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Abstract: This work presents a study of a finite-time horizon stochastic control problem with restric-
tions on both the reward and the cost functions. To this end, it uses standard dynamic programming
techniques, and an extension of the classic Lagrange multipliers approach. The coefficients considered
here are supposed to be unbounded, and the obtained strategies are of non-stationary closed-loop
type. The driving thread of the paper is a sequence of examples on a pollution accumulation model,
which is used for the purpose of showing three algorithms for the purpose of replicating the results.
There, the reader can find a result on the interchangeability of limits in a Dirichlet problem.

Keywords: dynamic programming; lagrange multipliers; numeric approximation

1. Introduction

The aim of pollution accumulation models is to study the management of some goods
to be consumed by a society. It is generally accepted that such consumption generates
two byproducts: a social utility, and pollution. The difference between the utility and the
disutility associated with the pollution is known as social welfare. The theory developed
in this work enables the decision maker to find a consumption policy that maximizes
an expected social welfare for the society, subject to a constraint that may represent, for
example, that some costs of cleaning the environment are not to exceed some given quantity
along time.

This paper deals with the problem of finding optimal controllers and values for a class
of diffusions with unbounded coefficients on a finite-time horizon under the total payoff
criterion subject to restrictions. It uses standard dynamic programming tools, the Lagrange
multipliers approach, and a result on the interchangeability of limits in a Bellman equation.
The driving thread of the paper is a sequence of examples on a pollution accumulation
model, which is used for the purpose of showing how to replicate the theoretical results of
the work.

The origin of the use of the optimal control theory in the context of stochastic diffu-
sions on a finite-time horizon can be traced back to the works of Howard (see [1]), Fleming
(see, for instance, [2–4]), Kogan (see [5]), and Puterman (cf. [6]). However, the stochastic op-
timization problem with constraints was attacked only in the late 90s and early 2000s, when
some financial applications demanded the consideration of these models, under the hypoth-
esis that the coefficients of all: the diffusion itself, the reward function, and the restrictions,
are bounded (see, for Example [7–10]). Constrained optimal control under the discounted
and ergodic criteria was studied in the seminal paper of Borkar and Ghosh (see [11]), the
work of Mendoza-Pérez, Jasso-Fuentes, Prieto-Rumeau and Hernández-Lerma (see [12,13]),
and the paper by Jasso-Fuentes, Escobedo-Trujillo and Mendoza-Pérez [14]. In fact, these
works serve as an inspiration to pursue an extension of their research to the realm of
non-stationary strategies.
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Although this is not the first time that the problem of pollution accumulation has been
studied from the point of view of dynamic optimization (for example, [15] uses an LQ
model to describe this phenomenon, [16] deals with the average payoff in a deterministic
framework, [17,18] extend the approach of the former to a stochastic context, and [19]
uses a stochastic differential game against nature to characterize the situation), this paper
contributes to the state-of-the-art by adding constraints to the reward function, and by
taking into consideration a finite-time horizon. Moreover, this work profits from this fact
by proposing a simulation scheme to test its analytic results. However, it would not be
possible to find a suitable Lagrange multiplier for such simulations without the results
presented in Example 3, and Theorem 2, below.

The relevance of this work lies in the applicability of its analytic results in a finite-
time interval. Unlike the models under infinite-time criteria (i.e., discounted and average
payoffs; and the refinements of the latter), which focus on finding optimal controllers
in the set of (Markovian) stationary strategies, the criterion at hand considers as well
the more general set of (Markovian) non-stationary strategies. This fact implies that the
functional form of the Bellman equation includes a time-dependent term, and that the
feedback controllers will depend explicitly on the time argument. Since the coefficients
of the diffusions involved in this study are assumed to be unbounded, all of the points in
Rn will be attainable, and a verification result will be needed to ensure the existence of a
solution to the Bellman equation that remains valid for all (t, x) in [0; T]×Rn, where T will
be the horizon.

Significance and contributions.

• This paper presents an application of two classic tools: the Lagrange multipliers
approach, and Bellman optimization in a finite horizon for diffusions with possibly
unbounded coefficients. This fact represents a major technical contribution with
respect to the existing literature.

• This study illustrates its results by means of the full development and implementation
of an example on control of pollution accumulation. It also gives actual algorithms
which can be used for the replication of the results presented along its pages.

• This work lies within the framework of dynamic optimization. However, it considers
a broader class of coefficients than, for instance, [15]. As is the case of [16], it presents
a pollution accumulation model. However, it focuses on a stochastic context (as
in [17,18]), with the difference that the present project does so in a finite-time horizon,
and with restrictions on both the reward and the cost functions.

The rest of the paper is divided as follows. The next section gives the generalities of the
model under consideration, i.e., the diffusion that drives the control problem, the total
payoff criterion, the restrictions on the cost and the control policies at hand. Example 1
introduces the pollution model. Section 3 deals with the actual (analytic and simulated)
solution of the problem. Examples 2, 3, 4, Lemma 2, Theorem 2 and Example 5 illustrate the
analytic technique and serve the purpose of comparing it with some numeric simulations.
Finally, Section 4 is devoted to the presentation of the final Remarks.

This section concludes by introducing some notation for spaces of real-valued func-
tions on an open set Rn. The spaceW `,p(Rn) stands for the Sobolev space consisting of all
real-valued measurable functions h on Rn such that Dαh exists for all |α| ≤ ` in the weak
sense, and it belongs to Lp(Rn), where

Dαh :=
∂|α|h

∂xα1
1 , · · · , ∂xαn

n
with α = (α1, · · · , αn), and |α| :=

n

∑
i=1

αi.

Moreover, Cκ(Rn) is the space of all real-valued continuous functions on Rn with
continuous `-th partial derivative in xi ∈ R, for i = 1, ..., N, ` = 0, 1, ..., κ. In particular,
when κ = 0, C0(Rn) stands for the space of real-valued continuous functions on Rn. Now,
Cκ,η(Rn) is the subspace of Cκ(Rn) consisting of all those functions h such that Dαh satisfies
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a Hölder condition with exponent η ∈]0; 1], for all |α| ≤ κ; that is, there exists a constant K0
such that

|Dαh(x)− Dαh(y)| ≤ K0|x− y|η .

Define

W1,`;p([0; T]×Rn) := {h : [0; T]×Rn → R, h(t, ·) ∈ W `;p(Rn) and h(·, x) ∈ C1([0; T])}.

The spaceW1,`;p([0; T]×Rn) is assumed to be endowed with the topology ofW `;p([0; T]×
Rn). Similarly, p ∈ [1; ∞[ in C1;κ(Rn) and Lp([0; T]×Rn).

2. Preliminaries

This work studies a finite-horizon optimal control problem with restrictions. In
concrete, let (Ω,F , {Ft : t ≥ 0}) be a measurable space. Let there also be an Ft-adapted
stochastic differential system of the form

dx(t) = b(x(t), u(t))dt + σ(x(t))dW(t), x(0) = x, t ≥ 0, (1)

where b : Rn × U → Rn and σ : Rn → Rn×d are the drift and diffusion coefficients,
respectively; and W(·) is a d-dimensional standard Brownian motion. Here, the set U ⊂ Rm

is a Borel set called the action (or control) set. Moreover, let u(·) be a U-valued stochastic
process representing the controller’s action at each time t ≥ 0.

Now, the profit that an agent can obtain from its activity in the system is measured
with the performance index:

JT(t, x, u, r) := Eu
x

[∫ T

t
r(s, x(s), u(s))ds + r1(T, x(T))

]
, (2)

where r and r1 are the running and terminal rewards, respectively; and the symbol Eu
x [·]

stands for the conditional expectation of · given that x(t) = x, and the agent uses the
sequence of controllers u.

The goal is to maximize (2) subject to a finite-horizon cost index of the operation:

JT(t, x, u, c) := Eu
x

[∫ T

t
c(s, x(s), u(s))ds + c1(T, x(T))

]
≤ Eu

x

[∫ T

t
θ(s, x(s))ds + θ1(T, x(T))

]
,

(3)

where c is a running-cost rate, c1 is a terminal cost rate function; θ is a running constraint-
rate function, and θ1 is a terminal constraint-rate function. Observe that as the running
reward-rate function r depends on the action of the controller; the running constraint-rate
θ is independent of such variable.

The following is an assumption on the coefficients of the differential system (1).

Hypothesis (H1a). The control set U is compact.

Hypothesis (H1b). The drift coefficient b(x, u) is continuous on Rn × U, and x 7→ b(x, u)
satisfies a local Lipschitz condition on Rn, uniformly on U; that is, for each R > 0, there exists a
constant K1(R) > 0 such that for all |x|, |y| ≤ R

sup
u∈U
|b(x, u)− b(y, u)| ≤ K1(R)|x− y|.

Hypothesis (H1c). The diffusion coefficient σ satisfies a local Lipschitz condition on Rn; that is,
for each R > 0, there exists a constant K2(R) > 0 such that for all |x|, |y| ≤ R; that is, there exists
a positive constant K2 such that for all x, y ∈ Rn.
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|σ(x)− σ(y)| ≤ K2(R)|x− y|.

Hypothesis (H1d). The matrix a(x) := σ(x)σ′(x) satisfies a uniform ellipticity condition, i.e.,
for some constant K3 > 0,

y′a(x)y ≥ K3|y|2 for all x, y ∈ Rn.

Remark 1. The local Lipschitz conditions on the drift and diffusion coefficients referred to in
Hypothesis (H1b)–(H1c), along with the compactness of the control set U, stated in Hypothesis 1a,
yield that for each R > 0, there exists a number K4(R) ≥ K1(R) + K2(R) such that

sup
u∈U
|b(x, u)|+ |σ(x)| ≤ K4(R)(1 + |x|)

for all |x| ≤ R.

