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Abstract: Weighted essentially non-oscillatory (WENO) methods are especially efficient for numeri-
cally solving nonlinear hyperbolic equations. In order to achieve strong stability and large time-steps,
strong stability preserving (SSP) integrating factor (IF) methods were designed in the literature,
but the methods there were only for one-dimensional (1D) problems that have a stiff linear com-
ponent and a non-stiff nonlinear component. In this paper, we extend WENO methods with large
time-stepping SSP integrating factor Runge–Kutta time discretization to solve general nonlinear
two-dimensional (2D) problems by a splitting method. How to evaluate the matrix exponential
operator efficiently is a tremendous challenge when we apply IF temporal discretization for PDEs on
high spatial dimensions. In this work, the matrix exponential computation is approximated through
the Krylov subspace projection method. Numerical examples are shown to demonstrate the accuracy
and large time-step size of the present method.

Keywords: strong stability preserving; integrating factor; Runge–Kutta; weighted essentially non-
oscillatory methods; Krylov subspace approximation

1. Introduction

We consider the two-dimensional general form of the nonlinear hyperbolic partial
differential equation (PDE)

ut + f (u)x + g(u)y = 0, (1)

where u is the unknown function, f is the flux function in x spatial direction, and g
is the flux function in y spatial direction. Nonlinear hyperbolic PDEs (1) are common
mathematical models in applications from science and engineering. To numerically solve
this time-dependent problem (1), we first need to choose an efficient nonlinearly stable
spatial discretization. The solutions to hyperbolic PDEs may have discontinuities, sharp
gradients, or discontinuous derivatives, and so forth. A straightforward high-order scheme
for such kinds of problems will generate instability called the Gibbs phenomena. Thus, we
desire schemes that not only have a uniformly high order of accuracy in smooth regions of
the solution, but can also resolve singularities in an accurate and essentially nonoscillator
(ENO) fashion. Weighted essentially nonoscillatory (WENO) schemes are a popular class of
such schemes. WENO schemes [1,2] were designed based on the successful ENO schemes
in [3–5] with additional advantages. For problems with physically complicated solution
structures, such as turbulence systems in fluid dynamics, WENO methods with very high-
order accuracy and refined computational grids can resolve the physical solution with
mixed stable and unstable behavior [6]. The essence of the WENO schemes is to reconstruct
a weighted combination of some local reconstructions based on different small stencils.
The combination coefficients, which are also called nonlinear weights, are determined by
the linear weights and the smoothness indicators. The linear weights are usually selected to
increase the order of accuracy on each small stencil, and the smoothness indicators measure
the smoothness of the reconstructed function in the relevant small stencils. Since they
were developed, WENO schemes have been studied and applied extensively for solving
problems with both singularities and a complex solution structure. Here are some examples.
Fast sweeping WENO schemes and homotopy WENO schemes were designed in [7–12]

Mathematics 2021, 9, 1483. https://doi.org/10.3390/math9131483 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9131483
https://doi.org/10.3390/math9131483
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9131483
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9131483?type=check_update&version=2


Mathematics 2021, 9, 1483 2 of 17

to efficiently solve hyperbolic PDEs’ steady-state problems. To solve stiff convection-
diffusion-reaction PDEs, high-order Krylov implicit integration factor WENO schemes
were developed in [13–16]. In [17], sparse grid WENO methods were developed to solve
high-dimensional hyperbolic PDEs.

Since WENO schemes were designed to handle problems with both complicated solu-
tion structures and discontinuities, they require more operations than many other schemes
because of their sophisticated nonlinear properties and high-order accuracy. The computa-
tional cost rises greatly when the PDEs are on 2D or higher, or the number of grid points
is large. Especially for solving long time simulations or solving steady-state problems,
efficient large time-step sizes and high-order temporal discretization methods are crucial.
Many innovatory high-order temporal schemes were designed, such as the total varia-
tion diminishing (TVD) Runge–Kutta (RK) schemes [4,18–20], spectral deferrred correction
(SDC) methods [21–25], high-order implicit–explicit (IMEX) multistep/RK methods [26–33]
and their applications, hybrid methods of SDC and high-order RK schemes [34], SSP mul-
tistage two-derivative time-stepping schemes [35], and so forth. All of these numerical
methods have their own advantages.

Challenges in designing large time-step size schemes for (1) also come from restric-
tions on local time-step sizes due to both linear stability and nonlinear stability. Since
discontinuous solutions often arise in hyperbolic PDEs, the linear stability theory itself does
not guarantee convergence. SSP temporal numerical schemes were developed [4,36] to
assure the preservation of the nonlinear stability properties. That is, if the high-order spatial
method (for example, a WENO scheme) coupled with forward Euler satisfies the nonlin-
ear stability, then the same spatial discretization coupled with these higher-order time
discretizaton methods will preserve the nonlinear stability. Exponential integrators such
as integrating factor methods are time schemes which have large linear stability regions.
They can achieve very large time-step sizes or Courant-Friedrichs-Lewy (CFL) numbers for
problems with smooth solutions [13–15,37]. However, these schemes do not satisfy the SSP
property. Hence, direct applications of these schemes to hyperbolic PDEs with discontinu-
ous solutions may lead to nonlinear instability. Recently, integrating factor Runge–Kutta
(IFRK) methods with a SSP property were developed in [38–40] to solve one-dimensional
hyperbolic PDEs, which have explicit linear and nonlinear parts. These methods are ex-
ponential integrators which satisfy the SSP requirement. They can completely relax the
time-step size restriction coming from the linear part of the high-order spatial discretization.
However, the question of how to apply the method to multi-dimensional problems, which
do not have explicit linear and nonlinear parts, is still open.

