ẋ2 +

A
µ + 1

xµ+1

where the constant A = c−
µ+3

2
1 . This is the Case 5 in Table 1 of [44].

- c1 = c3 = 0, c2 6= 0.

Equations (179) and (180) give the function ω(t) = At−2(ln t)−
µ+3

2 and the QFI (divide
I with 2c2)

I =
1
2

t2(ln t)ẋ2 − t
2

xẋ +
A

µ + 1
(ln t)−

µ+1
2 xµ+1

where the constant A = c−
µ+3

2
2 . This is the Case 6 in Table 1 of [44].

- c1 = c2 = 0, c3 6= 0.

Equations (181) and (182) give the function ω(t) = At−2(ln t)−µ−3 and the QFI (divide
I with 2c3)

I =
1
2
(t ln t)2 ẋ2 − t(ln t)xẋ +

A
µ + 1

(ln t)−µ−1xµ+1 +
x2

2

where the constant A = c−
µ+3

2
3 . This is the Case 7 in Table 1 of [44].

(b) Case k 6= 1.

We have M = t1−k

1−k and Equations (177) and (178) give

ω(t) = t−2k
[

c1 +
c2

1− k
t1−k +

c3

(1− k)2 t2(1−k)
]− µ+3

2
(181)

and

I = t2k
[

c1 +
c2

1− k
t1−k +

c3

(1− k)2 t2(1−k)
]

ẋ2 − tk
(

c2 +
2c3

1− k
t1−k

)
xẋ +

+
2

µ + 1

[
c1 +

c2

1− k
t1−k +

c3

(1− k)2 t2(1−k)
]− µ+1

2
xµ+1 + c3x2. (182)

We consider the following subcases:
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- c2 = c3 = 0, c1 6= 0.

Equations (181) and (182) give the function ω(t) = At−2k and the QFI (divide I
with 2c1)

I =
t2k

2
ẋ2 +

A
µ + 1

xµ+1

where the constant A = c−
µ+3

2
1 . This is the Case 2 in Table 1 of [44].

- c1 = c3 = 0, c2 6= 0.

Equations (181) and (182) give the function ω(t) = At
1
2 (kµ−k−µ−3) and the QFI (multi-

ply I with 1−k
c2

)

I = tk+1 ẋ2 + (k− 1)tkxẋ +
2A

µ + 1
t

1
2 (µ+1)(k−1)xµ+1

where the constant A =
(

c2
1−k

)− µ+3
2 . This is the Case 3 in Table 1 of [44].

We note also that for k = µ+3
µ−1 where µ 6= 1 the function ω(t) = A = const. This

reproduces the first subcase of Case 1 in Table 1 of [44] which is the Case 5.1 of [45].

- c1 = c2 = 0, c3 6= 0.

Equations (181) and (182) give the function ω(t) = Atkµ+k−µ−3 and the QFI (multiply

I with (1−k)2

2c3
)

I =
t2

2
ẋ2 + (k− 1)txẋ +

A
µ + 1

t(µ+1)(k−1)xµ+1 +
1
2
(k− 1)2x2

where the constant A =
(

1−k√
c3

)µ+3
. This is the Case 4 in Table 1 of [44].

We note also that for k = µ+3
µ+1 the function ω(t) = A = const. This recovers the second

subcase of Case 1 in Table 1 of [44] which is the Case 5.2 of [45].
We conclude that the seven cases 1–7 found in Table 1 of [44] are just subcases of

the above two general cases a) and b). To compare with these results one must adopt the
notation ω = f , k = n and µ = p.

17. Conclusions

The purpose of the present work was to compute the QFIs of time-dependent dy-
namical systems of the form q̈a = −Γa

bc q̇b q̇c −ω(t)Qa(q), where the connection coefficients
are computed from the kinetic metric, using the direct method instead of the Noether
symmetries as it is usually done. In the direct method, one assumes that the QFI is of
the form I = Kab q̇a q̇b + Ka q̇a + K and demands that dI/dt = 0. This leads to a system of
PDEs whose solution provides the QFIs. One key result is that the tensor Kab is a KT of the
kinetic metric.

We have discussed the solution of the system of equations at two levels. The first
level is purely geometric and concerns the KT Kab; the second level is the physical, which
concerns the quantities ω(t), Qa(q) defining the dynamical system.

Concerning the first level we have applied two different methods:

a. The polynomial method in which one assumes a general polynomial form in the
variable t both for the KT Kab and for the vector Ka.

b. The basis method where one computes first a basis of the KTs of order 2 of the
kinetic metric and then expresses Kab in this basis assuming that the ‘components’ are
functions of t.

In both methods, the key point is to compute the scalar K.
Concerning the dynamical quantities ω(t), Qa(q) we have chosen to work in two ways:
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a. First, we considered the polynomial method and assumed the function ω(t) to be a
polynomial leaving the quantities Qa unspecified. It is found that in this case, the
resulting dynamical system admits two independent QFIs whose explicit expression
together with conditions involving the quantities Qa and the collineations of the
kinetic metric are given in Theorem 1.

b. In the basis method we worked the other way. That is, we assumed the quantities

Qa(q) to be given by the time-dependent generalized Kepler potential V = −ω(t)
rν and

determined the functions ω(t) for which QFIs exist. The results of this detailed study
are displayed in Table 2 for all values of ν. For the values ν = −2, 1, 2 we recovered
the known results concerning the time-dependent 3d oscillator, the time-dependent
Kepler potential and the Newton–Cotes potential, respectively. We note that these
latter results have appeared over the years in many works whereas in the present
discussion occur as particular cases of a single geometric approach.

The last part of our considerations concerns the well-known proposition that under
a reparameterization the linear damping φ(t)q̇a can be absorbed to a time-dependent
generalized force. We used this proposition in the case of a 1d non-linear second order time-
dependent differential equation, we determined the condition that the time-dependent
coefficients of the equation must satisfy in order a QFI to exist and we computed this
QFI. As an application, we studied the properties of the well-known generalized Lane–
Emden equation.

We note that one is possible to consider other dynamical quantities and/or kinetic
metric and compute the QFIs. What is the same in all cases is the method of work which
we hope we have presented adequately in the present paper.
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Appendix A

Substituting the polynomial function ω(t) given by (39) in the system of Equations (34)–(38)
we have the following cases.

I. Case n = m (both n, m finite)

From Equation (34) we obtain

C(k)ab = −L(k−1)(a;b), k = 1, ..., n, L(n)(a;b) = 0. (A1)

Therefore, L(n)a is a KV of γab.
Condition (37) gives
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0 = −2
(

b1 + 2b2t + ... + `b`t`−1
)(

C(0)abQb + C(1)abQbt + ... + C(n)abQb tn

n

)
+ 2L(2)a + 6L(3)at + ... +

+n(n− 1)L(n)atn−2 − 2
(

b0 + b1t + ... + b`t`
)(

C(1)abQb + C(2)abQbt + ... + C(n)abQbtn−1
)
+

+
(

b0 + b1t + ... + b`t`
)[(

L(0)bQb
)

,a
+
(

L(1)bQb
)

,a
t + ... +

(
L(n−1)bQb

)
,a

tn−1 +
(

L(n)bQb
)

,a
tn
]

.

This is a polynomial of the general form P(0)a(q) + P(1)a(q)t + ... + P(n+`)a(q)tn+` = 0.
The vanishing of the coefficients P(k)a(q) in the last polynomial implies that

L(n)aQa = s = const (A2)

`−1

∑
s=0

[
−

2(k + s)b(k+s≤`)
n− s

C(n−s≥0)abQb − 2b(k+s≤`)C(n−s>0)abQb + b(k+s≤`)

(
L(n−s−1≥0)bQb

)
,a

]
= 0 (A3)

where k = 1, 2, ..., `,

−
`

∑
s=1

[
2sbs

n− s
C(n−s≥0)abQb

]
+

`

∑
s=0

[
−2bsC(n−s>0)abQb + bs

(
L(n−s−1≥0)bQb

)
,a

]
= 0 (A4)

and

k(k− 1)L(k)a −
`

∑
s=1

[
2sbs

k− s− 1
C(k−s−1≥0)abQb

]
+

`

∑
s=0

[
−2bsC(k−s−1>0)abQb + bs

(
L(k−s−2≥0)bQb

)
,a

]
= 0 (A5)

where k = 2, 3, ...n.
We note that in the n + `+ 1 formulae (A3)–(A5), when the undefined quantity

C(0)ab
0

appears in the calculations, it must be replaced by C(0)ab in order to have a consistent result.
We continue with the remaining constraints (35) and (36) in order to determine the

scalar coefficient K(t, q).
The solution of (36) is

K,t = L(0)aQa
(

b0 + b1t + ... + b`t`
)
+ L(1)aQa

(
b0t + b1t2 + ... + b`t`+1

)
+ ... +

+L(n−1)aQa
(

b0tn−1 + b1tn + ... + b`tn+`−1
)
+ s
(

b0tn + b1tn+1 + ... + b`tn+`
)

=⇒

K = L(0)aQa

(
b0t + b1

t2

2
+ ... + b`

t`+1

`+ 1

)
+ L(1)aQa

(
b0

t2

2
+ b1

t3

3
+ ... + b`

t`+2

`+ 2

)
+ ... +

+L(n−1)aQa

(
b0

tn

n
+ b1

tn+1

n + 1
+ ... + b`

tn+`

n + `

)
+ s

(
b0

tn+1

n + 1
+ b1

tn+2

n + 2
+ ... + b`

tn+`+1

n + `+ 1

)
+ G(q).

Replacing K in (35) and using the conditions (A2)–(A5) we find that

G,a = 2b0C(0)abQb − L(1)a.

Condition (38) is satisfied trivially from the above solutions.
The QFI is

I =

(
tn

n
C(n)ab + ... + tC(1)ab + C(0)ab

)
q̇a q̇b + tnL(n)a q̇a + ... + tL(1)a q̇a + L(0)a q̇a +

+L(0)aQa

(
b0t + b1

t2

2
+ ... + b`

t`+1

`+ 1

)
+ L(1)aQa

(
b0

t2

2
+ b1

t3

3
+ ... + b`

t`+2

`+ 2

)
+ ... +

+L(n−1)aQa

(
b0

tn

n
+ b1

tn+1

n + 1
+ ... + b`

tn+`

n + `

)
+ s

(
b0

tn+1

n + 1
+ b1

tn+2

n + 2
+ ... + b`

tn+`+1

n + `+ 1

)
+ G(q)
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where C(0)ab is a KT, the KTs C(k)ab = −L(k−1)(a;b) for k = 1, ..., n, L(n)a is a KV such that
L(n)aQa = s, G,a = 2b0C(0)abQb − L(1)a and the conditions (A3)–(A5) are satisfied.

II. Case n 6= m. (one of n or m may be infinite)

We find QFIs that are subcases of those found in Case I and Case III which follows.

III. Both n, m are infinite.

In this case, we consider the solution to have the form

Kab(t, q) = g(t)Cab(q), Ka(t, q) = f (t)La(q)

where the functions g(t), f (t) are analytic so that they may be represented by polynomial
functions as follows

g(t) =
n

∑
k=0

cktk = c0 + c1t + ... + cntn

f (t) =
m

∑
k=0

dktk = d0 + d1t + ... + dmtm.

In the above expressions, the coefficients c0, c1, ..., cn and d0, d1, ..., dm are arbitrary
constants. We find that only the following subcase gives a new independent FI. All other
subcases give results already found.

Subcase (g = eλt, f = eµt), λµ 6= 0.
In this case, the system of Equations (34)–(37) (Equation (38) is satisfied trivially from

the solutions found below) becomes:

λeλtCab + eµtL(a;b) = 0 (A6)

−2
(

b0 + b1t + ... + b`t`
)

eλtCabQb + µeµtLa + K,a = 0 (A7)

K,t − (b0 + b1t + ... + b`t`)eµtLaQa = 0 (A8)

−2
(

b1 + 2b2t + ... + `b`t`−1
)

eλtCabQb − 2λ(b0 + b1t + ... + b`t`)eλtCabQb+

+µ2eµtLa + (b0 + b1t + ... + b`t`)eµt
(

LbQb
)

,a
= 0. (A9)

We consider the following subcases.

a. For λ 6= µ:

From (A6) we have that Cab = 0 and La is a KV.
From (A9) we find that La = 0.
Therefore, the QFI Ie(λ 6= µ) = const which is trivial.

b. For λ = µ:

From (A6) we have that Cab = − 1
λ L(a;b). Therefore, L(a;b) is a KT.

We consider two cases according to the degree ` of the polynomial ω(t).

- Case ` = 1.

From (A9) we find that (
LbQb

)
,a

= 2λCabQb (A10)

λ2La + b0

(
LbQb

)
,a
− 2(b1 + λb0)CabQb = 0. (A11)
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Replacing with Cab = − 1
λ L(a;b) and by substituting (A10) in (A11) we obtain(

LbQb
)

,a
= −2L(a;b)Q

b (A12)

λ3La + 2b1L(a;b)Q
b = 0. (A13)

The solution of (A8) is

K =

(
b0

λ
− b1

λ2

)
eλtLaQa +

b1

λ
teλtLaQa + G(q)

which when replaced in (A7) gives G,a = 0, that is G = const ≡ 0.
The QFI is

Ie(` = 1) = −eλtL(a;b) q̇
a q̇b + λeλtLa q̇a +

(
b0 −

b1

λ

)
eλtLaQa + b1teλtLaQa (A14)

where L(a;b) is a KT,
(

LbQb
)

,a
= λ3

b1
La and λ3La = −2b1L(a;b)Qb.

- Case ` > 1.

From (A9) we find that
(

LbQb
)

,a
= 2λCabQb, CabQb = 0 and λ2La = 2b1CabQb.

Therefore, La = 0 and hence Cab = − 1
λ L(a;b) = 0. We end up with a trivial FI

Ie = const.
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