For u ∈ U, and h(t, ·) ∈ W2,p(Rn) for all t ≥ 0, define:

Luh(t, x) := 〈∇h(t, x), b(x, u)〉+ 1
2

Tr[[Hh(t, x)]a(x)] (4)

=
n

∑
i=1

bi(x, u)∂xi h(t, x) +
1
2

n

∑
i,j=1

aij(x)∂2
xixj

h(t, x),

with a(·) as in Hypothesis 1d, and ∇h, H representing the gradient and the Hessian matrix
of h with respect to the state variable x, respectively.

The main application of this work is the pollution accumulation model. Although it
will be possible to solve this problem within the realm of pure feedback strategies, this is
not always the case. As a consequence, the set of actions needs to be widened.

Control Policies. Let M be the family of measurable functions f : [0; T]×Rn → U. A
strategy u(t) := f (t, x(t)), for some f ∈M is called a Markov policy.

Definition 1. Let (U,B(U)) be a measurable space, and P(U) be the family of probability mea-
sures supported on U. A randomized policy is a family π := (πt : t ≥ 0) of stochastic kernels
on B(U)×Rn satisfying:

(a) for each t ≥ 0 and x ∈ Rn, πt(·|x) ∈ P(U) such that πt(U|x) = 1, and for each D ∈ B(U),
πt(D|·) is a Borel function on Rn; and

(b) for each D ∈ B(U) and x ∈ Rn, the function πt(D|x) is a Borel-measurable in t ≥ 0.

The set of randomized policies is denoted by Π.

Observe that every f ∈ M can be identified with a strategy in Π by means of the
P(U)-valued trajectory δ f , where δ f represents the Dirac measure at f . When the controller
operates policies π = (πt : t ≥ 0) ∈ Π, both the drift coefficient b, and the operator Lu

defined in (1) and (4), respectively, are written as

b(x, πt) :=
∫

U
b(x, u)πt(du|x), Lπt ν(t, x) :=

∫
U
Luν(t, x)πt(du|x).

Under Hypothesis (H1a)–(H1d) and Remark 1, for each policy π ∈ Π there exists
an almost surely unique strong solution xπ(·) of (1), which is a Markov-Feller process.
Furthermore, for each policy π = (πt : t ≥ 0) ∈ Π, the operator ∂tν(t, x) + Lπt ν(t, x)
becomes the infinitesimal generator of the dynamics (1) (for more details, see the arguments
in [20] (Theorem 2.2.7)). Moreover, by the same reasoning of Theorem 4.3 in [20], for each
π ∈ Π, the associated probability measure Pπ(t, x, ·) of xπ(·) is absolutely continuous with
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respect to Lebesgue’s measure for every t ≥ 0 and x ∈ Rn. Hence, there exists a transition
density function pπ(t, x, y) ≥ 0 such that

Pπ(t, x, B) =
∫

B
pπ(t, x, y)dy,

for every Borel set B ⊂ Rn.
Topology of relaxed controls. The set Π is topologized as in [21]. Such a topology

renders Π a compact metric space, and it is determined by the following convergence
criterion (see [20–22]).

Definition 2 (Convergence criterion). It will be said that the sequence (πm : m = 1, 2, ...) in Π

converges to π ∈ Π, and such convergence is denoted as πm W→ π, if and only if∫
Rn

∫ T

0

∫
U

g(t, x)h(t, x, u)πm
t (du|x)dtdx →∫

Rn

∫ T

0
g(t, x)

∫
U

h(t, x, u)πt(du|x)dtdx.
(5)

for all g ∈ L1([0; T] × Rn), and h ∈ Cb([0; T] × Rn × U), i.e., in the set of continuous and
bounded functions on [0; T]× Rn ×U. Denoting h(t, x, πt) by

∫
U h(t, x, u)πt(du|x) for each

π = (πt : t ≥ 0) ∈ Π, the convergence referred to in (5) reduces to∫
Rn

∫ T

0
g(t, x)h(t, x, πm

t )dtdx →
∫
Rn

∫ T

0
g(t, x)h(t, x, πt)dtdx.

Throughout this work, the convergence in Π is understood in the sense of the conver-
gence criterion introduced in Definition 2.

The following Definition is this work’s version of the polynomial growth condition
quoted in, for instance [18].

Definition 3. Given a polynomial function of the form w(x) = 1+ |x|k (with k ≥ 2), and x ∈ Rn,
let the normed linear space Bw([0; T]×Rn) be that which consists of all real-valued measurable
functions ν on [0; T]×Rn with finite w-norm given by

‖ ν ‖w := sup
(t,x)∈[0;T]×Rn

|ν(t, x)|
w(x)

.

Remark 2.

(a) Observe that for any function ν ∈ Bw([0; T]×Rn):

|ν(t, x)| ≤‖ ν ‖w w(x) =‖ ν ‖w (1 + |x|k).

This last inequality implies that any function ν ∈ Bw([0; T]×Rn) satisfies the polynomial
growth condition.

(b) Assuming that the initial data x(s) = x has finite absolute moments of every order (i.e.,
E|x(s)|k < ∞ for each k = 1, 2, . . .)—see [23] [Theorem 4.2], gives that

E|x(t)|k ≤ Ck(1 +E|x(s)|k), s ≤ t ≤ T,

where the constant Ck depends on k, T − s, and the constant K1 is as in Hypothesis (H1b).
(c) In the application developed throughout this paper, the constant initial data x(s) = x is

considered. Then E|x(t)|k also has finite moments of every order (see Proposition 10.2.2
in [18]). Therefore, E|x(t)|k ≤ Ck(1 + |x|k).
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Now, hypotheses on the reward, cost and constraint rates from (2) and (3) are stated.
These are very standard, and represent an extension of the ones used in classic works, such
as p. 157 in [23] (Chapter VI.3) and p. 130 in [24] (Chapter 3).

Hypothesis (H2a). The functions r, c : [0; T] × Rn × U → R are continuous, and locally
Lipschitz on Rn, uniformly on U; that is, for each R > 0, there exists a constant K5(R) > 0 such
that for all |x|, |y| ≤ R

sup
(t,u)∈[0;T]×U

|r(t, x, u)− r(t, y, u)|+ sup
(t,u)∈[0;T]×U

|c(t, x, u)− c(t, y, u)| ≤ K5(R)|x− y|.

Hypothesis (H2b). r(·, ·, u) and c(·, ·, u) are in Bw([0; T]×Rn) uniformly on U; in other words,
there exists M > 0 such that for all (t, x) ∈ [0; T]×Rn,

sup
(t,u)∈[0;T]×U

|r(t, x, u)|+ sup
(t,u)∈[0;T]×U

|c(t, x, u)| ≤ Mw(x).

Hypothesis (H2c). The terminal reward and cost rates r1(·, ·), c1(·, ·) ∈ Bw([0; T]× Rn);
and the running and terminal constraint rates θ(·, ·), θ1(·, ·) ∈ Bw([0; T] × Rn) are non-
negative measurable functions which are locally Lipschitz on [0; T]×Rn, i.e., for each R > 0, there
exists a constant K̃5(R) > 0 such that for all |x|, |y| ≤ R,

sup
t≥0

[|r1(t, x)− r1(t, y)|+ |c1(t, x)− c1(t, y)|]

+ sup
t≥0

[|θ(t, x)− θ(t, y)|+ |θ1(t, x)− θ1(t, y)|]

≤ K̃5(R)|x− y|.

For π = (πt : t ≥ 0) ∈ Π the reward and cost rates are written as

r(t, x, πt) :=
∫

U
r(t, x, u)πt(du|x), c(t, x, πt) :=

∫
U

c(t, x, u)πt(du|x). (6)

To complete this section, the main application of this work is introduced. It consists
of a pollution accumulation model. This application is inspired by the one presented
in [17,18], and satisfies Hypotheses (H1a)–(H1d) and (H2a)–(H2c).

Example 1. Fix the probability space (Ω,F , {Ft : t ≥ 0},P), and let T > 0 be a given time
horizon. Consider the pollution process defined by the controlled diffusion

dx(s) = [u(s)− ηx(s)]ds + σdW(s), x(t) = x > 0, (7)

for s ∈ [t; T], where 0 ≤ u(t) ≤ γ < η
2 . Here u(s) represents the consumption flow at time t ≥ 0,

and γ is certain consumption restriction imposed by, for instance worldwide protocols. Additionally,
the number η ∈]0; 1] is the rate of pollution decay.

It is easy to see that the coefficients of (7) meet Hypothesis (H1a)–(H1c). A simple calculation
yields that K3 ≥ σ2 − c for any c ∈]0; σ2[.

Now, a simulation of the trajectories of the Itô’s diffusion (1) is presented. To this end,
the extension of Euler’s method for solving first order differential equations known as Euler-
Maruyama’s method (see, for instance [25] and Chapter 1 in [26]) is used. This technique is
suitable for diffusions that meet Hypothesis (H1a)–(H1d). The focus is on the comparison between
Vasicek’s model for interest rates in finance (see, for instance Chapter 5 in [27]):

dx(s) = [µ− ηx(s)]ds + σdW(s), x(t) = x > 0, (8)

with s ∈ [t; T], and Kawaghuchi–Morimoto’s model (7).
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Let zN : {0, 1, ..., N} ×Ω → Rn, N ∈ N, be the Euler-Maruyama approximations for the
stochastic differential Equation (1), recursively defined by zN

0 := x and

zN
n+1 := zN

n + b(zN
n , un)

T
N

+ σ(zN
n )

(
W (n+1)T

N
−WnT

N

)
for all n ∈ {0, 1, ..., N}, with N ∈ N.

In Figures 1 and 2, observe that Kawaguchi-Morimoto’s process allows one to choose a
deterministic (implicit) function of t, whereas Vasicek’s series features what is known in the
literature as mean reversion. The latter fact is clear from the choice of a constant parameter µ.

Let h ∈ W1,2;p([0; T]×R). After (4), the infinitesimal generator of (7) is given by

ht(t, x) +Luh(t, x) = ht(t, x) + (u− ηx)hx(t, x) +
1
2

σ2hxx(t, x).

The polynomial function w(x) = x2 + x + 1 satisfies Definition 3. Please note that this
function does not depend on the time argument t.

Figure 1. A realization of a trajectory of (7) with x0 = 5, η = 1, σ ≡ 0.5, u(t) =
√

x(t), T = 1,
and N = 100.

Figure 2. A realization of a trajectory of (8) with x0 = 5, η = 1, σ ≡ 0.5, µ = 5, T = 1, and N = 100.

The reward-rate function used in further developments represents the social welfare, is given
by r : [0; T]×R×U → R, and is defined as:

r(t, x, u) := F(u)− a · x, (9)

where F ∈ C2(R) stands for the social utility of the consumption u, and a · x stands for the social
disutility (so to speak) of the pollution stock x, for a > 0 fixed. It is assumed that{

F′ ≥ 0, F′′ ≤ 0,
F′(∞) = F(0) = 0, F′(0+) = F(∞) = ∞.

(10)



Mathematics 2021, 9, 1466 8 of 29

The cost rate function will be given by

c(t, x, u) := c1x + c2u for all (t, x, u) ∈ [0; T]×R×U, (11)

with c1 > 0, and c2 ∈ R satisfying
c1 + ηc2 > 0. (12)

Since the pollution stock x depends on the time variable t ≥ 0, the functions defined in (9) and (11)
also depend on this variable.

The running constraint-rate function has the form

θ(t, x) :=
c1x
η

+ q, for all (t, x) ∈ [0; T]×R, (13)

where q is a positive constant. (Here, as with the reward and cost functions, it is assumed that x
implicitly depends on t.) The terminal constraint, cost and reward rates will be fixed at a level of
zero. It is not difficult to see that if F meets Hypothesis (H2a)–(H2c), then so do the social welfare,
the cost rate and the running constraint functions.

3. A Finite-Horizon Control Problem with Constraints

This section is devoted to the introduction of the study of the finite-horizon problem
with constraints.

Definition 4. For each π ∈ Π and T ≥ t, the total expected reward, cost and constraint
rates over the time interval [t; T] given that x(t) = x are, respectively,

JT(t, x, π, r) := Eπ
x

[∫ T

t
r(s, x(s), πs)ds + r1(T, x(T))

]
,

JT(t, x, π, c) := Eπ
x

[∫ T

t
c(s, x(s), πs)ds + c1(T, x(T))

]
,

θT(t, x, π) := Eπ
x

[∫ T

t
θ(s, x(s))ds + θ1(T, x(T))

]
,

with r(s, x(s), πs) and c(s, x(s), πs) as in (6).

The proof of the next result is an extension of [28] [Proposition 3.6].

Lemma 1. Hypothesis (H2a)–(H2c) imply that the total expected reward JT(t, x, π, r), the total
expected cost JT(t, x, π, c), and the constraint rate θT(t, x, π) belong to the space Bw([0; T]×Rn).
In fact, for every (t, x) ∈ [0; T]×Rn,

sup
π∈Π,t∈[0;T]

|JT(t, x, π, r)| ≤ M2(T, t)w(x), (14)

sup
π∈Π,t∈[0;T]

|JT(t, x, π, c)| ≤ M2(T, t)w(x), (15)

sup
π∈Π,t∈[0;T]

∣∣θT(t, x, π)
∣∣ ≤ M2(T, t)w(x), (16)

where M2(T, t) := M(Ck(T − t) + (T − t) + Ck).

Proof of Lemma 1. The proof is presented only for JT(t, x, π, r), for the line of reasoning is
the same for JT(t, x, π, c) and θ̄T(t, x, π). By Hypothesis (H2b), it is known that for every
(t, x) ∈ [0; T]×Rn,

|JT(t, x, π, r)| =

∣∣∣∣Eπ
x

∫ T

t
r(s, x(s), πs)ds + r1(T, x(T))

∣∣∣∣
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≤ M
[∫ T

t
Eπ

x w(xπs(s))ds + w(x(T))
]

.

Now, Remark 2(b)–(c) gives that

|JT(t, x, π, r)| ≤ M
(

Ck(|x|k + 1)(T − t) + (T − t) + Ck(|x|k + 1)
)

.

Letting M2(T, t) := M(Ck(T − t) + (T − t) + Ck) yields the result.

For each T > 0, and x ∈ Rn, assume that the (running and terminal) constraint
functions θ(·, ·) and θ1(·, ·) are given, and that they satisfy Hypothesis (H2c). In this way,
let

F t,x
θT

:= {π ∈ Π : JT(t, x, π, c) ≤ θT(t, x, π)}.

To avoid trivial situations, it is assumed that this set is not empty (see Remark 3.8
in [14]). To formally introduce what is meant when talking about the maximization of (2)
subject to (3), the finite-horizon problem with constraints is defined.

Definition 5. A policy π∗ ∈ Π is said to be optimal for the finite-horizon problem with
constraints (FHPC) with initial state x ∈ Rn if π∗ ∈ F t,x

θT
and, in addition,

JT(t, x, π∗, r) = sup
π∈F t,x

θT

JT(t, x, π, r).

In this case, J∗T(t, x, r) := JT(t, x, π∗, r) is called the T-optimal reward for the FHPC.

Example 2 (Example 1 continued). One intends to find a strategy π∗ ∈ Π that maximizes the
total expected reward

JT(t, x, π, r) = Eπ
x

[∫ T

t
(F(πs)− ax(s))ds

]
(17)

subject to

JT(t, x, π, c) = Eπ
x

[∫ T

t
(c1x(s) + c2πs)ds

]
≤ Eπ

x

[∫ T

t

(
c1x(s)

η
+ q
)

ds
]
=: θ̄T(t, x, π).

(18)

That is, find π∗ ∈ Π such that JT(t, x, π∗, r) := sup
π∈F t,x

θT

JT(t, x, π, r).

3.1. Lagrange Multipliers

To solve the FHPC, the Lagrange multipliers approach and the dynamic programming
technique are used to transform the original FHPC into an unconstrained finite-horizon
problem, parametrized by the so-named Lagrange multipliers. To do this, take λ ≤ 0 and
consider the new (running and terminal) reward rates

rλ(t, x, u) := r(t, x, u) + λ(c(t, x, u)− θ(t, x)),
rλ

1 (x(T)) := r1(T, x(T)) + λ(c1(T, x(T))− θ1(x(T))).

Using the same notation from (6), write

rλ(t, x, πt) := r(t, x, πt) + λ(c(t, x, πt)− θ(t, x)), π = (πt : t ≥ 0) ∈ Π.
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Observe also that for each λ < 0, rλ(·, ·, πt) ∈ Bw([0; T]×Rn) uniformly in Π, and
rλ

1 ≤ w. Indeed,

|rλ(t, x, πt)| ≤ |r(t, x, πt)|+ |λ||c(t, x, πt)|+ |λ||θ(t, x)|
≤ Mw(x) + M|λ|w(x) + |λ||θ(t, x)|
≤ (M + M|λ|+ |λ| · ‖θ‖w)w(x) = Nλw(x),

|rλ
1 (x(T))| ≤ (M + M|λ|+ |λ|‖θ1‖w)w(x) = Nλ

1 w(x),

where Nλ := M + M|λ| + |λ| · ‖θ‖w, Nλ
1 := M + M|λ| + |λ| · ‖θ1‖w, and M as in

Hypothesis (H2b).
It is natural to let, for all (t, x) ∈ [0; T]×Rn,

JT(t, x, π, rλ) := Eπ
x

[∫ T

t
rλ(s, x(s), πs)ds + rλ

1 (T, x(T))
]

.

Notice that

JT(t, x, π, rλ) = JT(t, x, π, r) + λ
[

JT(t, x, π, c)− θT(t, x, π)
]
. (19)

Example 3 (Examples 1 and 2 continued). The performance index for the FHUP is given by

JT(t, x, π, rλ) = Eπ
x

∫ T

t

[
F(πs)− ax(s) + λ

(
c1x(s) + c2πs −

c1x(s)
η
− q
)]

ds. (20)

Return now to Example 1, where a single trajectory of the processes (7) and (8) for certain
parameters were simulated, and the policy u(t) =

√
x(t), for (7); and u(t) = µ, for (8). One’s

aim is to compute (20) for a fixed value of λ < 0, when the utility function derived from the
consumption is given by F(u) =

√
u, by means of Monte Carlo simulation. To this end, the

following pseudocodes are presented.
Walkthrough of Algorithm 1. This pseudocode’s goal is to compute the integral inside (20).

• Line 1 initializes the process.
• Line 2 emphasizes the fact that λ < 0 is supposed to be given.
• In lines 3–11, the algorithm decides if it will work with (7), or with (8).
• Line 12 sets F =

√
u and D = a · x, and computes initial values for r, c and θ according

to (9), (11) and (13), respectively.
• Line 13 computes the integrand in (20) for the initial step.
• The while loop in lines 15–30 does the following:

– For each step, lines 16–24 decide between (7) and (8).
– Lines 25–26 implement Euler–Matuyama’s method.
– Line 27 updates the values of F, D, r, c and θ,
– Line 28 updates the value of the integrand.

• Line 31 computes the integral in (20).

Walkthrough of Algorithm 2. The purpose of this pseudocode is to compute a 95%-
confidence interval for the expectation of the result of Algorithm 1 according to Monte Carlo’s method.

• Line 1 calls Algorithm 1 N times.
• Line 2 computes an average of the iterations just performed.
• Line 3 computes the sample mean of the iterations.
• The Algorithm uses the results of lines 2–3 to return the desired interval.
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Algorithm 1: Integral algorithm
Data: x0, dt, T, µ, σ, c1, c2, q, η, a
Result: The integral inside the expectation operator (20)

1 x ← x0;
2 λ← λ0; . λ0 is an arbitrary negative constant.
3 if work with (7) then
4 u← µ;
5 else
6 if work with (8) then
7 u←

√
x;

8 else
9 return error;

10 end
11 end
12 F ←

√
u, D ← ax, r ← F− D, c← c1x + c2u, θ ← c1x

η + q;
13 I ← r + λ · (c− θ);
14 j← 0;
15 while j ≤ T do
16 if work with (7) then
17 u← µ;
18 else
19 if work with (8) then
20 u←

√
x;

21 else
22 return error;
23 end
24 end
25 dW ← N−1(0, dt);

. N−1(0, dt) stands for a random number that comes from a Normal
distribution with mean 0 and variance dt

26 x ← x + (u− ηx)dt + σdW;
27 F ←

√
u, D ← ax, r ← F− D, c← c1x + c2u, θ ← c1x

η + q;
28 I ← I + r + λ · (c− θ);
29 j← j + dt;
30 end
31 I ← I · dt;
32 return I;

Algorithm 1 receives the initial value x0, the step size dt, the time horizon T, and the parameters
of the diffusion (7) (resp. (8)) to calculate the (Itô) integral inside the expectation operator in (20)
when the process (7) (resp. (8)) is used; then, Algorithm 2 iterates this process and returns the
average of such iteration, thus approximating the value of (20). These algorithms require a negative
and constant value of the Lagrange multiplier. Later, in Example 5, a modification of Algorithm 1
that solves this situation will be proposed. For the sake of illustration, take the parameter values
from Example 1 (that is x0 = 5, η = 1, σ(x) ≡ 0.5, µ = 5, T = 1, and N = 100), and
use Algorithms 1 and 2 to compute an approximation to the value of (20) when one considers the
diffusion (8) (that is, the diffusion (7) with u(t) ≡ µ) for all t ≥ 0). Additionally, take

γ = 0.4, c1 = 0.1, c2 = 0.05, q = 0.0195, and a = 1.25.
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Algorithm 2: 95%-confidence interval for the expectation of an Itô’s integral
using Monte Carlo’s method.

Data: x0, dt, T, N
Result: A 95%-confidence interval for the expectation of the result of Algorithm 1

1 for i← 1 to N do Vi ← Integral(x0, dt, T, µ, σ, c1, c2, q, η, a);
2 MC ← 1

N ∑N
i=1 Vi;

3 b2
N ←

1
N−1 ∑N

i=1(Vi −MC)2;

4 return
[

MC− 1.96 bN√
N

; MC + 1.96 bN√
N

]
;

In this case, an arbitrary value of λ0 = −40 is used. Taking 10,000 simulations, these values
yield averages around

JT(0, 5, u, rλ0) ≈ −6.6549064 and

JT(0, 5, µ, rλ0) ≈ −13.235737,

for (7), and (8), respectively.

Let τ be any stopping time valued in [t; T], and ϕ ∈ W1,2;p([0; T]×Rn) ∩ Bw([0; T]×
Rn). Should p > n, an application of Itô’s Lemma to ϕ(T ∧ τ, x(T ∧ τ)) yields the
following result.

Proposition 1. Suppose that Hypotheses 1 and 2 are met. Fix π ∈ Π and λ ≤ 0; assume that
there is a function ϕ ∈ W1,2;p([0; T]×Rn) ∩ Bw([0; T]×Rn) satisfying:

rλ(t, x, πt) + ∂t ϕ(t, x) +Lπt ϕ(t, x) = 0, for all x ∈ [0; T]×Rn, (21)

with boundary condition ϕ(T, x(T)) = rλ
1 (x(T)). Then

ϕ(t, x) = JT(t, x, πt, rλ). (22)

Moreover, if the equality in (21) is replaced by “≤” or “≥”, then (22) holds with the corre-
sponding inequality.

Notice that Proposition 1 does not assert the existence of a function that satisfies (21)
(this is the purpose of Proposition 2 below). It rather motivates the definition of the
finite-horizon unconstrained problem.

Definition 6. A policy π∗ ∈ Π for which

JT(t, x, π∗, rλ) = sup
π∈Π

JT(t, x, π, rλ) =: J∗T(t, x, rλ) for all (t, x) ∈ [0; T]×Rn, (23)

is called finite-horizon optimal for the finite-horizon unconstrained problem (FHUP), and
J∗T(·, ·, rλ) is referred to as the finite-horizon optimal reward for the FHUP.

The first part of the following result is an extension of Proposition 1 and the verification
result Theorem 3.5.2(i) in [29] to the realm of Sobolev spaces. The proof of the second part
mimics that of Theorem 3.5.2(ii) in [29].

Proposition 2. Suppose that Hypotheses 1 and 2 are met. Then:

(i) For each fixed λ ≤ 0 and all t ∈ [0; T], the finite-horizon optimal reward J∗T(·, ·, ·, rλ) defined
in (23) belongs to W1,2;p([0; T] × Rn) ∩ Bw([0; T] × Rn), and verifies the total reward
Hamilton-Jacobi-Bellman (HJB) equation; that is,

0 = sup
π∈Π

{
rλ(t, x, π) + ∂t J∗T(t, x, rλ) +Lπ J∗T

(
t, x, rλ

)}
for all (t, x) ∈ [0; T]×Rn. (24)



Mathematics 2021, 9, 1466 13 of 29

with boundary condition J∗T(T, x(T), rλ) = rλ
1 (x(T)). Conversely, if some function ϕ ∈

W1,2;p([0; T]×Rn)∩Bw([0; T]×Rn) verifies (24) with boundary condition ϕ(T, x(T)) =
rλ

1 (x(T)), then ϕ(t, x) = J∗T(t, x, rλ) for all (t, x) ∈ [0; T]×Rn.
(ii) If there exists a Markovian policy f ∗ ∈M (depending on λ) that maximizes the right-hand-

side of (24), i.e.,

0 = rλ(t, x, f ∗) + ∂t J∗T(t, x, rλ) +L f ∗ J∗T(t, x, rλ), for all (t, x) ∈ [0; T]×Rn;

and this policy is such that the boundary condition J∗T(T, x(T), rλ) = rλ
1 (T, x(T)) is met as

well, then this policy is a finite-horizon optimal policy for the FHUP.

Use the former result to introduce the HJB equation for the FHUP for the examples
presented along the paper.

Example 4 (Examples 1–3 continued). The HJB equation for the FHUP is given by:{
ht(t, x) + supy∈[0;γ]

{
F(y)− ax + λ

[
c1x + c2y− c1x

η − q
]
+Lyh(t, x)

}
= 0, for t < T;

h(T, x) = 0,
(25)

where h ∈ C1,2([0; T]×R); and

Lyh(t, x) = (y− ηx)hx(t, x) +
1
2

σ2hxx(t, x).

According to Proposition 2, a solution of the HJB equation (25) yields the finite-horizon optimal
reward J∗T(t, x, rλ) and the optimal policy π∗ for the FHUP over the interval [t; T].

Now use Definition 6 and Propositions 1 and 2 to set expressions for the optimal
performance index, policies, and constraint rates from the examples presented along this
work.

Lemma 2 (Examples 1–4 continued). Let Λ and I be the Lebesgue’s measure and the indicator
function, respectively. Consider the planning horizon [t; T] and assume the conditions in (7),
(9)–(13) hold. Then,

(i) For every x > 0 and λ ≤ 0, the value function J∗T(t, x, rλ) in (23), becomes

J∗T(t, x, rλ) = m1

[
1− e−η(T−t)

]
x + m2(t), (26)

where

m1 :=
a
η
+

λc1

η2 −
λc1

η
, (27)

m2(t) := −λq(T − t) + (F(γ) + λγc2)Λ({y ∈ [t; T] : F′(γ) ≥ aλ(y)})
+
∫
{y∈[t;T]:F′(γ)<aλ(y)}

(
F(I(aλ(y))) + λc2 I(aλ(y)) + k1

[
1− e−η(T−y)

]
I(aλ(y))

)
dy

+m1γ
∫
{y∈[t;T]:F′(γ)≥aλ(y)}

[
1− e−η(T−y)

]
dy,

(28)

and aλ(t) := −λc2 − m1

[
1− e−η(T−t)

]
, and I(·) is the inverse of F′(·). Moreover, this

policy turns out to be optimal for the FHUP; i.e., it is such that (23) holds.
(ii) Define

f λ(t) :=
{

I(aλ(t)) if F′(γ) < aλ(t),
γ if F′(γ) ≥ aλ(t).

(29)

For every x > 0 and λ ≤ 0, the total expected reward, cost and constraint, respectively
JT(t, x, f λ(t), r), JT(t, x, f λ(t), c), and θT(t, x, f λ(t)); defined in Example 2, take the form
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JT(t, x, f λ(t), r)

=
∫
{y∈[t;T]:F′(γ)<aλ(y)}

[
F(I(aλ(y)))−

aI(aλ(y))
η

− a
ηx− I(aλ(y))

η
e−η(t−y)

]
dy

+

[
F(γ)− aγ

η

]
Λ
({

y ∈ [t; T] : F′(γ) ≥ aλ(y)
})

−a
ηx− γ

η2

[
e−η[T−t] − 1

]
I{t:F′(γ)≥aλ(t)},

(30)

JT(t, x, f λ(t), c) =∫
{y∈[t;T]:F′(γ)<aλ(y)}

[
c1

[
I(aλ(y))

η
+

ηx− I(aλ(y))
η

e−η(t−y)
]
+ c2 I(aλ(y))

]
dy

+

[
c1γ

η
+ c2γ

]
Λ
({

y ∈ [t; T] : F′(γ) ≥ aλ(y)
})

−c1
ηx− γ

η2

[
e−η[T−t] − 1

]
I{t:F′(γ)≥aλ(t)},

(31)

θT(t, x, f λ(t))

=
∫
{y∈[t;T]:F′(γ)<aλ(y)}

[
c1 I(aλ(y))

η2 + c1
ηx− I(aλ(y))

η2 e−η(t−y)
]

dy

+
c1γ

η2 Λ
({

y ∈ [t; T] : F′(γ) ≥ aλ(y)
})
− c1

ηx− γ

η3

[
e−η[T−t] − 1

]
I{t:F′(γ)≥aλ(t)}

+q(T − t).

(32)

Proof of Lemma 2.

(i) Start by making an informed guess of the solution of (25). Namely

h(t, x) := p(t)x + m2(t). (33)

Observe that ht(t, x) = p′(t)x−m′2(t), hx(t, x) = p(t), and hxx(t, x) = 0. The substi-
tution of these expressions in (25) yields

x
(
−a + λc1 −

λc1

η
− ηp(t) + p′(t)

)
+ sup

0≤u≤γ
{F(u) + λc2u + up(t)} − λq−m′2(t)

= 0,

This means that

−a + λc1 −
λc1

η
− ηp(t) + p′(t) = 0, (34)

sup
0≤u≤γ

{F(u) + λc2u + up(t)} − λq−m′2(t) = 0, (35)

Impose the terminal condition p(T) = 0 to (34) to obtain

p(t) = m1

[
1− e−η(T−t)

]
,

where k1 is as in (27). Now, from (35), write

m′2(t) = −λq + sup
0≤u≤γ

{F(u) + λc2u + up(t)}

= −λq + sup
0≤u≤γ

{
F(u) + λc2u + um1

[
1− e−η(T−t)

]}
. (36)
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To find the supremum of the expression inside the braces, use a standard calculus
argument to see that at a critical point u:

F′(u) + λc2 + m1

[
1− e−η(T−t)

]
= 0. (37)

Next, since by (10), F′(u) ≥ 0, it turns out that

qλc2 + m1

[
1− e−η(T−t)

]
≤ 0. (38)

Then, from (37):

F′(u) = −λc2 −m1

(
1− e−η(T−t)

)
=: aλ(t) ≥ 0,

and

f λ(t) :=
{

I(aλ(t)) if F′(γ) < aλ(t),
γ if F′(γ) ≥ aλ(t).

With this in mind, (36) turns into

m′2(t) = −λq + F( f λ(t)) + λc2 f λ(t) + m1

[
1− e−η(T−t)

]
f λ(t).

Finally, m2(t) = −λq(T − t) +
∫ T

t

(
F( f λ(y)) + λc2 f λ(y) + m1

[
1− e−η(T−y)

]
f λ(y)

)
dy, which equals

−λq(T − t)
+
∫
{y∈[t;T]:F′(γ)<aλ(y)}

(
F( f λ(y)) + λc2 f λ(y) + m1

[
1− e−η(T−y)

]
f λ(y)

)
dy

+
∫
{y∈[t;T]:F′(γ)≥aλ(y)}

(
F( f λ(y)) + λc2 f λ(y) + m1

[
1− e−η(T−y)

]
f λ(y)

)
dy

= −λq(T − t)
+
∫
{y∈[t;T]:F′(γ)<aλ(y)}

(
F(I(aλ(y))) + λc2 I(aλ(y)) + m1

[
1− e−η(T−y)

]
I(aλ(y))

)
dy

+
∫
{y∈[t;T]:F′(γ)≥aλ(y)}

(
F(γ) + λc2γ + m1

[
1− e−η(T−y)

]
γ
)

dy
= −λq(T − t)

+
∫
{y∈[t;T]:F′(γ)<aλ(y)}

(
F(I(aλ(y))) + λc2 I(aλ(y)) + m1

[
1− e−η(T−y)

]
I(aλ(y))

)
dy

+(F(γ) + λγc2)Λ({y ∈ [t; T] : F′(γ) ≥ aλ(y)})
+m1γ

∫
{y∈[t;T]:F′(γ)≥aλ(y)}

[
1− e−η(T−y)

]
dy,

where Λ(·) stands for Lebesgue’s measure. Therefore, from (33), obtain

h(t, x) := p(t)x + m2(t) = J∗T(t, x, rλ) = JT(t, x, f λ(t), rλ).

This proves (26)–(28). The optimality of (29) for the FHUP (20) follows from
Proposition 2(ii).

(ii) To see that (30) holds, use (17) to write

JT(t, x, f λ(t), r) = E f λ

x

[∫ T

t
(F( f λ(y))− ax(y))dy

]
=

∫ T

t
(F( f λ(y))− aE f λ

x [x(y)])dy.

Here, the interchange of integrals is possible due to the finiteness of the interval [t; T],
and Fubini’s rule. Now, since the solution of the controlled diffusion process (7) is
given by
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x(t) = e−η(t−t0)

[
x +

f λ

η

(
eη(t−t0)−1

)
+ σ

∫ T

t0

eη(s−t0)dW(s)
]

,

where x(t0) = x and its expected value is

E f λ

x [x(t)] =
f λ

η
+

ηx− f λ

η
eη(t−t0).

Now, by (29) observe that the former equals:

JT(t, x, f λ(t), r)

=
∫
{y∈[t;T]:F′(γ)<aλ(y)}

F( f λ(y))dy

+
∫
{y∈[t;T]:F′(γ)≥aλ(y)}

F( f λ(y))dy− aE f λ

x

[∫ T

t
x(y)dy

]
=

∫
{y∈[t;T]:F′(γ)<aλ(y)}

F(I(aλ(y)))dy

+
∫
{y∈[t;T]:F′(γ)≥aλ(y)}

F(γ)dy− aE f λ

x

[∫ T

t
x(y)dy

]
=

∫
{y∈[t;T]:F′(γ)<aλ(y)}

F(I(aλ(y)))dy

+F(γ)Λ
({

y ∈ [t; T] : F′(γ) ≥ aλ(y)
})
− aE f λ

x

[∫ T

t
x(y)dy

]
=

∫
{y∈[t;T]:F′(γ)<aλ(y)}

F(I(aλ(y)))dy

+F(γ)Λ
({

y ∈ [t; T] : F′(γ) ≥ aλ(y)
})

−a
∫ T

t

[
f λ(y)

η
+

ηx− f λ(y)
η

e−η(y−t)dy
]

=
∫
{y∈[t;T]:F′(γ)<aλ(y)}

[
F(I(aλ(y)))−

aI(aλ(y))
η

− a
ηx− I(aλ(y))

η
e−η(y−t)

]
dy

+

[
F(γ)− aγ

η

]
Λ
({

y ∈ [t; T] : F′(γ) ≥ aλ(y)
})

+a
ηx− γ

η2

[
e−η[T−t] − 1

]
I{t:F′(γ)≥aλ(t)}.

To prove (31), use the two leftmost members in (18), and proceed as above to put:

JT(t, x, f λ(t), c)

=
∫ T

t
(c1E

f λ

x [x(s)] + c2E
f λ

x [ f λ(s)]ds

= c1

∫ T

t

[
f λ(y)

η
+

ηx− f λ(y)
η

e−η(y−t)
]

dy + c2E
f λ

x

[∫ T

t
f λ(y)dy

]
=

∫
{y∈[t;T]:F′(γ)<aλ(y)}

[
c1

[
I(aλ(y))

η
+

ηx− I(aλ(y))
η

e−η(y−t)
]
+ c2 I(aλ(y))

]
dy

+

[
c1γ

η
+ c2γ

]
Λ
({

y ∈ [t; T] : F′(γ) ≥ aλ(y)
})

−c1
ηx− γ

η2

(
e−η[T−t] − 1

)
I{t:F′(γ)≥aλ(t)}.

Finally, by the two rightmost members of (18), write

θT(t, x, f λ(t))

= E f λ

x

[∫ T

t

c1

η
x(s)ds

]
+ q(T − t)
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=
∫ T

t

c1

η
E f λ

x [x(s)]ds + q(T − t)

=
∫ T

t

c1

η

[
f λ(y)

η
+

ηx− f λ(y)
η

e−η(y−t)
]

ds + q(T − t)

=
∫
{y∈[t;T]:F′(γ)<aλ(y)}

[
c1 I(aλ(y))

η2 + c1
ηx− I(aλ(y))

η2 e−η(y−t)
]

dy

+
c1γ

η2 Λ
({

y ∈ [t; T] : F′(γ) ≥ aλ(y)
})

−c1
ηx− γ

η3

[
e−η[T−t] − 1

]
I{t:F′(γ)≥aλ(t)} + q(T − t).

This proves (32).
The proof is now complete.

Remark 3. The equality

h(t, x) = J∗T(t, x, rλ)

= JT(t, x, f λ(t), r) + λ
[

JT

(
t, x, f λ(t), c

)
− θT

(
t, x, f λ(t)

)]
follows from (30)–(32).

3.2. From an Unconstrained Problem, to a Problem with Restrictions

This section starts with an important observation on the set of strategies which will
be used.

Remark 4. For each λ ≤ 0, define Πλ := {π = (πt : t ≥ 0) ∈ Π : 0 = rλ(t, x, πt) +
∂t J∗T(t, x, rλ) +Lπt J∗T(t, x, rλ) for all (t, x) ∈ [0; T]×Rn; and J∗T(T, x(T), rλ) = rλ

1 (x(T))}.
Since M can be thought of as a subset of Π, Proposition 2(ii) ensures that the set Πλ

is nonempty.

Lemma 3. Let (λm) be a sequence in ]−∞; 0] converging to some λ∗ ≤ 0, and assume that there
exists a sequence

(
πλm

)
⊂ Πλm for each m ≥ 1 that converges to a policy π ∈ Π. Then π ∈ Πλ∗ ;

that is, π satisfies

0 = rλ∗(x, πt) + ∂t J∗T(t, c, rλ∗) +Lπt J∗T(t, x, rλ∗) for all (t, x) ∈ [0; T]×Rn.

Proof of Lemma 3. Recall Definition 2. Take an arbitrary sequence (πm) ⊂ Πλ such that

πm W→ π. Observe that Proposition 2 ensures that for each m ≥ 1, JT(t, x, rλm) satisfies:

0 = rλm(t, x, πm
t ) + ∂t J∗T(t, x, rλm) +Lπm

t J∗T(t, x, rλm) for all (t, x) ∈ [0; T]×Rn.

In terms of the operator L̂πm
t

λm
, defined in (A4), the former relation reduces to

0 = L̂πm
t

λm
J∗T(t, x, rλ∗) for all (t, x) ∈ [0; T]×Rn, (39)

for the special case v1 ≡ r, v3 ≡ c, ρ(t, x, u) ≡ θ(t, x), πm
t ≡ πλm

t , hm(t, x) ≡ J∗T(t, x, rλm),
and λm constant. A verification that the hypotheses of Appendix A follows. Specifically,
part (a) trivially follows from (39). Then, the focus will be on checking that part (b) of
Theorem A1 is met. To do that, for some R > 0, take the ball BR := {x ∈ Rn : |x| < R}.
By [30] [Theorem 9.11], there exists a constant C0 (depending on R) such that for a fixed p > n:

‖J∗T(·, ·, rλm)‖W1,2;p([0;T]×BR)

≤ C0

(
‖J∗T(·, ·, rλm)‖Lp([0;T]×B2R)

+ ‖rλm(·, ·, πm
· )‖Lp([0;T]×B2R)

)
≤ C0

(
M2(T, t)‖w‖Lp([0;T]×B2R)

+ M‖w‖Lp([0;T]×B2R)

)
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≤ C0(M2(T, t) + M)T|B̄2R|1/p max
x∈B̄2R

w(x) < ∞,

where |B̄2R| represents the volume of the closed ball with radius 2R; M and M2(x, T, t) are
the constants in Hypothesis (H2b), and in (14), respectively.

Notice that conditions (c) to (f) from Theorem A1 trivially hold, and that condi-
tion (g) is given as a part of the hypotheses just presented. Then, one can claim the
existence of a function hλ∗ ∈ W1,2;p([0; T]× BR) together with a subsequence (mk) such
that J∗T(·, ·, rλmk ) = J∗T(·, ·, π

mk· , rλmk ) → hλ∗(·, ·) uniformly in [0; T]× BR and pointwise on

[0; T]×Rn as k→ ∞ and πm W→ π. Furthermore, hλ∗ satisfies:

0 = rλ∗(t, x, πt) +Lπt hλ∗(t, x), for (t, x) ∈ [0; T]× BR.

Since the radius R > 0 was arbitrary, one can extend the analysis to all of x ∈ Rn. Thus,
Proposition 1 asserts that hλ∗(t, x) coincides with J∗T(t, x, rλ∗). This proves the result.

Lemma 3 gives, in particular, the continuity of the mapping πt → JT(t, x, πt, rλ).

Lemma 4. Assume the hypotheses of Proposition 1. Then:

(a) For each fixed (t, x) ∈ [0; T]×Rn, λ ≤ 0, and η ∈ R under which λ + η ≤ 0:

η
[

JT(t, x, πλ
t , c)− θT(t, x, πλ

t )
]
≤ J∗T(t, x, rλ+η)− J∗T(t, x, rλ)

≤ η
[

JT(t, x, π
λ+η
t , c)− θT(t, x, π

λ+η
t )

]
.

(40)

(b) The mapping λ 7→ J∗T(t, x, rλ) is differentiable on ]−∞; 0[, for any (t, x) ∈ [0; T]×Rn; in
fact, for each λ < 0,

∂J∗T(t, x, rλ)

∂λ
= JT(t, x, πλ

t , c)− θT(t, x, πλ
t ). (41)

Proof of Lemma 4.

(a) Observe that from (19), (23), and the definition of rλ+η , one can assert that

J∗T(t, x, rλ+η) ≥ JT(t, x, πλ
t , rλ+η)

= JT(t, x, πλ
t , r) + (λ + η)

[
JT(t, x, πλ

t , c)− θT(t, x, πλ
t )
]
.

(42)

On the other hand, Proposition 2(ii) and the definition of πλ ∈ Πλ yield the equality

J∗T(t, x, rλ) = JT(t, x, πλ
t , rλ)

= JT(t, x, πλ
t , r) + λ

[
JT(t, x, πλ

t , c)− θT(t, x, πλ
t )
]
.

(43)

Subtracting (43) from (42) yields

J∗T(t, x, rλ+η)− J∗T(t, x, rλ) ≥ η
[

JT(t, x, πλ
t , c)− θT(t, x, πλ

t )
]
. (44)

Applying analogous arguments to those given in the above procedure, but taking
J∗T(t, x, rλ) and the policy πλ+η , it is possible to obtain

J∗T(t, x, rλ+η)− J∗T(t, x, rλ) ≤ η
[

JT(t, x, π
λ+η
t , c)− θT(t, x, π

λ+η
t )

]
. (45)

Hence (a) follows by combining (44) and (45).
(b) By (15) and (16):

|JT(t, x, π
λ+η
t , c)− θT(t, x, π

λ+η
t )| ≤ M2w(x).
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Therefore, the continuity of λ 7→ J∗T(·, ·, rλ
α ) follows by letting η → 0 in all of the terms

of (40). Now let (t, x) ∈ [0, ∞[×Rn and λ < 0 be fixed, and consider a sequence
of negative numbers (ηm) such that ηm ↑ 0 together with its associated sequence
of policies

(
πλ+ηm

)
, where πλ+ηm ∈ Πλ+ηm for each m. From the compactness

of the metric space Π, there exists a subsequence
(

πλ+ηmk

)
and π ∈ Π such that

πλ+ηmk
W→ π as k→ ∞. From Lemma 3, π belongs to Πλ, so, denote it by πλ := π. By

Lemma 3, the mapping πt 7→ JT(t, x, πt, v) is also continuous on Π, with v(t, x, u) =
c(t, x, u)− θ(t, x). Please note that JT(t, x, πt, v) = JT(t, x, πt, c)− θT(t, x, πt), which
gives

JT

(
t, x, π

λ+ηmk
t , c

)
− θT

(
t, x, π

λ+ηmk
t

)
→ JT

(
t, x, πλ

t , c
)
− θT

(
t, x, πλ

t

)
,

for (t, x) ∈ [0; ∞[×Rn as k→ ∞.

Therefore, from part (a) of this result, it turns out that the limit

lim
k→∞

J∗T(t, x, rλ+ηmk )− J∗T(t, x, rλ)

ηmk

= JT(t, x, πλ
t , c)− θT(t, x, πλ

t ), (46)

for (t, x) ∈ [0; ∞[×Rn. Similarly, if one considers a sequence of positive real numbers
(ηm) such that λ + ηm ≤ 0, it is possible to prove that there exists a subsequence(

λ + ηmk

)
such that (46) holds. This proves that λ 7→ J∗T(t, x, rλ) is differentiable on

]−∞; 0], with derivative given by (41).

The following is the main result of this section. It shows how to compute optimal
policies for the FHPC.

Theorem 1. Let Hypotheses 1 and 2 hold, and consider a point (t, x) ∈ [0; T]×Rn fixed. Then:

(a) If λ∗t,x < 0 is a critical point of J∗T(t, x, rλ); that is, if the derivative in (41) equals zero at

λ = λ∗t,x, then every πλ∗ =
(

π
λ∗t,x
t : t ≥ 0

)
∈ Πλ∗ is optimal for the FHPC, and

JT(t, x, πλ∗t,x , c) = θT(t, x, πλ∗t,x ).

Moreover, J∗T(t, x, rλ∗t,x ) is the optimal value for the FHPC which in turn coincides with

JT(t, x, π
λ∗t,x
t , r). In addition,

J∗T(t, x, rλ∗t,x ) = inf
λ<0

J∗T(t, x, rλ). (47)

(b) Case λ∗t,x = 0: If π0 =
(
π0

t : t ≥ 0
)
∈ Π0 satisfies JT(t, x, π0

t , c) ≤ θT(t, x, π0
t ); i.e.,

π0 ∈ F t,x
θT

, then this policy is optimal for the FHPC. Moreover, J∗T(t, x, r0) = J∗T(t, x, r)
becomes the optimal value for the FHPC and it coincides with JT(t, x, π0, r). Furthermore,

J∗T(t, x, r0) = min
λ≤0

J∗T(t, x, rλ). (48)
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Proof of Theorem 1.

(a) Since λ∗t,x < 0 is a critical point of J∗T(t, x, rλ), the relation (41) yields:

∂J∗T(t, x, rλ)

∂λ

∣∣∣∣∣
λ=λ∗t,x

= JT

(
t, x, π

λ∗t,x
t , c

)
− θT

(
t, x, π

λ∗t,x
t

)
= 0 for every πλ∗

t ∈ Πλ∗ .

(49)

Thus, using (19) and (49), it can be said that:

JT(t, x, πλ∗t,x , rλ∗t,x ) = JT(t, x, π
λ∗t,x
t , r) + λ∗t,x

[
JT(t, x, π

λ∗t,x
t , c)− θT(t, x, π

λ∗t,x
t )

]
= JT(t, x, π

λ∗t,x
t , r).

(50)

Moreover, given that πλ∗ is in Πλ∗ , Proposition 2(ii) and Remark 4 yield

J∗T(t, x, rλ∗t,x ) := sup
π∈Π

JT(t, x, πt, rλ∗t,x ) = JT(t, x, π
λ∗t,x
t , rλ∗t,x ). (51)

On the other hand, observe that for all π ∈ F t,x
θT

, JT(t, x, πt, c)− θT(t, x, πt) ≤ 0, im-
plying that λ∗t,x[JT(t, x, πt, c)− θ(t, x, πt)] ≥ 0. This last inequality, together with (19),
(23), (50) and (51), leads to

JT(t, x, π
λ∗t,x
t , r) = JT(t, x, π

λ∗t,x
t , rλ∗t,x ) = J∗T(t, x, rλ∗t,x ) ≥ JT(t, x, πt, rλ∗t,x )

= JT(t, x, πt, r) + λ∗t,x
[

JT(t, x, πt, c)− θT(t, x, πt)
]

≥ JT(t, x, πt, r) for all π ∈ F t,x
θT

.
(52)

Therefore,

JT(t, x, π
λ∗t,x
t , r) ≥ sup

π∈F t,x
θT

JT(t, x, πt, r). (53)

Finally, by (49):

JT(t, x, π
λ∗t,x
t , c) = θT(t, x, π

λ∗t,x
t ),

yielding that πλ∗ is in F t,x
θT

. This fact, along with (52) and (53), gives that

J∗T(t, x, rλ∗t,x ) = JT(t, x, π
λ∗t,x
t , r) = sup

π∈F t,x
θT

JT(t, x, πt, r);

that is, πλ∗ is optimal for the FHPC, and J∗T(t, x, rλ∗t,x ) coincides with the optimal
reward for the FHPC.
To prove (47), observe that for each λ < 0 and for all πλ ∈ Πλ, Proposition 1 gives

J∗T(t, x, rλ) ≥ JT(t, x, πt, rλ) = JT(t, x, πt, r) + λ
[

JT(t, x, πt, c)− θT(t, x, πt)
]

for all π ∈ Π, (t, x) ∈ [0; ∞[×Rn, in particular, taking π := πλ∗t,x in the latter expres-
sion, and observing that the second term is zero (see (49)) yield

J∗T(t, x, rλ) ≥ JT(t, x, πλ∗
t , r) + λ

[
JT(t, x, π

λ∗t,x
t , c)− θT(t, x, π

λ∗t,x
t )

]
= JT(t, x, π

λ∗t,x
t , r) + λ∗t,x

[
JT(t, x, π

λ∗t,x
t , c)− θT(t, x, π

λ∗t,x
t )

]
= J∗T(t, x, rλ∗t,x ).
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Since λ < 0 was an arbitrary negative constant, then (47) holds.
(b) It is clear that λ∗t,x = 0 implies r(t, x, πt) = r0(t, x, πt), for all (t, x) ∈ [0; ∞[×Rn and

π ∈ Π. Since Π0 is nonempty (see Remark 4), Proposition 2(ii) ensures that π0 ∈ Π0

is optimal for the FHUP (λ = 0). Given that π0 ∈ F t,x
θT

, then π0 is optimal for the
FHPC. Therefore,

J∗T(t, x, r0) = JT(t, x, π0
t , r) = sup

π∈F t,x
θT

JT(t, x, πt, r).

Moreover, since JT(t, x, π0
t , c) ≤ θT(t, x, π0

t ), one can take η < 0. From (40):

0 ≤ η
[

JT(t, x, π0
t , c)− θT(t, x, π0

t )
]
≤ J∗T(t, x, rη)− J∗T(t, x, r0).

This yields J∗T(t, x, r0) ≤ J∗T(t, x, rη), for all η < 0. Therefore, (48) follows trivially.

Theorem 2 (Examples 1–4, and Lemma 2 continued). Assume that K > 0 and let z > 0 fixed
such that for all t ∈ [0; T][

e−η[T−t] − 1
](
− c1K

η2 −
c1z
η
− c2K

η
+

c1K
η3 +

c1z
η2

)
+e−η(T−t)(T − t)

(
c1K
η
− c1K

2η2

)
− q(T − t) = 0,

(54)

and
0 < Ke−η(T−t) < γ (55)

(a) If F′
(

Ke−η(T−t)
)

> −m1

(
1− e−η(T−t)

)
, then the mapping λ 7→ J∗T(t, z, rλ) admits a

critical point λ∗t ≡ λ∗t (z) < 0 satisfying

aλ∗t
(t) = −λ∗t c2 −m1

(
1− e−η(T−t)

)
= F′

(
Ke−η(T−t)

)
, (56)

where m1 is as in (27). Hence, every πλ∗t ∈ Πλ∗t is optimal for the constrained control problem
and JT(t, z, πλ∗t , c) = θT(t, z, πλ∗t ); in particular, the corresponding f λ∗t ∈M∩Πλ∗ defined
in (29) becomes the policy

f (t) := Ke−η(T−t), (57)

and the optimal value for the FHPC is given by

JT(t, z, rλ∗t ) = JT(t, z, f λ∗t , r)

=
∫ T

t
F
(

Ke−η(T−y)
)

dy +
aK
η2

(
e−η(T−t) − 1

)
− az

η

(
e−η[T−t] − 1

)
+

K
η

e−η(T−t)(T − t).

(58)

Moreover,

JT(t, z, f λ∗t (t), c)− θT(t, z, f λ∗t (t))

=
[
e−η[T−t] − 1

](
− c1K

η2 −
c1z
η
− c2K

η
+

c1K
η3 +

c1z
η2

)
+e−η[T−t][T − t]

(
c1K
η
− c1K

2η2

)
− q[T − t] = 0.
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(b) If F′
(

Ke−η(T−t)
)
≤ −m1

[
1− e−η(T−t)

]
, then

f 0(t) = I
(
−m1

[
1− e−η(T−t)

])
∈ [0; γ]

defines a policy which belongs to Π0 and JT(t, z, f 0(t), c) ≤ θT(t, z, f 0(t)); that is f 0 ∈M∩Π0.
Moreover, f 0 is an optimal policy for the FHPC with optimal value

J∗T(t, z, r0) = J∗T(t, z, r) = J∗T(t, z, f 0(t), r)

=
∫
{y∈[t;T]:F′(γ)<aλ(y)}

[
F(I(a0(y)))−

aI(a0(y))
η

− a
ηz− I(a0(y))

η
e−η(y−t)

]
dy.

(59)

Proof of Theorem 2.

(a) Consider λ∗t ∈ R from (56). Then it satisfies the following inequality too

λ∗t :=
−F′

(
Ke−η(T−t)

)
−m1

[
1− e−η(T−t)

]
c2

< 0. (60)

From (55):
0 < Ke−η(T−t) < γ.

Since F′(·) is a strictly decreasing function, then

F′(γ) < F′
(

Ke−η(T−t)
)
= aλ∗t

(t).

Hence, from (29), f λ∗t (t) = I(aλ∗t
(t)) ∈ Πλ∗ takes the form (57). On the other hand,

from Lemma 4(b), the mapping λ 7−→ J∗T(t, z, rλ) is differentiable in λ∗t < 0, with

∂J∗T(t, z, rλ)

∂λ

∣∣∣
λ=λ∗t

= JT(t, z, πλ∗ , c)− θT(t, z, πλ∗) for all πλ∗ ∈ Πλ∗t .

In particular, if one considers πλ∗t := f λ∗t as given by (57), and then replaces it
in (31) and (32), one obtains that JT(t, z, f λ∗t , c) = θT(t, z, f λ∗t ) using the condition (54),
i.e., λ∗t is a critical point of the function λ 7→ J∗T(t, z, rλ). Thus, from Theorem 1(b),
every πλ∗t ∈ Πλ∗ is an optimal policy for the control problem with constraints, and
JT(t, z, πλ∗t , c) = θT(t, z, πλ∗t ), with optimal value J∗T(t, z, rλ∗t ) = JT(t, z, πλ∗t , r) =
JT(t, z, f λ∗t , r).

(b) Observe that

F′(γ) < F′
(

Ke−η(T−t)
)
≤ −m1

[
1− e−η(T−t)

]
= a0(t), (61)

which implies that

I(a0(t)) = I
(
−m1[1− e−η(T−t)]

)
≤ Ke−η(T−t) < γ. (62)
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From (29), it follows that f 0(t) = I(a0(t)) ∈M∩Π0. Moreover, by (61)–(62)

JT
(
t, z, f 0, c

)
− θT

(
t, z, f 0)

=
(

1− 1
η

) ∫
{y∈[t;T]:F′(γ)<a0(y)}

[
c1 I(a0(y))

η + c1
ηz−I(a0(y))

η e−η(y−t)
]
dy

+c2
∫
{y∈[t;T]:F′(γ)<a0(y)} I(a0(y))dy− q(T − t)

≤
(

1− 1
η

) ∫
{y∈[t;T]:F′(γ)<a0(y)}

[
c1Ke−η(T−y)

η + c1
ηz−Ke−η(T−y)

η e−η(y−t)
]

dy

+c2
∫
{y∈[t;T]:F′(γ)<a0(y)} Ke−η(T−y)dy− q(T − t)

=
(

e−η(T−t) − 1
)(
− c1K

η2 − c1z
η −

c2K
η + c1K

η3 + c1z
η2

)
+e−η[T−t](T − t)

(
c1K

η −
c1K
2η2

)
− q(T − t) = 0,

(63)

that is, JT
(
t, x, f 0, c

)
− θT

(
t, x, f 0) ≤ 0. Hence, Theorem 1(b) ensures that f 0 is an

optimal policy for the FHPC with optimal value J∗T(t, z, r) = JT(t, z, f 0, r). Henceforth,
replacing f 0 into (30), one easily deduces (59).

Remark 5. If the opposite condition in (54) occurs, then the existence of a critical point of the
mapping λ 7→ J∗T(t, z, rλ) implies necessarily that

F
′
(γ) ≥ a0(t) = −m1

[
1− e−η(T−t)

]
and f λ(t) = γ for all λ ≤ 0.

In this case, every λ ≤ 0 is a critical point of λ→ J∗T(t, z, rλ) and f λ(t) = γ is an optimal
policy for the FHPC. To avoid this trivial situation, under the fact F

′
(∞) = 0, choose γ large

enough such that
F
′
(γ) < −m1

[
1− e−η(T−t)

]
.

Now use Theorem 2 to propose a modification of Algorithm 1 to compute the integral
inside (20). Observe that it is no longer needed to include the computation of the Vasicek
process (8) because the optimal values of the controllers f λ∗—given by (57), and the
Lagrange multipliers λ∗t —given by (60)- are non-stationary along time.

Example 5 (Examples 1–4, Lemma 2, and Theorem 2 continued). Algorithms 2 and 3 can
be used to compare the Monte Carlo simulations for the integral inside the expectation operator
(20) with the results (formula (58)) from Theorem 2. To this end, recall from Example 1, the choice
made for the parameters of (7) (that is: x0 = 5, σ(x) ≡ 0.5, η = 1 and T = 1). In addition,
choose constants that meet (12): these are a = 1.25, γ = 1, c1 = 0.1, c2 = 0.05, and q = 0.0195.
With this configuration, condition (54) holds for all t ∈ [0; 1] with an error of, at most 0.004
(see Figure 3). With all these in mind, formula (58) in Theorem 2 yields an optimal value for the
FHPC of

J∗1 (0, 5, rλ∗t ) = J∗1 (0, 5, f λ∗t , r) = −3.58813. (64)

Figure 3. Error in the approximation of (54).
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Algorithm 3: Integral algorithm
Data: x0, dt, T, σ, c1, c2, q, η, a
Result: The integral inside the expectation operator (20) when x(t) is a solution of

(7)
1 x ← x0, I ← 0, j← 0;
2 F ←

√
u, D ← ax, r ← F− D, c← c1x + c2u, θ ← c1x

η + q;
3 while j ≤ T do
4 if F′

(
Ke−η(T−t)

)
> − a

η

(
1− e−η(T−t)

)
then

. Now use (57):
5 u∗ ← Ke−η(T−t);

. Now use (27) and (60):

6 λ∗ ←
−F′(Ke−η(T−t))− a

η [1−e−η(T−t)]
c2

;
7 else
8 u∗ ← γ;
9 λ∗ ← 0;

10 end
11 I ← r + λ∗ · (c− θ);
12 dW ← N−1(0, dt);
13 x ← x + (u∗ − ηx)dt + σdW;
14 I ← I + r + λ∗ · (c− θ);
15 j← j + dt;
16 end
17 I ← I · dt;
18 return I;

The use of Algorithms 2 and 3 (with 10,000 simulations) gives optimal values for the
FHUP around

J∗1 (0, 5, rλ∗t ) ≈ −3.3231104.

The relative error implied by the latter numeric expression and (64) is about 7.3%. The step
size used, along with the error involved in hypothesis (54) explain this difference. Figure 4 shows
the resulting pollution stock along time when the optimal strategy is implemented.

Figure 4. A realization of a trajectory of (7) with x0 = 5, η = 1, σ(x) ≡ 0.5, u(t) = f λ∗ (t), T = 1,
and N = 100.

4. Concluding Remarks

This paper studies a stochastic system on a finite-time horizon under the criterion of
the total performance with restrictions with unbounded coefficients of all: the diffusion,
the reward and the constraints. The results have been illustrated by means of a sequence
of examples, a Lemma and a Theorem. The approach is based on the use of some classic
dynamic programming tools, and the Lagrange multipliers technique for optimization
with restrictions.

The results of this work represent a natural extension of the ones introduced in [12],
to the non-stationary case. All these can also be applied to the control of pollution accumu-
lation as presented in [17,18]. An additional contribution of this presentation is given by
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the optimal controllers –and objective function- for a finite-time horizon under constraints.
Moreover, this work used the tools presented in [25], and the Monte Carlo simulation
technique to test its analytic findings. This represents a major implication of this work
concerning the current methodology for resource management and consumption when
pollution has an active role. Indeed, the model presented along this paper can be used
for the purpose of decision-making when the social welfare, and the cost and rewards
constraints are known and parametrized.

A plausible extension of this paper could be related to looking for optimal controllers
on a random horizon with a constrained performance index, in the fashion of [31].
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Appendix A. Technical Complements

In this appendix, an extension of Theorem 5.1 from [32] to the non-stationary case
with only one controller, in a finite horizon is introduced.

For x ∈ Rn, t ∈ [0; T], u ∈ U, λ ≤ 0; and assuming the existence of the functions
λ ∈ Bw([0; T]×Rn), h ∈ W1,2;p([0; T]×Rn), v1, v3, ρ : [0; T]×Rn ×U → R. Now define

Ψ(t, x, u, λ, h) := v1(t, x, u) + λ(t, x)[v3(t, x, u)− ρ(t, x, u)]
+〈∇h(t, x), b(x, u)〉 (A1)

L̂u
λh(t, x) := Ψ(t, x, u, λ, h) + ∂th(t, x) +

1
2

Tr[[Hh(t, x)]a(x)]. (A2)

Furthermore, for π = (πt : t ≥ 0) ∈ Π, define

Ψ(t, x, πt, λ, h) :=
∫

U
Ψ(t, x, u, λ, h)πt(du|x), (A3)

L̂πt
λ h(t, x) := Ψ(t, x, πt, λ, h) + ∂th(t, x) +

1
2

Tr[[Hh(t, x)]a(x)]. (A4)

Definitions (A1)–(A4) will be used in the next couple of results.

Theorem A1. Let Rn be a C2-class bounded domain and suppose that Hypotheses 1 and 2 hold.
Moreover, assume the existence of sequences (hm) ⊂ W1,2;p([0; T]×Rn), (εm) ⊂ Lp([0; T]×Rn)
with p > n, (λm) ⊂ Bw([0; T]×Rn), (πm) ⊂ Π satisfying that

(a) L̂πm

λm
hm = εm ∈ [0; T]×Rn, for m = 1, 2, . . .

(b) There exists a constant M1 such that ‖hm‖W1,2;p([0;T]×Rn) ≤ M1 for m = 1, 2, . . .
(c) εm converges in Lp([0; T]×Rn) to some function ε.
(e) λm converges uniformly to some function λ.

(f) πm W→ π ∈ Π.
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Then, there exists a function h ∈ W1,2;p([0; T]× Rn) and a sequence (mk) ⊂ {1, 2, . . .}
such that for t ∈ [0; T] fixed, hmk (t, ·)→ h(t, ·) in the norm of C1;η(Rn) for η < 1− n

p as k→ ∞;
and for x ∈ Rn fixed, hmk (·, x)→ h(·, x) in the norm of C1([0; T]). Moreover,

L̂π
λ h = ε in [0; T]×Rn.

Proof of Theorem A1. The first step is to prove the existence of a function h ∈ W1,2;p([0; T]×
Rn), and a subsequence

(
hmk

)
⊂ (hm) such that hmk → h as k→ ∞ weakly inW1,2;p([0; T]×

Rn), and for t ∈ [0; T] fixed, hmk (t, ·) → h(t, ·) in the norm of C1;η(Rn) for η < 1− n
p as

k→ ∞; and for x ∈ Rn fixed, hmk (·, x)→ h(·, x) in the norm of C1([0; T]).
AsW2;p(Rn) is a reflexive space (see [33] [Theorem 3.5]), then, by [33] [Theorem 1.17],

the ball
H(t) := {h(t, ·) ∈ W2;p(Rn) : ‖h‖W2;p(Rn) ≤ M} (A5)

is sequentially compact for each t ∈ [0; T] fixed. Since p > n, by [33] [Theorem 6.2, part III],
the mapping W2;p(Rn) ↪→ C1;η(Rn), for η ≤ 1− n

p is compact (and continuous too), so

the subset H(t) in (A5) is relatively compact in C1;η(Rn). This ensures the existence of a
function h(t, ·) ∈ W2;p(Rn) and a subsequence

(
hmk (t, ·)

)
≡ (hm(t, ·)) ⊂ H(t) such that

hm(t, ·)→ h(t, ·) weakly inW2;p(Rn), and strongly in C1;η(Rn)

for each t ