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Abstract: Since Gottlieb introduced and investigated the so-called Gottlieb polynomials in 1938,
which are discrete orthogonal polynomials, many researchers have investigated these polynomials
from diverse angles. In this paper, we aimed to investigate the q-extensions of these polynomials
to provide certain q-generating functions for three sequences associated with a finite power series
whose coefficients are products of the known q-extended multivariable and multiparameter Gottlieb
polynomials and another non-vanishing multivariable function. Furthermore, numerous possible
particular cases of our main identities are considered. Finally, we return to Khan and Asif’s q-
Gottlieb polynomials to highlight certain connections with several other known q-polynomials, and
provide its q-integral representation. Furthermore, we conclude this paper by disclosing our future
investigation plan.

Keywords: Gottlieb polynomials in several variables; q-Gottlieb polynomials in several variables;
generating functions; generalized and generalized basic (or -q) hypergeometric function; Lauricella’s
multiple hypergeometric series in several variables; q-binomial theorem; q-exponential functions;
q-calculus; q-Jacobi polynomials; q-Meixner polynomials

1. Introduction and Preliminaries

Morris J. Gottlieb [1] introduced and investigated certain discrete orthogonal polyno-
mials, i.e., the so-called Gottlieb polynomials, obtained by

ϕm(x; η) = e−mη
m

∑
j=0

(
m
j

)(
x
j

)
(1− eη)j

= e−mη
2F1[−m,−x; 1; 1− eη ],

(1)

where m ∈ N0 and 2F1 denote Gauss’s hypergeometric series. Here and elsewhere, let C, Z,
and N stand for the sets of complex numbers, integers, and positive integers, respectively,
and also let N0 := N ∪ {0}, and Z≤0 := Z \N. A natural generalization of the 2F1 in (1)
is the generalized hypergeometric series uFv (u, v ∈ N0) with the v denominator and u
numerator parameters defined by

uFv

[
κ1, . . . , κu ;

$1, . . . , $v ;
z

]
: =

∞

∑
`=0

(κ1)` . . . (κu)`
($1)` . . . ($v)`

z`

`!

= uFv(κ1, . . . , κu; $1, . . . , $v; z).

(2)

Here, (κ)η (κ, η ∈ C) indicates the Pochhammer symbol obtained through the use of
the Gamma function Γ (see, e.g., [2] p. 2, 5), by
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(κ)η =
Γ(κ + η)

Γ(κ)
(
κ + η ∈ C \Z−0 , η ∈ C \ {0}; κ ∈ C \Z≤0

)
=

{
1 (η = 0)

κ(κ + 1) · · · (κ + n− 1) (η = n ∈ N)

(3)

where it is understood that (0)0 = 1.
Gottlieb [1] offered a number of intriguing properties and formulas for the polyno-

mials ϕn(u; ξ), which were indicated by ln(u) in [1] and [3] (pp. 185–186). The following
generating functions are known (as can be seen, e.g., in ([3] pp. 185–186), [4,5]):

∞

∑
n=0

ϕn(u; ξ)tn = (1− t)u
(

1− te−ξ
)−u−1

(|t| < 1); (4)

∞

∑
n=0

ϕn(u; ξ)
tn

n!
= et

1F1

[
u + 1 ;

1 ;
−
(

1− e−ξ
)

t

]
; (5)

∞

∑
n=0

(µ)n
n!

ϕn(u; ξ)tn =
(

1− te−ξ
)−µ

2F1

[
µ, − u ;

1 ;

(
1− e−ξ

)
t

1− te−ξ

]
. (6)

Khan and Akhlaq [6] presented and studied the Gottlieb polynomials of two and three
variables to afford their generating functions. Choi [7] modified Khan and Akhlaq’s
technique to provide the following generalization of the η variable and η parameter
Gottlieb polynomials:

ϕ
η
n(u1, ..., uη ; ρ1, ..., ρη) = exp(−nση)

×
n

∑
τ1=0

n−τ1

∑
τ2=0

n−τ1−τ2

∑
τ3=0

· · ·
n−τ1−τ2−···−τη−1

∑
τη=0

×
(−n)δη

η

∏
j=1

(
−uj

)
τj

η

∏
j=1

(1− eρj)
τj

δη
!

η

∏
j=1

(
τj
)
, !

(7)

where η ∈ N, n ∈ N0 and:

ση :=
η

∑
j=1

ρj and δη :=
η

∑
j=1

τj. (8)

Then, Choi [7] presented the following two generating functions:

∞

∑
n=0

ϕ
η
n(u1, . . . , uη ; ρ1, . . . , ρη)tn = (1− te−ση )

−1−
η

∑
j=1

uj η

∏
j=1

(1− teρj−ση )uj (9)

and:
∞

∑
n=0

(µ)n

n!
ϕ

η
n(u1, . . . , uη ; ρ1, . . . , ρη)tn = (1− te−ση )−µ

× F(η)
D

[
µ,−u1, . . . ,−uη ; 1;

(eρ1 − 1)te−ση

1− te−ση
, . . . ,

(eρη − 1)te−ση

1− te−ση

]
,

(10)

where F(η)
D [·] denotes Lauricella’s multiple hypergeometric series in η variables defined by

(see, e.g., [8] p. 33, Equation (4)):
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F(η)
D [a, b1, . . . , bη ; c; u1, . . . , uη ]

=
∞

∑
τ1,τ2,...,τη=0

(a)δη
(b1)τ1 · · · (bη)τη

(c)δη

uτ1
1

τ1!
· · ·

u
τη
η

τη !(
max

{
|u1| , . . . ,

∣∣uη

∣∣} < 1
)
,

(11)

and δη is the same as in (8). Some other properties of univariate and multivariate Gottlieb
polynomials have recently been provided (see [9,10]).

A great surge in activities of q-extensions (or analogues) of polynomials, series, identi-
ties, functions, and their related theories in association with q-calculus (quantum calculus)
has recently been observed in a variety of research areas of, for example, pure and applied
mathematics, physics, and engineering. Some q-notations and q-identities are recalled (see,
e.g., ([2] Section 6), [11,12]). The q-shifted factorial (λ; q)m is given by

(λ; q)m :=


1 (m = 0)
m−1
∏
j=0

(
1− λqj) (m ∈ N), (12)

where λ, q ∈ C are such that λ 6= q−` (` ∈ N0). The q-shifted factorial for a non-positive
integer subscript is given by

(λ; q)−m :=
1

m
∏
j=1

(
1− λq−j

) (m ∈ N0), (13)

which gives:

(λ; q)−m =
1

(λq−m; q)m
=

(−q/λ)m q(
m
2 )

(q/λ; q)m
(m ∈ N0). (14)

One also defines:

(λ; q)∞ :=
∞

∏
j=0

(
1− λqj

)
(λ, q ∈ C, |q| < 1). (15)

One finds from (12), (13) and (15) that:

(λ; q)m =
(λ; q)∞

(λ qm; q)∞
(m ∈ Z), (16)

which is able to be generalized to m = µ ∈ C:

(λ; q)µ =
(λ; q)∞

(λ qµ; q)∞
(µ ∈ C, |q| < 1), (17)

where the multiple-valued qµ is assumed to take its principal value. One can easily see
that:

lim
q→1

(
qλ; q

)
m

(qµ; q)m
=

(λ)m
(µ)m

(m ∈ N0, λ ∈ C, µ ∈ C \Z≤0). (18)

A q-analogue of the generalized hypergeometric series uFv in (2) is given by

uφv

[
κ1, . . . , κu ;

$1, . . . , $v ;
q, z

]
= uφv(κ1, . . . , κu; $1, . . . , $v; z)

:=
∞

∑
`=0

(−1)(1−u+v)`q(1−u+v)(`2)
(κ1; q)` · · · (κu; q)`
($1; q)` · · · ($v; q)`

z`

(q; q)`
,

(19)
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provided that the series converges. It is noted that:

(
q−m; q

)
` =

{
(q;q)m
(q;q)m−`

(−1)`q(
`
2)−m` (m, ` ∈ N0, 0 ≤ ` ≤ m)

0 (m, ` ∈ N0, m ≥ `+ 1).
(20)

The use of (20) in (19) would terminate and yield a polynomial of degree m in z
whenever any of the numerator parameters κ1, . . . , κu is of the form q−m (m ∈ N0).

The notation [z]q is defined by

[z]q :=
1− qz

1− q
(q ∈ C \ {1}, z ∈ C, qz 6= 1). (21)

The case z = m ∈ N of (21) gives the q-extension (or q-analogue) of m ∈ N:

[m]q =
1− qm

1− q
= 1 + q + · · ·+ qm−1 (m ∈ N), (22)

since:
lim
q→1

[m]q = m.

The q-analogue of m! is defined by

[m]q! :=

 1 (m = 0),
m
∏

k=1
[k]q (m ∈ N). (23)

From (12) and (23), we have:

(q; q)m = (1− q)m [m]q! (m ∈ N0). (24)

The Gaussian polynomial analogous to (m
` ) (or the q-binomial coefficient ) is given by[

m
`

]
q

:=
[m]q!

[`]q![m− `]q!
=

(q; q)m

(q; q)` (q; q)m−`
(m, ` ∈ N0, 0 ≤ ` ≤ m), (25)

which can be generalized as follows:[
µ

`

]
q

:=
[µ]q[µ− 1]q · · · [µ− `+ 1]q

[`]q!
(µ ∈ C, ` ∈ N0). (26)

The generalized q-binomial coefficient (26) is the q-extension of the generalized bino-
mial coefficient:(

µ

`

)
=

µ(µ− 1) · · · (µ− `+ 1)
`!

=
(−1)` (−µ)`

`!
(µ ∈ C, ` ∈ N0).

It follows from (24) and (26) that:

[
µ

`

]
q
=

(
qµ−`; q

)
`

(q; q)`
=

(q−µ; q)`
(q; q)`

(−qµ)`q−(
`
2) (µ ∈ C, ` ∈ N0). (27)

The q-binomial theorem is given by

1φ0(λ;−; q, z) =
∞

∑
k=0

(λ; q)k
(q; q)k

zk =
(λz; q)∞
(z; q)∞

(|q| < 1, |z| < 1). (28)
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A q-extension of the classical exponential function ez is given by

eq(z) :=
∞

∑
`=0

z`

[`]q!
=

∞

∑
`=0

[(1− q)z]`

(q; q)`
=

1
((1− q)z; q)∞

(
|z| < 1

1− q

)
, (29)

and another q-extension of the classical exponential function ez is given by

Eq(z) :=
∞

∑
`=0

q(
`
2)

z`

[`]q!
=

∞

∑
`=0

q(
`
2)
[(1− q)z]`

(q; q)`
= (−(1− q)z; q)∞ (|z| < ∞). (30)

The q-exponential functions are related as follows:

eq(−z)Eq(z) = eq(z)Eq(−z) = 1, (31)

and:
e1/q(z) = Eq(z). (32)

F. H. Jackson [13] may be accepted as the first systematic developer of q-calculus. The
q-derivative of a function f (u) is given by

Dq{ f (u)} :=
dq f (u)

dqu
=

f (qu)− f (u)
(q− 1)u

. (33)

Obviously:

lim
q→1

Dq{ f (u)} = d
du
{ f (u)},

if f (u) is differentiable. Suppose that 0 < a < b. The (Jackson’s) definite q-integral (see
also J. Thomae [14]) is defined as follows (see, e.g., [2] Chapter 6, [13,15] Section 19):

∫ b

0
f (u) dqu = (1− q)

∞

∑
j=0

qjb f
(

qjb
)

(34)

and: ∫ b

a
f (u) dqu =

∫ b

0
f (u) dqu−

∫ a

0
f (u) dqu. (35)

Recall the q-Erkus–Srivastava polynomials u(α1,...,αr)
n,q (x1, . . . , xr) which are generated

by (see [16])
∞
∑

n=0
u(α1,...,αr)

n,q (x1, . . . , xr)tn =
r

∏
j=1

1(
xjt

mj ; q
)

αj(
|t| < min

{
|x1|−1/m1 , . . . , |xr|−1/mr

})
.

(36)

Here, r ∈ N, α1, . . . , αr ∈ C, and m1, . . . , mr ∈ N.
Recently, Khan and Asif [17] derived certain interesting generating functions for a

q-extension of the Gottlieb polynomials. Subsequently, Choi [18,19] investigated several
generating functions for the q-extensions of the two and three-variable Gottlieb polynomials.
In the sequel, Choi and Srivastava [20] introduced and investigated a q-analogue of a
multiparameter and multivariable extension of the Gottlieb polynomials, which is recalled
in Section 2.

In this paper, by using a similar method as those in [9,10,21], we investigate certain
q-generating functions for three sequences associated with finite power series whose
coefficients are products of the q-extended multivariable and multiparameter Gottlieb
polynomials ϕm

n,q(x1, . . . , xm; λ1, . . . , λm) in (37) and another non-vanishing multivariable
function, which are asserted in Theorems 1–3. Furthermore, several numerous possible
particular cases of the main identities in Theorems 1–3 are considered in Section 4. Finally,
we return to Khan and Asif’s q-Gottlieb polynomials ϕn,q(x; λ) in (63) to give certain
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connections with several other q-polynomials, and provide its q-integral representation.
We close this paper by disclosing our future investigation plan.

2. q-Extension of the Gottlieb Polynomials in Several Variables

In this section, for an easier reference of our main results in the next section, we
recall the q-extension of the multivariable and multiparameter Gottlieb polynomials
ϕm

n (x1, . . . , xm; λ1, . . . , λm) in (7), which is given in [20].

Definition 1. (See [20]) A q-extension of the generalized (multivariable and multiparameter)
Gottlieb polynomials ϕm

n (x1, . . . , xm; λ1, . . . , λm) is defined as follows:

ϕm
n,q(x1, . . . , xm; λ1, . . . , λm) :=

(
m
∏
l=1

Eq(−λl)

)n

×
n

∑
r1=0

n−r1

∑
r2=0

n−r1−r2

∑
r3=0

· · ·
n−r1−···−rm−1

∑
rm=0

[
n

δm

]
q

×
m
∏
j=1

[
xj
rj

]
q
q

m
∑

j=1
(

rj
2
)−

m
∑

j=1
xjrj m

∏
j=1

[
1− eq

(
λj
)]rj ,

(37)

where m ∈ N, n ∈ N0. By using (20) and (25), this definition can be expressed in the following
form:

ϕm
n,q(x1, . . . , xm; λ1, . . . , λm) =

(
m
∏
l=1

Eq(−λl)

)n

×
n

∑
r1=0

n−r1

∑
r2=0

n−r1−r2

∑
r3=0

· · ·
n−r1−···−rm−1

∑
rm=0

q−(
δm
2 )

(q−n; q)δm

(q; q)δm

×
m
∏
j=1

(
q−xj ; q

)
rj

(q; q)rj

m
∏
j=1

{[
1− eq

(
λj
)]

qn}rj ,

(38)

where δm is the same as in (8).

By using some of the q-identities, Choi and Srivastava [20] derived a set of three
generating functions for ϕm

n,q(x1, . . . , xm; λ1, . . . , λm) in terms of Srivastava’s general basic
(or q-) hypergeometric series in several variables defined by (see [8] p. 350, Equation (284)):

ΦE:F′ ;··· ;F(m)

G:H′ ;··· ;H(m)

( [
(e) : ϑ′, . . . , ϑ(m)

]
: [( f ′) : φ′]; · · · ;

[
( f (m)) : φ(m)

]
;[

(g) : ψ(1), . . . , ψ(m)
]

: [(h′) : δ′]; · · · ;
[
(h(m)) : δ(m)

]
;

q; w1, . . . , wm

)

=
∞

∑
r1,...,rm=0

Ω(r1, . . . , rm)
wr1

1
(q; q)r1

· · · wrm
m

(q; q)rm

,

(39)

where for convenience:

Ω(r1, ..., rm) :=

E

∏
`=1

(e`; q)
r1ϑ′`+···+rmϑ

(m)
`

F′

∏
`=1

(
f ′`; q

)
r1φ′`
· · ·

F(m)

∏
`=1

(
f (m)
` ; q

)
rmφ

(m)
`

G

∏
`=1

(g`; q)
r1ψ′`+···+rmψ

(m)
`

H′

∏
`=1

(
h′`; q

)
r1δ′`
· · ·

H(m)

∏
`=1

(
h(m)
` ; q

)
rmδ

(m)
`

,

the (real or complex) arguments w1, . . . , wm, the complex parameters: e` (` = 1, . . . , E); f (j)
`

(
` = 1, . . . , F(j)

)
;

g` (` = 1, . . . , G); h(j)
`

(
` = 1, . . . , H(j)

)
; (j = 1, . . . , m)
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and the combined coefficients: ϑ
(j)
` (` = 1, . . . , E); φ

(j)
`

(
` = 1, . . . , F(j)

)
;

ψ
(j)
` (` = 1, . . . , G); δ

(j)
`

(
` = 1, . . . , H(j)

)
; (j = 1, . . . , m)

are so constrained that the multiple q-series in (39) converges.
Choi and Srivastava [20] presented each of the following q-generating functions for

the multiparameter and multivariable polynomials ϕm
n,q(x1, . . . , xm; λ1, . . . , λm) in (37):

∞

∑
n=0

ϕm
n,q(x1, . . . , xm; λ1, . . . , λm)tn =

(
qt

m
∏
l=1

Eq(−λl); q
)

∞(
t

m
∏
l=1

Eq(−λl); q
)

∞

×Φ0:1;··· ;1
1:0;··· ;0

( : [q−x1 : 1];[
qt

m
∏
j=1

Eq
(
−λj

)
: 1, . . . , 1

]
: ;

· · · ; [q−xm : 1];
· · · ; ;

q; Ξ1, . . . , Ξm

)
,

(40)

∞

∑
n=0

ϕm
n,q(x1, . . . , xm; λ1, . . . , λm)

tn

(q; q)n
=

1(
t

m
∏
l=1

Eq(−λl); q
)

∞

×Φ0:1;...;1
1:0;...;0

(
: [q−x1 : 1]; · · · ; [q−xm : 1];

[q : 1, . . . , 1] : ; · · · ; ;
q; Ξ1, . . . , Ξm

) (41)

and:

∞

∑
n=0

(qµ; q)n
(q; q)n

ϕm
n,q(x1, . . . , xm; λ1, . . . , λm)tn =

(
qµt

m
∏
l=1

Eq(−λl); q
)

∞(
t

m
∏
l=1

Eq(−λl); q
)

∞

×Φ1:1;...;1
2:0;...;0

( [qµ : 1, . . . , 1] :

[q : 1, . . . , 1],
[
qµt

m
∏
j=1

Eq
(
−λj

)
: 1, . . . , 1

]
:

[q−x1 : 1]; · · · ; [q−xm : 1];
; · · · ; ;

q; Ξ1, . . . , Ξm

)
,

(42)

where: 

Ξ1 :=
(

m
∏
l=2

Eq(−λl)

)[
1− Eq(−λ1)

]
t

Ξ2 :=

 m
∏

1≤l≤m
l 6=2

Eq(−λl)

[1− Eq(−λ2)
]
t

...

Ξm :=
(

m−1
∏
l=1

Eq(−λl)

)[
1− Eq(−λm)

]
t,

(43)

provided that both sides of each of the assertions (40)–(42) exist. It is understood in (43)
that an empty product is to be interpreted as 1.

3. Main Results

In this section, by employing a method similar to those in [9,10,21], we present certain
q-generating functions for three sequences associated with finite power series whose
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coefficients are products of the q-extended multivariable and multiparameter Gottlieb
polynomials ϕm

n,q(x1, . . . , xm; λ1, . . . , λm) in (37) and another non-vanishing multivariable
function, which are asserted in the following theorems.

Theorem 1. Let η, ν, τ, ψ ∈ C. Furthermore, let x1, . . . , xm, λ1, . . . , λm ∈ C (m ∈ N) and
ξ1, . . . , ξr ∈ C (r ∈ N). Furthermore, let ϕm

n,q(x1, . . . , xm; λ1, . . . , λm) be given in (37). Con-
forming to an identically nonzero function Ων(ξ1, . . . , ξr) of order ν and of r variables ξ1, . . . , ξr,
set:

Λν,ψ(ξ1, . . . , ξr; τ) :=
∞

∑
k=0

akΩν+ψk(ξ1, . . . , ξr)τ
k (44)

(ak ∈ C \ {0} for k ∈ N0)

and:
Rν,ψ

n,p;q(x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr; η)

:=
[n/p]

∑
k=0

ak ϕm
n−pk,q(x1, . . . , xm; λ1, . . . , λm)Ων+ψk(ξ1, . . . , ξr) ηk

(45)

(n ∈ N0, p ∈ N).

Then, the sequence (45) is generated as follows:

∞

∑
n=0

Rν,ψ
n,p;q

(
x1, ..., xm; λ1, . . . , λm; ξ1, . . . , ξr;

η

tp

)
tn =

(
qt

m
∏
l=1

Eq(−λl); q
)

∞(
t

m
∏
l=1

Eq(−λl); q
)

∞

×Φ0:1;··· ;1
1:0;··· ;0

( : [q−x1 : 1]; · · · ;[
qt

m
∏
j=1

Eq
(
−λj

)
: 1, . . . , 1

]
: ; · · · ;

[q−xm : 1];
;

q; Ξ1, . . . , Ξm

)
Λν,ψ(ξ1, . . . , ξr; η),

(46)

provided both sides of (46) exist.

Proof. Put L to indicate the left-hand side of the statement (46). Then, we have:

L =
∞

∑
n=0

[n/p]

∑
k=0

ak ϕm
n−pk,q(x1, . . . , xm; λ1, . . . , λm)Ων+ψk(ξ1, . . . , ξr)η

ktn−pk. (47)

Recall a series rearrangement technique (see, e.g., [22]):

∞

∑
n=0

[n/p]

∑
k=0

A (k, n) =
∞

∑
n=0

∞

∑
k=0

A (k, n + pk), (48)

where A : N0 ×N0 → C is a bounded function such that the involved double series is
absolutely convergent. Using (48) in (47) would lead to:

L =
∞

∑
n=0

∞

∑
k=0

ak ϕm
n,q(x1, . . . , xm; λ1, . . . , λm)Ων+ψk(ξ1, . . . , ξr)η

ktn

=
∞

∑
n=0

ϕm
n,q(x1, . . . , xm; λ1, . . . , λm)tn

∞

∑
k=0

akΩν+ψk(ξ1, . . . , ξr)η
k.

Finally, by applying (40) and (44) to the last two summations, we obtain the right
member of (46).
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Theorem 2. Enable all of the constraints in Theorem 1 including the polynomials and the func-
tions be assumed. Furthermore, let:

Sν,ψ
n,p;q(x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr; η)

:=
[n/p]

∑
k=0

ak
(q; q)n−pk

ϕm
n−pk,q(x1, . . . , xm; λ1, . . . , λm)Ων+ψk(ξ1, . . . , ξr) ηk

(49)

(n ∈ N0, p ∈ N).

Then, sequence (49) is generated as follows:

∞

∑
n=0

Sν,ψ
n,p;q

(
x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr;

η

tp

)
tn =

1(
t

m
∏
l=1

Eq(−λl); q
)

∞

×Φ0:1;··· ;1
1:0;··· ;0

(
: [q−x1 : 1]; · · · ;

[q : 1, . . . , 1] : ; · · · ;

[q−xm : 1];
;

q; Ξ1, . . . , Ξm

)
Λν,ψ(ξ1, . . . , ξr; η),

(50)

provided both sides of (50) exist.

Proof. LetM denote the left member of the assertion (50). Then, using (48), we obtain:

M =
∞

∑
n=0

[n/p]

∑
k=0

ak
(q; q)n−pk

ϕm
n−pk,q(x1, . . . , xm; λ1, . . . , λm)Ων+ψk(ξ1, . . . , ξr)η

ktn−pk

=
∞

∑
n=0

∞

∑
k=0

ak
(q; q)n

ϕm
n,q(x1, . . . , xm; λ1, . . . , λm)Ων+ψk(ξ1, . . . , ξr)η

ktn

=
∞

∑
n=0

ϕm
n,q(x1, . . . , xm; λ1, . . . , λm)

tn

(q; q)n

∞

∑
k=0

akΩν+ψk(ξ1, . . . , ξr)η
k.

Now, employing (41) and (44) to the last two summations leads to the right member
of (50). This completes the proof.

Theorem 3. Let all of the constraints in Theorem 1 including the polynomials and the functions
be assumed. Furthermore, let:

Tν,ψ
n,p;q(x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr; η)

:=
[n/p]

∑
k=0

ak
(qµ; q)n−pk

(q; q)n−pk
ϕm

n−pk,q(x1, . . . , xm; λ1, . . . , λm)Ων+ψk(ξ1, . . . , ξr) ηk.
(51)

(n ∈ N0, p ∈ N).
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Then, the sequence (51) is generated as follows:

∞

∑
n=0

Tν,ψ
n,p;q

(
x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr;

η

tp

)
tn =

(
qµt

m
∏
l=1

Eq(−λl); q
)

∞(
t

m
∏
l=1

Eq(−λl); q
)

∞

×Φ1:1;...;1
2:0;...;0

( [qµ : 1, . . . , 1] : [q−x1 : 1];

[q : 1, . . . , 1],
[
qµt

m
∏
j=1

Eq
(
−λj

)
: 1, . . . , 1

]
: ;

· · · ; [q−xm : 1];
· · · ; ;

q; Ξ1, . . . , Ξm

)
Λν,ψ(ξ1, . . . , ξr; η),

(52)

provided both sides of (52) exist.

Proof. Let N stand for the left-hand side of the assertion (52). Then, employing (48),
we obtain:

N =
∞

∑
n=0

[n/p]

∑
k=0

ak
(qµ; q)n−pk

(q; q)n−pk
ϕm

n−pk,q(x1, . . . , xm; λ1, . . . , λm)Ων+ψk(ξ1, . . . , ξr)η
ktn−pk

=
∞

∑
n=0

∞

∑
k=0

ak
(qµ; q)n
(q; q)n

ϕm
n,q(x1, . . . , xm; λ1, . . . , λm)Ων+ψk(ξ1, . . . , ξr)η

ktn

=
∞

∑
n=0

(qµ; q)n
(q; q)n

ϕm
n,q(x1, . . . , xm; λ1, . . . , λm)tn

∞

∑
k=0

akΩν+ψk(ξ1, . . . , ξr)η
k.

Finally, applying (42) and (44) to the last two summations, we obtain the right member
of (52). The proof is complete.

4. Particular Cases

In this section, among numerous possible particular cases of Theorems 1 and 2, we
choose to only demonstrate several ones.

Setting:

Ων+ψk(ξ1, . . . , ξr ) = ϕr
ν+ψk,q(ξ1, . . . , ξr; λ1, . . . , λr) (k ∈ N0, r ∈ N)

in Theorem 1, we obtain a generating relation in the following corollary.

Corollary 1. Let all of the constraints in Theorem 1 including the polynomials and the functions
be assumed. Furthermore, let:

Λ(1)
ν,ψ(ξ1, . . . , ξr; τ) :=

∞

∑
k=0

ak ϕr
ν+ψk,q(ξ1, . . . , ξr; λ1, . . . , λr)τ

k (53)

and:
(1)R

ν,ψ
n,p;q(x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr; η)

:=
[n/p]

∑
k=0

ak ϕm
n−pk,q(x1, . . . , xm; λ1, . . . , λm) ϕr

ν+ψk,q(ξ1, . . . , ξr; λ1, . . . , λr) ηk
(54)
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Then, the sequence (54) is generated as follows:

∞

∑
n=0

(1)R
ν,ψ
n,p;q

(
x1, ..., xm; λ1, . . . , λm; ξ1, . . . , ξr;

η

tp

)
tn =

(
qt

m
∏
l=1

Eq(−λl); q
)

∞(
t

m
∏
l=1

Eq(−λl); q
)

∞

×Φ0:1;··· ;1
1:0;··· ;0

( : [q−x1 : 1]; · · · ;[
qt

m
∏
j=1

Eq
(
−λj

)
: 1, . . . , 1

]
: ; · · · ;

[q−xm : 1];
;

q; Ξ1, . . . , Ξm

)
Λ(1)

ν,ψ(ξ1, . . . , ξr; η),

(55)

provided that each member of (55) exists.

Furthermore, putting ak = 1, ν = 0, ψ = 1 in Corollary 1, in terms of (40), we obtain
the subsequent result.

Corollary 2. Let all of the constraints in Theorem 1, including the polynomials and the functions,
be assumed. Furthermore, let:

(2)Rn,p;q(x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr; η)

:=
[n/p]

∑
k=0

ϕm
n−pk,q(x1, . . . , xm; λ1, . . . , λm) ϕr

k,q(ξ1, . . . , ξr; λ1, . . . , λr) ηk
(56)

(n ∈ N0, p ∈ N).

Then, the sequence (56) is generated as follows:

∞

∑
n=0

(2)Rn,p;q

(
x1, ..., xm; λ1, . . . , λm; ξ1, . . . , ξr;

η

tp

)
tn

=

(
qt

m
∏
l=1

Eq(−λl); q
)

∞(
t

m
∏
l=1

Eq(−λl); q
)

∞

(
qη

r
∏
l=1

Eq(−λl); q
)

∞(
η

r
∏
l=1

Eq(−λl); q
)

∞

×Φ0:1;··· ;1
1:0;··· ;0

( : [q−x1 : 1]; · · · ;[
qt

m
∏
j=1

Eq
(
−λj

)
: 1, . . . , 1

]
: ; · · · ;

[q−xm : 1];
;

q; Ξ1, . . . , Ξm

)

×Φ0:1;··· ;1
1:0;··· ;0

( :
[
q−ξ1 : 1

]
;[

qη
r

∏
j=1

Eq
(
−λj

)
: 1, . . . , 1

]
: ;

· · · ;
[
q−ξr : 1

]
;

· · · ; ;
q; Ξ1, . . . , Ξr

)
,

(57)

provided that each member of (57) exists.

Setting:
Ων+ψk(ξ1, . . . , ξr) = u(α1,...,αr)

ν+ψk,q (ξ1, . . . , ξr)

in Theorem 2, we obtain the following.
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Corollary 3. Let all of the constraints in Theorem 2 including the polynomials and the functions
be assumed. Furthermore, let:

Λ(2)
ν,ψ(ξ1, . . . , ξr; τ) :=

∞

∑
k=0

aku(α1,...,αr)
ν+ψk,q (ξ1, . . . , ξr)τ

k (58)

and:
(1)S

ν,ψ
n,p;q(x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr; η)

:=
[n/p]

∑
k=0

ak
(q; q)n−pk

ϕm
n−pk,q(x1, . . . , xm; λ1, . . . , λm) u(α1,...,αr)

ν+ψk,q (ξ1, . . . , ξr)η
k.

(59)

Then, the sequence (59) is generated as follows:

∞

∑
n=0

(1)S
ν,ψ
n,p;q

(
x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr;

η

tp

)
tn =

1(
t

m
∏
l=1

Eq(−λl); q
)

∞

×Φ0:1;··· ;1
1:0;··· ;0

(
: [q−x1 : 1]; · · · ;

[q : 1, . . . , 1] : ; · · · ;

[q−xm : 1];
;

q; Ξ1, . . . , Ξm

)
Λ(2)

ν,ψ(ξ1, . . . , ξr; η),

(60)

provided that each member of (60) exists.

Putting ak = 1, ν = 0, and ψ = 1 in Corollary 3 gives the following generating relation
in Corollary 4.

Corollary 4. Let all of the constraints in Theorem 2 including the polynomials and the functions
be assumed. Furthermore, let:

(1)S
ν,ψ
n,p;q(x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr; η)

:=
[n/p]

∑
k=0

1
(q; q)n−pk

ϕm
n−pk,q(x1, . . . , xm; λ1, . . . , λm)

× u(α1,...,αr)
k,q (ξ1, . . . , ξr)η

k.

(61)

Then, the sequence (61) is generated as follows:

∞

∑
n=0

(1)S
ν,ψ
n,p;q

(
x1, . . . , xm; λ1, . . . , λm; ξ1, . . . , ξr;

η

tp

)
tn

=
1(

t
m
∏
l=1

Eq(−λl); q
)

∞

r

∏
j=1

1(
ξ jη

mj ; q
)

αj

×Φ0:1;··· ;1
1:0;··· ;0

(
: [q−x1 : 1]; · · · ;

[q : 1, . . . , 1] : ; · · · ;

[q−xm : 1];
;

q; Ξ1, . . . , Ξm

)
,

(62)

provided that each member of (62) exists.
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5. Return to the q-Gottlieb Polynomials

Khan and Asif [17] presented the following q-extension of the Gottlieb polynomials
ϕm,q(u; λ):

ϕm,q(u; λ) =
[
Eq(−λ)

]m
m

∑
k=0

[
m
k

]
q

[
u
k

]
q
qk(k−1)−uk[1− eq(λ)

]k

=
[
Eq(−λ)

]m
2φ1

(
q−m, q−u;

q;
q,
[
1− eq(λ)

]
qm
)

.

(63)

In this section, we find certain relationships between the q-Gottlieb polynomials
ϕm,q(u; λ) in (63) and some other known q-polynomials. We also give an integral represen-
tation for the ϕm,q(u; λ). Recall two q-extensions of Jacobi polynomials given as follows
(see, e.g., [23]):

pm(u; a, b\q) = 2φ1

(
q−m, abqm+1;

aq;
q, qu

)
(64)

and:

Pm(u; a, b, c; q) = 3φ2

(
q−m, abqm+1, u;

aq, cq;
q, q

)
, (65)

which, for distinction, are called little and big q-Jacobi polynomials, respectively. The little
and big q-Jacobi polynomials are found to be connected as follows:

bmqm+(m
2 )pm(u; a, b\q) = (bq; q)m

(aq; q)m
(−1)mPm(bqu; b, a, 0; q). (66)

Comparison of (63)–(65) together with (66) provides the following relationships be-
tween them:

ϕm,q(u; λ) =
[
Eq(−λ)

]m pm

([
1− eq(λ)

]
qm−1; 1, q−u−m−1\q

)
(67)

and:

ϕm,q(u; λ) =
[
−q

1
2 (m+2u+1)Eq(−λ)

]m (q−u−m; q)m
(q; q)m

× Pm

(
q−u−1[1− eq(λ)

]
; q−u−m−1, 1, 0; q

)
.

(68)

Comparing the q-Meixner polynomials explicitly defined by (see, e.g., [23] Equa-
tion (14.13.1)):

Mm(q−u; b, c; q) = 2φ1

(
q−m, q−u;

bq;
q, − qm+1

c

)
(69)

with the q-Gottlieb polynomials in (63) gives the following relation:

ϕm,q(u; λ) =
[
Eq(−λ)

]m Mm(q−u; 1, q
[
1− eq(λ)

]−1; q). (70)

Recall the following Heine’s q-integral representation for 2φ1 (see [11] p. 521):

2φ1

(
qα, qβ;

qγ;
q, u

)
=

Γq(γ)

Γq(β)Γq(γ− β)

∫ 1

0

tβ−1(qt; q)γ−β−1

(ut; q)α

dqt, (71)

where Γq(z) is the q-analogue of the classical Gamma function Γ(z) defined by

Γq(z) :=
(q; q)∞

(qz; q)∞
(1− q)1−z (|q| < 1, z ∈ C \Z≤0), (72)
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where it is assumed that qz and (1− q)1−z take their principal values (see, e.g., [11] Sec-
tion 10.3; see also [2] Section 6.4). We recall the correct integral representation of Γq(z)
given by (e.g., [24] Equation (1.11))

Γq(z) =
∫ 1

1−q

0
uz−1 Eq(−qu) dqu (0 < q < 1, <(z) > 0). (73)

Employing (71) in the q-Gottlieb polynomials ϕm,q(u; λ) in (63) gives the following
integral representation:

ϕm,q(u; λ) =
(1− q)

[
Eq(−λ)

]m

(1− qu)Γq(u)Γq(−u)

∫ 1

0

t−u−1(qt; q)u([
1− eq(λ)

]
qmt; q

)
−m

dqt, (74)

where −1 < u < 0 and
∣∣qm[1− eq(λ)

]∣∣ < 1.

6. Concluding Remarks and a Future Research Plan

Gottlieb [1] introduced and investigated certain discrete orthogonal polynomials
in (1), which were named Gottlieb polynomials. Since then, Gottlieb polynomials have
often appeared in the literature (see, e.g., [3]). Khan and Akhlaq [6] extended the Gottlieb
polynomials in two and three variables. Choi [7] generalized the Gottlieb polynomials
in several variables as in (7). Khan and Asif [17] provided a q-extension of the Gottlieb
polynomials. Choi [18,19] investigated several generating functions for the q-extensions of
the two- and three-variable Gottlieb polynomials. Choi and Srivastava [20] introduced and
investigated a q-analogue of a multiparameter and multivariable extension of the Gottlieb
polynomials. In this paper, by using a method similar to those in [9,10,21], we investigated
certain q-generating functions for three sequences associated with finite power series whose
coefficients are products of the q-extended multivariable and multiparameter Gottlieb
polynomials ϕm

n,q(x1, . . . , xm; λ1, . . . , λm) in (37) and another non-vanishing multivariable
function, which were in Theorems 1–3. Furthermore, several numerous possible particular
cases of the main identities in Theorems 1–3 were considered in Section 4. Finally, we came
back to Khan and Asif’s q-Gottlieb polynomials ϕn,q(x; λ) in (63) to give certain connections
with several other q-polynomials, and presented its q-integral representation.

We conclude this paper by revealing our future investigation plan: finding certain
partial differential equations for the Gottlieb and q-Gottlieb polynomials, which may be
used for some physical problems.

In fact, we tried to apply the polynomials presented herein to some physical prob-
lems. However, it is currently difficult for us to find such applications. This remains a
future investigation.
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