In this paper, we extend WENO methods with large time-stepping SSP integrating fac-
tor Runge–Kutta time discretization to solve general nonlinear multi-dimensional problems.
When applying the integrating factor methods to multi-dimensional problems, evaluating
the product of the matrix exponential and a vector efficiently is crucial and challenging.
To overcome this difficulty, we utilize the Krylov subspace technique to approximately
calculate such products. In [41], Gallopoulos and Saad used and analyzed the Krylov
subspace methods to approximate the product of an exponential matrix and a vector.
In [42,43], we applied the Krylov subspace method to implicit integration factor methods
to solve high-dimensional reaction–diffusion PDEs. To solve hyperbolic PDEs, in this paper,
we first use third- or fifth-order WENO schemes for the spatial discretization. In order
to apply exponential integrators to the resulting nonlinear ODE system, we split it into
linear and nonlinear parts. Then, for the time discretization, we combine the SSP IFRK
methods [38] with the Krylov subspace approximation method to solve two-dimensional
general nonlinear hyperbolic problems.

The organization of the paper is as follows. WENO methods with the Krylov SSP
IFRK methods are derived and formulated in Section 2. The stability region for our
schemes are analyzed in Section 3. In Section 4, we present some numerical experiments.
Discussions and conclusions are given in Section 5.



Mathematics 2021, 9, 1483 3 of 17

2. Krylov SSP Integrating Factor Runge–Kutta Methods

Consider two-dimensional hyperbolic conservation laws (1) with appropriate bound-
ary conditions. Since high-order finite difference WENO methods are very efficient in
resolving complex solution structures and keeping nonlinear stability for multi-dimensional
problems due to its dimension-by-dimension implementation fashion [6], it is natural to
apply high-order finite difference WENO schemes in the spatial discretization of (1).

2.1. Spatial Discretization: The Third and Fifth-Order WENO Schemes

We use a finite difference scheme to approximate the values of the hyperbolic terms
f (u)x + g(u)y at a grid (xi, yj) in a conservative fashion. To be specific, we use a conserva-
tive flux difference

f (u)x|x=xi ≈
1

∆x
( f̂i+1/2 − f̂i−1/2), (2)

to approximate f (u)x at (xi, yj) along the line y = yj. Here,

f̂i+ 1
2
= f̂+

i+ 1
2
+ f̂−

i+ 1
2
. (3)

In the WENO schemes, the following Lax-Friedrichs flux splitting is used.

f+(u) =
1
2
( f (u) + αxu), f−(u) =

1
2
( f (u)− αxu), (4)

where
αx = max

u
| f ′(u)|. (5)

f+(u) and f−(u) are the positive and negative wind parts, respectively. Note that, for
simplicity, we omit the index j for the y direction when the approximations for the x
direction are described.

Let’s first look at the third-order WENO (WENO3) method formulation. The stencil
(in the 2D case) is given on the left of Figure 1. The numerical flux f̂+i+1/2 depends on a
left-biased stencil, namely, the value f (uk) at three notes k = i − 1, i, i + 1, because the
wind is positive; that is, f ′(u) ≥ 0 for the scalar case. Its formula is given by

f̂+i+1/2 = ω0

[
1
2

f+(ui) +
1
2

f+(ui+1)

]
+ ω1

[
−1

2
f+(ui−1) +

3
2

f+(ui)

]
, (6)

where
ωr =

αr

α1 + α2
, αr =

dr

(ε + βr)2 , r = 0, 1. (7)

Here, d0 = 2
3 and d1 = 1

3 are called the linear weights, and β0 = ( f+(ui+1)− f+(ui))
2, β1 =

( f+(ui)− f+(ui−1))
2 are called the smoothness indicators. To prevent a zero denominator

from happening, we choose ε as a tiny positive number. From the Formula (6), we can see
that f̂+1+1/2 is a convex combination of

[
1
2 f+(ui) +

1
2 f+(ui+1)

]
and

[
− 1

2 f+(ui−1) +
3
2 f+(ui)

]
,

which are both second-order numerical fluxes and are built on two substencils, (xi, xi+1)
and (xi−1, xi), respectively. The coefficients ωi are determined by βi in each substencil.

For f̂−i+1/2, this is the case when f ′(u) < 0, or a negative wind. A WENO3 scheme can
be constructed by using a right-biased stencil with values f (ui), f (ui+1), and f (ui+2).

f̂−i+1/2 = ω̃0

[
3
2

f−(ui+1)−
1
2

f−(ui+2)

]
+ ω̃1

[
1
2

f−(ui) +
1
2

f−(ui+1)

]
, (8)

where

ω̃r =
α̃r

α̃1 + α̃2
, α̃r =

d̃r

(ε + β̃r)2
, r = 0, 1, (9)

with d̃0 = 1
3 , d̃1 = 2

3 , and β̃0 = ( f−(ui+2)− f−(ui+1))
2, β̃1 = ( f−(ui+1)− f−(ui))

2.
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For the fifth-order WENO scheme (WENO5), the stencil is shown on the right of
Figure 1. The numerical flux f̂+i+1/2 depends on a left-biased stencil, namely, the five-point
value f (uk), k = i− 2, i− 1, i, i + 1, i + 2. Its formula is given by

f̂+i+1/2 = ω0

[
1
3

f+(ui) +
5
6

f+(ui+1)−
1
6

f+(ui+2)

]
+ ω1

[
−1

6
f+(ui−1) +

5
6

f+(ui) +
1
3

f+(ui+1)

]
+ ω2

[
1
3

f+(ui−2)−
7
6

f+(ui−1) +
11
6

f+(ui)

]
,

(10)

where
ωr =

αr

α0 + α1 + α2
, αr =

dr

(ε + βr)2 , r = 0, 1, 2, (11)

with d0 = 3
10 , d1 = 3

5 , and d2 = 1
10 , and

β0 =
13
12
(

f+(ui)− 2 f+(ui+1) + f+(ui+2)
)2

+
1
4
(
3 f+(ui)− 4 f+(ui+1) + f+(ui+2)

)2,

β1 =
13
12
(

f+(ui−1)− 2 f+(ui) + f+(ui+1)
)2

+
1
4
(

f+(ui−1)− f+(ui+1)
)2,

β2 =
13
12
(

f+(ui−2)− 2 f+(ui−1) + f+(ui)
)2

+
1
4
(

f+(ui−2)− 4 f+(ui−1) + 3 f+(ui)
)2.

Figure 1. Stencils for the third-order WENO (left) and the fifth-order WENO (right).

From the Formula (10), we can see that this numerical flux f̂+1+1/2 is a convex combi-
nation of three brackets, and each one of them is a third-order numerical flux and is built
on three different substencils of three points each. The coefficients ωi are determined by βi
in each substencil.

For the case of negative wind, that is, f ′(u) < 0, a fifth-order WENO approxima-
tion to f̂−i+1/2 can be constructed by using a right-biased stencil with numerical values
f (ui−1), f (ui), f (ui+1), f (ui+2), and f (ui+3).
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f̂−i+1/2 = ω̃0

[
11
6

f−(ui+1)−
7
6

f−(ui+2) +
1
3

f−(ui+3)

]
+ ω̃1

[
1
3

f−(ui) +
5
6

f−(ui+1)−
1
6

f−(ui+2)

]
+ ω̃2

[
−1

6
f−(ui−1) +

5
6

f−(ui) +
1
3

f−(ui+1)

]
,

(12)

where

ω̃r =
α̃r

α̃0 + α̃1 + α̃2
, α̃r =

d̃r

(ε + β̃r)2
, r = 0, 1, 2, (13)

with d̃0 = 1
10 , d̃1 = 3

5 , and d̃2 = 3
10 , and

β̃0 =
13
12
(

f−(ui+1)− 2 f−(ui+2) + f−(ui+3)
)2

+
1
4
(
3 f−(ui+1)− 4 f−(ui+2) + f−(ui+3)

)2,

β̃1 =
13
12
(

f−(ui)− 2 f−(ui+1) + f−(ui+2)
)2

+
1
4
(

f−(ui)− f−(ui+2)
)2,

β̃2 =
13
12
(

f−(ui−1)− 2 f−(ui) + f−(ui+1)
)2

+
1
4
(

f−(ui−1)− 4 f−(ui) + 3 f−(ui+1)
)2.

Combining Equations (3), (6), and (8), we have the numerical flux for the third-order
WENO method

f̂i+1/2(ui−1, ui, ui+1, ui+2) = ω0

[
1
2

f+(ui) +
1
2

f+(ui+1)

]
+ ω1

[
−1

2
f+(ui−1) +

3
2

f+(ui)

]
+ ω̃0

[
3
2

f−(ui+1)−
1
2

f−(ui+2)

]
+ ω̃1

[
1
2

f−(ui) +
1
2

f−(ui+1)

]
.

(14)

Combining Equations (3), (10), (12), and using the following notations

W0i =
1
3

f (ui) +
5
6

f (ui+1)−
1
6

f (ui+2)

W1i = −
1
6

f (ui−1) +
5
6

f (ui) +
1
3

f (ui+1)

W2i =
1
3

f (ui−2)−
7
6

f (ui−1) +
11
6

f (ui)

W̃0i =
11
6

f (ui+1)−
7
6

f (ui+2) +
1
3

f (ui+3),

(15)

we have the numerical flux for the fifth-order WENO method

f̂i+1/2(ui−2, ui−1, ui, ui+1, ui+2, ui+3) = ω0W0+i + ω1W1+i + ω2W2+i
+ ω̃0W̃0−i + ω̃1W0−i + ω̃2W1−i .

(16)

Here, W0+i means that f+ is used for f in (15), and W0−i means that f− is used for f in (15),
and so on.

We apply the similar procedures in the y direction to approximate the numerical flux
of g(u)y, then we have a nonlinear system

(ui,j)t = −
f̂i+1/2,j − f̂i−1/2,j

∆x
−

ĝi,j+1/2 − ĝi,j−1/2

∆y
, i = 1, · · · , n; j = 1, · · · , m, (17)

where n and m are the numbers of grid points in x and y spatial directions, respectively.
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2.2. Temporal Scheme: SSP Integrating Factor Runge–Kutta Schemes

After the spacial discretizations, a semi-discretized nonlinear ODE system (17) is
obtained. We write it in the vector form

~Ut = ~F(~U). (18)

Here, ~U is the vector of the solution variables, and ~F(~U) is the approximation for the non-
linear convection terms by high WENO schemes. Each component of ~F(~U) is a nonlinear
function of numerical solution values on approximation stencils of WENO schemes. In
order to apply exponential integrators to the nonlinear system (18), we factor out the linear
part of the system as was done in [13] for the fully nonlinear convection-diffusion PDEs.
Specifically, at every time-step interval [tk, tk+1] with time-step size ∆t = tk+1 − tk, we
perform the splitting:

~Ut = ~F(~U) = Ck~U + ~FN , (19)

where Ck~U is the linear part with

Ck =
∂~F
∂~U

(~Uk) (20)

being the Jacobian matrix (or an approximation of the Jacobian matrix if its direct com-
putation is difficult) and ~Uk being the numerical solution of ~U(tk). ~FN is the nonlinear
remainder of the system (18) after the splitting

~FN = ~F(~U)− Ck~U.

For example, for 1D problems, if cij is the ith row and jth column element of the

Jacobian matrix Ck, then cij =
1

∆x

(
∂ f̂i+1/2

∂uj
− ∂ f̂i−1/2

∂uj

)
based on the 1D version of (17).

For the third-order WENO method, from Equation (14), we have

∂ f̂i+ 1
2

∂ui−1
=

∂ω0

∂ui−1

(
1
2

f+(ui) +
1
2

f+(ui+1)

)
+

∂ω1

∂ui−1

(
−1

2
f+(ui−1) +

3
2

f+(ui)

)
− 1

4
ω1( f ′(ui−1) + αx),

∂ f̂i+ 1
2

∂ui
=

∂ω0

∂ui

(
1
2

f+(ui) +
1
2

f+(ui+1)

)
+

1
4

ω0( f ′(ui) + αx)

+
∂ω1

∂ui

(
−1

2
f+(ui−1) +

3
2

f+(ui)

)
+

3
4

ω1( f ′(ui) + αx)

+
∂ω̃0

∂ui

(
3
2

f−(ui+1)−
1
2

f−(ui+2)

)
+

∂ω̃1

∂ui

(
1
2

f−(ui) +
1
2

f−(ui+1)

)
+

1
4

ω̃1( f ′(ui)− αx),

∂ f̂i+ 1
2

∂ui+1
=

∂ω0

∂ui+1

(
1
2

f+(ui) +
1
2

f+(ui+1)

)
+

1
4

ω0( f ′(ui+1) + αx)

+
∂ω1

∂ui+1

(
−1

2
f+(ui−1) +

3
2

f+(ui)

)
+

∂ω̃0

∂ui+1

(
3
2

f−(ui+1)−
1
2

f−(ui+2)

)
+

3
4

ω̃0( f ′(ui+1)− αx)

+
∂ω̃1

∂ui+1

(
1
2

f−(ui) +
1
2

f−(ui+1)

)
+

1
4

ω̃1( f ′(ui+1)− αx),
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∂ f̂i+ 1
2

∂ui+2
=

∂ω̃0

∂ui+2

(
3
2

f−(ui+1)−
1
2

f−(ui+2)

)
− 1

4
ω̃0( f ′(ui+2)− αx)

+
∂ω̃1

∂ui+2

(
1
2

f−(ui) +
1
2

f−(ui+1)

)
,

where ∂ωr
∂uj

and ∂ω̃r
∂uj

, r = 0, 1 can be easily obtained based on the definitions of (7) and (9).

For all j other than j = i− 1, i, i + 1, and i + 2, we have ∂ f̂i+1/2
∂uj

= 0.
For the fifth-order WENO method, from Equation (16) we have

∂ f̂i+ 1
2

∂ui−2
=

∂ω0

∂ui−2
W0+i +

∂ω1

∂ui−2
W1+i +

∂ω2

∂ui−2
W2+i +

1
6

ω2( f ′(ui−2) + αx),

∂ f̂i+ 1
2

∂ui−1
=

∂ω0

∂ui−1
W0+i +

∂ω1

∂ui−1
W1+i −

1
12

ω1( f ′(ui−1) + αx) +
∂ω2

∂ui−1
W2+i

− 7
12

ω2( f ′(ui−1) + αx) +
∂ω̃0

∂ui−1
W̃0−i +

∂ω̃1

∂ui−1
W0−i +

∂ω̃2

∂ui−1
W1−i

− 1
12

ω̃2( f ′(ui−1) + αx),

∂ f̂i+ 1
2

∂ui
=

∂ω0

∂ui
W0+i +

1
6

ω0( f ′(ui) + αx) +
∂ω1

∂ui
W1+i +

5
12

ω1( f ′(ui) + αx) +
∂ω2

∂ui
W2+i

+
11
12

ω2( f ′(ui) + αx) +
∂ω̃0

∂ui
W̃0−i +

∂ω̃1

∂ui
W0−i +

1
6

ω̃1( f ′(ui)− αx) +
∂ω̃2

∂ui
W1−i

+
5

12
ω̃2( f ′(ui)− αx),

∂ f̂i+ 1
2

∂ui+1
=

∂ω0

∂ui+1
W0+i +

5
12

ω0( f ′(ui+1) + αx) +
∂ω1

∂ui+1
W1+i +

1
6

ω1( f ′(ui+1) + αx)

+
∂ω2

∂ui+1
W2+i +

∂ω̃0

∂ui+1
W̃0−i +

11
12

ω̃0( f ′(ui+1)− αx) +
∂ω̃1

∂ui+1
W0−i

+
5

12
ω̃1( f ′(ui+1)− αx) +

∂ω̃2

∂ui+1
W1−i +

1
6

ω̃2( f ′(ui+1)− αx),

∂ f̂i+ 1
2

∂ui+2
=

∂ω0

∂ui+2
W0+i −

1
12

ω0( f ′(ui+2) + αx) +
∂ω1

∂ui+2
W1+i +

∂ω2

∂ui+2
W2+i

+
∂ω̃0

∂ui+2
W̃0−i −

7
12

ω̃0( f ′(ui+2)− αx) +
∂ω̃1

∂ui+2
W0−i

− 1
12

ω̃1( f ′(ui+2)− αx) +
∂ω̃2

∂ui+2
W1−i ,

∂ f̂i+ 1
2

∂ui+3
=

∂ω̃0

∂ui+3
W̃0−i +

1
6

ω̃0( f ′(ui+3)− αx) +
∂ω̃1

∂ui+3
W0−i +

∂ω̃2

∂ui+3
W1−i ,

where ∂ωr
∂uj

and ∂ω̃r
∂uj

, r = 0, 1, 2 can be easily obtained based on the definitions of (11) and (13).

For all j except j = i− 2, i− 1, i, i + 1, i + 2, and i + 3, we have ∂ f̂i+1/2
∂uj

= 0.

Remark 1. Ck is a n × n sparse matrix for a one-dimensional problem. For two-dimensional
problems, the dimension-by-dimension procedure is followed. A nm × nm sparse matrix Ck is
obtained. However, we only store the nonzero elements and their locations in the matrix Ck for the
Krylov approximation procedure.
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Then, for system (19), we apply the integration factor approach in [13,14], with e−Ckt

as the integration factor, and the resulting integration factor equations of the system is

d(e−Ckt~U)

dt
= e−Ckt~FN(~U). (21)

Denoting ~Y = e−Ckt~U, then (21) can be written in terms of ~Y as

d~Y
dt

= e−Ckt~FN(eCkt~Y). (22)

The next step is to apply Runge–Kutta methods to (22) to approximate ~Y(t); then
the relation ~U = eCkt~Y is used to obtain the exponential integrator time schemes for ~U.
To obtain the SSP exponential integrator, we apply the method in [38]. As pointed out
in [38], application of a SSP Runge–Kutta method to derive an exponential integrator time
scheme is not enough to ensure the preservation of the SSP property. In order to obtain
SSP exponential integrator schemes for ~U based on SSP Runge–Kutta methods, the system
(22) must be solved by SSP Runge–Kutta methods with non-decreasing abscissas. For
example, the third-order SSP Runge–Kutta method with non-decreasing abscissas is used
to solve (22) and leads to the following third-order SSP exponential integrator:

~U(1) =
1
2

e
2
3 Ck∆t

(
2~Uk +

4
3

∆t~FN(~Uk)

)
,

~U(2) =
2
3

e
2
3 Ck∆t~Uk +

1
3

(
~U(1) +

4
3

∆t~FN(~U(1))

)
,

~Uk+1 =
59

128
eCk∆t~Uk +

15
128

eCk∆t
(
~Uk +

4
3

∆t~FN(~Uk)

)
+

27
64

e
1
3 Ck∆t

(
~U(2) +

4
3

∆t~FN(~U(2))

)
.

(23)

2.3. Integrating Factor Methods Based on Krylov Subspace Approximation

The efficiency of the SSP IF Runge–Kutta methods such as (23) largely relies on the
methods to compute the product of the matrix exponential and a vector, eCk∆t~Uk. When we
use a specific spatial discretization to solve a PDE, a large matrix Ck such as (20) will be
generated. Although Ck is sparse, the exponential matrix eCk∆t is not. For one-dimensional
problems, eCk∆t can be directly computed, since the size of the matrix Ck is manageable.
However, for 2D problems, as an illustration, if we use a finite difference method on a
n× n rectangular mesh, then we will obtain matrices Ck with size n2 × n2. Therefore, it
cannot be afforded to compute and store eCk∆t directly with regard to both computational
cost and computer storage, due to the huge size of the matrix Ck. Fortunately, if we take a
close look at (23), we will see that we do not need eCk∆t itself—all we need are the products
of eCk∆t and some vectors in (23). An outstanding option for doing this job is the Krylov
subspace approximation, which can provide both accuracy and efficiency.

Now, we implement the Krylov subspace technique to find approximations to the
products of some exponential matrices and vectors in the SSP IF Runge–Kutta scheme (23)
and derive the new Krylov SSP IF Runge–Kutta methods. First, we review the procedure of
the Krylov subspace methods to approximate eA∆tv, following the literature (e.g., [41,44]).

First, we form a Krylov subspace KM based on the large sparse matrix A and the
vector v in the following way

KM = span{v, Av, A2v, · · · , AM−1v}. (24)

Here, M is the dimension of the subspace KM, and it is much smaller than the size of A. We
denote VM = [v1, v2, v3, · · · , vM] as an orthonormal basis of the Krylov subspace KM, which
is generated by the Arnoldi algorithm [45] in the steps described below (Algorithm 1).
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Algorithm 1: Arnoldi algorithm

Step 1. Calculate the initial vector: v1 = v/‖v‖2.
Step 2. For j = 1, 2, · · · , M :
Step 2.1 Calculate the vector w = Avj.
Step 2.2 For i = 1, 2, · · · , j, compute

(1) the inner product hi,j = (w, vi).
(2) w = w− hi,jvi.

Step 2.3 Calculate hj+1,j = ‖w‖2.
Step 2.4 If hj+1,j = 0, then

Set M = j;
Stop and exit;

else
Calculate vj+1 = w/hj+1,j.

The vectors hi,j produced from the above Arnoldi algorithm consist of an M × M
upper-Hessenberg matrix, denoted by HM. Because the vectors in VM are orthogonal, it is
easy to obtain

HM = VT
M AVM. (25)

The above equation shows that HM is the projection of A to the Krylov subspace KM, with
respect to the basis VM. Note that the dimension of HM is M, which is much smaller than
that of the matirx A. What’s more, because VM is orthonormal, the vector VMVT

MeA∆tv is
the orthogonal projection of eA∆tv on KM, that is, VMVT

MeA∆tv is the best approximation to
eA∆tv from KM. Thus, we have

eA∆tv ≈ VMVT
MeA∆tv = ‖v‖2VMVT

MeA∆tv1 = ‖v‖2VMVT
MeA∆tVMe1, (26)

where e1 is the first column of the identity matrix IM with size M × M. From (25), we
obtain the approximation

eA∆tv ≈ ‖v‖2VMeHM∆te1. (27)

Therefore, the large eA∆t matrix exponential computation is substituted by a small
eHM∆t matrix exponential computation. The much smaller eHM∆t problem can be calculated
by a scaling and squaring algorithm with a Padé approximation. The computational cost
of this algorithm is only O(M2), see [41,44,46]. After implementing the Krylov subspace
approximation (27) to (23), we obtain the Krylov SSP IF Runge–Kutta scheme.

We choose the value of M to be small, but still large enough to ensure that the
truncation errors of the numerical methods (23) are much larger than the errors of Krylov
subspace approximations. In this paper, we use M = 25. From our numerical experiments,
we observe that the proposed Krylov SSP IF RK methods have already achieved clear
accuracy orders for such a small value of M. What’s more, we do not need to increase the
size of M when we refine the spatial–temporal resolution.

3. Linear Stability Analysis

To discuss the linear stability of (23), we consider the test model problem

ut = Lu + Nu, (28)

where Lu is the linear part, and Nu is the linearization of the nonlinear part ~FN in (19).
Based on applying the third-order SSP IF Runge–Kutta method (23) to the test problem (28),
we plot the stability region boundaries, which are some curves for different values of ∆tL.
This is done by following the similar analysis for ETD methods in [47,48]. Note that the
linear stability analysis here is different from that in [38].
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Applying (23) to the Equation (28), we obtain

uk+1 = e∆tLuk
{

59
128

+
15
128

(1 +
4
3

∆tN) +
9

64
(1 +

4
3

∆tN)(3 + 2∆tN +
8
9
(∆tN)2)

}
. (29)

Let λ = N∆t, and substituting uk = eikθ into the above equation, we have

eiθ = e∆tL(1 + λ +
1
2

λ2 +
1
6

λ3). (30)

We plot the stability regions on the complex plane of λ in Figure 2, for ∆tL = −0.5,−5,
and −10. The interior of the closed curves is the stable region. The size of the stability
region is an increasing function of |∆tL|. As L→ −∞, the stability region approaches the
whole complex plane. This is consistent with the property of the method, because the linear
part is integrated exactly. Therefore, the larger the linear part is, the larger the stability
region is.

(a) ∆tL = −0.5 (b) ∆tL = −5 (c) ∆tL = −10
Figure 2. Linear stability regions for the third-order SSP IF Runge-Kutta scheme.

4. Numerical Experiments

In this section, numerical examples are presented to demonstrate the stability, accuracy,
and large CFL numbers for the WENO spatial discretizations coupled with the third-order
Krylov SSP integrating factor Runge–Kutta method for 1D and 2D scalar hyperbolic
equations. Both the linear advection equation and nonlinear Burgers’ equations are tested.
For all numerical experiments in this paper, the dimension of the Krylov subspace M is
taken as 25.

Example 1. Consider the one-dimensional Burgers’ equation

ut +

(
1
2

u2
)

x
= 0, x ∈ (−1, 1), t > 0 (31)

with periodic boundary conditions. The initial condition is given by u(x, 0) = 0.3 + 0.7 sin πx.
The exact solution can be obtained by using the method of characteristics and Newton’s method, namely,

u(x, t) =
x− x0

t
,

where x0 is the solution to the nonlinear equation

x = (0.3 + 0.7 sin(πx0))t + x0.

The computation is carried up to time T = 0.5
π2 , which is before shocks are formed.

Here, CFL = αx
∆t
∆x , where ∆t and ∆x are the time-step size and spatial step size, respectively,

and αx is defined in (5). Different CFL numbers are tried. For CFL = 4 and CFL = 10,
the L∞ and L1 errors and order of accuracy for the WENO3 method coupled with the
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proposed third-order Krylov SSP IF Runge–Kutta method are reported in Table 1. We can
see that the CFL number can be as large as 10 in the new method while still keeping the
third order of accuracy.

Table 1. Example 1, numerical errors and accuracy orders for the WENO3 scheme with the third-order
SSP IF Runge–Kutta time discretization. T = 0.5

π2 .

n L∞ Error L∞ Order L1 Error L1 Order

CFL =4 80 8.4928× 10−5 - 1.4150× 10−5 -
160 1.0082× 10−5 3.074 2.3096× 10−6 2.615
320 1.0759× 10−6 3.228 2.4674× 10−7 3.227
640 1.2844× 10−7 3.066 2.9298× 10−8 3.074

1280 1.5870× 10−8 3.017 3.6127× 10−9 3.020
2560 1.9786× 10−9 3.004 4.5006× 10−10 3.005

CFL = 10 80 8.4928× 10−5 - 1.4150× 10−5 -
160 1.0475× 10−5 3.019 2.4040× 10−6 2.557
320 7.9553× 10−6 0.397 1.9065× 10−6 0.334
640 1.3174× 10−6 2.594 3.1101× 10−7 2.616

1280 2.1668× 10−7 2.604 5.0765× 10−8 2.615
2560 2.7342× 10−8 2.986 6.3857× 10−9 2.991

When we implement the fifth-order WENO with the third-order SSP IF Runge–Kutta
method, in order to keep the consistency of truncation errors in the spatial and temporal
directions, we are using ∆t = (∆x)5/3. The results are reported in Table 2. We observe
that the numerical accuracy orders are actually higher than five. We also notice that for
n = 80, WENO5 has larger errors than WENO3. This is because WENO schemes are highly
nonlinear, and they have asymptotical convergence properties.

Table 2. Example 1. Numerical errors and accuracy orders for the WENO5 scheme with the third-
order SSP IF Runge–Kutta time discretization. T = 0.5

π2 .

n L∞ Error L∞ Order L1 Error L1 Order

80 4.9425× 10−3 - 4.2436× 10−4 -
160 5.4341× 10−7 13.151 5.0832× 10−8 13.027
320 1.4364× 10−9 8.563 1.5245× 10−10 8.381
640 4.5605× 10−12 8.299 4.9620× 10−13 8.263

1280 2.1716× 10−13 4.392 3.8558× 10−14 3.686

We also implement the proposed WENO schemes with SSP IF Runge–Kutta methods
till time T = 1, when shocks are formed. In Figure 3, the exact solution and the numerical
solutions of the third-order WENO (top) and the fifth-order WENO (middle) are displayed.
It is clearly shown in the Figure that the numerical shock is well-resolved for both WENO
methods. We also plot the errors in log scale for both WENO3 and WENO5 at T = 1
(bottom). We can see that WENO5 has much smaller errors than WENO3 in smooth regions
at this time.



Mathematics 2021, 9, 1483 12 of 17

Figure 3. Top and middle: The numerical solutions (symbols) versus the exact solution (solid line)
with n = 80 for Example 1. T = 1. Top: WENO3 with the third-order SSP IF Runge-Kutta method;
middle: WENO5 with the third-order SSP IF Runge-Kutta method. Bottom: log10(error) for WENO 3
(red circles) and WENO5 (blue asterisks).
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Example 2. Consider the two-dimensional linear advection equation

ut + ux + uy = 0, (x, y) ∈ (0, 2π)× (0, 2π), t > 0, (32)

with periodic boundary conditions. The initial condition is given by u(x, y, 0) = sin(x + y).
The exact solution is u(x, y, t) = sin(x + y − 2t). For two-dimensional cases, the proposed
Krylov method is used. The CFL number in this case is defined by CFL= ∆t

(
αx
∆x +

αy
∆y

)
, where

αx = maxu | f ′(u)|, and αy = maxu |g′(u)|.

The computation is carried up to T = 1. The L∞ and L1 errors and order of accuracy
for the third-order WENO method coupled with the third-order Krylov SSP IF RK method
are reported in Table 3 for different CFL numbers. We see that the CFL number can be as
large as five in the proposed new method, while still keeping the third order of accuracy.

Table 3. Example 2. Numerical errors and accuracy orders for the WENO3 scheme with the third-
order SSP IF Runge–Kutta time discretization. T = 1.

n × m L∞ Error L∞ Order L1 Error L1 Order

CFL=3 40 × 40 2.3920× 10−2 - 7.5559× 10−3 -
80 × 80 2.3242× 10−3 3.363 5.8279× 10−4 3.697

160 ×160 9.2379× 10−5 4.653 2.8572× 10−5 4.350
320 × 320 3.8538× 10−6 4.583 1.3139× 10−6 4.443
640 ×640 2.3876× 10−7 4.013 1.0040× 10−7 3.710

1280 × 1280 2.2247× 10−8 3.424 1.2550× 10−8 3.000

CFL = 5 40× 40 6.4163× 10−1 - 1.5473× 10−1 -
80× 80 2.4451× 10−3 8.036 5.8007× 10−4 8.059

160× 160 9.2652× 10−5 4.722 2.8558× 10−5 4.344
320× 320 3.8539× 10−6 4.587 1.3139× 10−6 4.442
640× 640 2.3876× 10−7 4.013 1.0040× 10−7 3.710

1280× 1280 2.2247× 10−8 3.424 1.2550× 10−8 3.000

Again, when we implement the fifth-order WENO with the third-order Krylov SSP
Runge–Kutta method, in order to keep the consistency of truncation errors in the spatial
and temporal directions, we are using

∆t = min((∆x)5/3, (∆y)5/3).

The results are reported in Table 4. We observe that the numerical accuracy orders are
actually higher than five.

Table 4. Example 2. Numerical errors and accuracy orders for the WENO5 scheme with the third-
order SSP IF Runge–Kutta time discretization. T = 1.

n × m L∞ Error L∞ Order L1 Error L1 Order

40 × 40 4.3511× 10−5 - 1.0357× 10−5 -
80 × 80 9.8415× 10−6 2.144 1.1647× 10−6 3.153

160 ×160 1.9511× 10−8 8.978 4.3367× 10−9 8.069
320 × 320 3.1284× 10−11 9.285 1.7546× 10−11 7.949
640 × 640 3.9935× 10−13 6.292 2.9549× 10−13 5.892

1280 × 1280 9.5479× 10−15 5.386 4.6189× 10−15 5.999

Example 3. Consider the two-dimensional Burgers’ equation

ut +

(
1
2

u2
)

x
+

(
1
2

u2
)

y
= 0, (x, y) ∈ (−2, 2)× (−2, 2), t > 0 (33)
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with periodic boundary conditions. The initial condition is given by u(x, y, 0) = 0.3 + 0.7
sin(π(x + y)/2). The exact solution can be obtained by using the method of characteristics and
Newton’s method.

This problem has a smooth solution before time 0.5
π2 ; after that, shocks will form.

We first calculate up to T = 0.5
π2 with M = 25 at which L∞ and L1 errors are measured.

Numerical errors and order of accuracy for the third-order WENO with the third-order
SSP IF Runge–Kutta method are recorded in Table 5. We see that the desired third order of
accuracy is achieved with the CFL number as large as five.

Table 5. Example 3. Numerical errors and accuracy orders for WENO3 scheme with the third-order
SSP IF Runge–Kutta time discretization. T = 0.5

π2 .

n × m L∞ Error L∞ Order L1 Error L1 Order

CFL=3 20 × 20 1.1356× 10−2 - 2.0771× 10−3 -
40 × 40 1.5136× 10−3 2.907 2.3810× 10−4 3.125
80 × 80 8.4928× 10−5 4.156 1.4304× 10−5 4.057

160 × 160 5.1569× 10−6 4.042 1.1611× 10−6 3.623
320 × 320 4.7135× 10−7 3.452 1.1089× 10−7 3.388
640 ×640 5.7582× 10−8 3.033 1.3480× 10−8 3.040

1280 ×1280 7.2197× 10−9 2.996 1.6847× 10−9 3.000

CFL = 5 20× 20 1.1356× 10−2 - 2.0771× 10−3 -
40 × 40 1.5136× 10−3 2.907 2.3810× 10−4 3.125
80 × 80 8.4928× 10−5 4.156 1.4304× 10−5 4.057

160 ×160 1.0475× 10−5 3.019 2.4046× 10−6 2.573
320 × 320 1.4410× 10−6 2.862 3.3236× 10−7 2.855
640 × 640 2.2619× 10−7 2.671 5.1713× 10−8 2.684

1280 × 1280 2.8333× 10−8 2.997 6.4587× 10−9 3.001

Again, when we implement the fifth-order WENO with the third-order SSP Runge–Kutta
method, in order to keep the consistency of truncation errors in the spatial and temporal
directions, we use ∆t = min((∆x)5/3, (∆y)5/3). The results are reported in Table 6. We see
that a fifth-order of accuracy is achieved.

Table 6. Example 3. Numerical errors and accuracy orders for WENO5 scheme with the third-order
SSP IF Runge–Kutta time discretization. T = 0.5

π2 .

n × m L∞ Error L∞ Order L1 Error L1 Order

40 × 40 2.0376 × 10−4 - 1.9799 × 10−5 -
80 × 80 3.7412 × 10 −6 5.767 6.1221 × 10−7 5.015

160 × 160 7.3331× 10−8 5.673 1.6803× 10−8 5.187
310 × 320 2.4151× 10−9 4.924 5.4418× 10−10 4.948
640 ×640 7.3460× 10−11 5.039 1.6789× 10−11 5.019

1280 × 1280 2.2919 × 10−12 5.002 5.2834 × 10−13 4.990

We also implement the Krylov SSP IF Runge–Kutta WENO methods till time T = 1,
when shocks are formed. In Figure 4, the numerical solutions of the third-order WENO
(top) and the fifth-order WENO (bottom) are displayed. We can see that the numerical
shocks are resolved very well for both WENO methods.
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Figure 4. The numerical solutions with n×m = 40× 40 for Example 3. T = 1. Top: WENO3 with the third-order Krylov
SSP IF Runge-Kutta time scheme; bottom: WENO5 with the third-order Krylov SSP IF Runge-Kutta time scheme.

5. Discussion and Conclusions

In this paper, we developed a class of efficient high-order numerical methods by
extending the work in [38] to solve general nonlinear 2D hyperbolic equations. High-order
WENO schemes are incorporated with a large time-stepping third-order SSP integrating
factor Runge–Kutta method. The reason we chose SSP RK methods as the time discretiza-
tion is because they are the most efficient time-method with WENO spatial discretization
for solving pure hyperbolic PDEs. A detailed discussion can be found in [20]. It will
also be interesting to compare the method proposed here with other methods, such as
semi-implicit schemes, which will be our future work.
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Due to the large size of matrix exponentials rising from two-dimensional problems,
we used the Krylov subspace projection method to efficiently approximate the matrix
exponential operator. Numerical examples show that we can use large CFL numbers to
achieve the desired accuracy of the methods. Numerical examples also verify that the error
of the Krylov subspace approximation does not affect the accuracy orders of the third-order
integrating factor SSP Runge–Kutta time discretization or the high-order WENO spatial
discretizations, which suggests that the Krylov subspace approximation error is already
much smaller than the temporal and spatial truncation errors of the numerical schemes.

The linear stability analysis in the paper is only for the time scheme. Because WENO
schemes are highly nonlinear schemes, the complete stability analysis for the fully dis-
cretized schemes, including both time and spatial directions, is still an open problem, which
will be studied in future research.

In this first paper, we only tested the proposed method for scalar equations. In future
work, we will extend the method to solve more complicated hyperbolic PDE systems and
higher-dimensional problems.
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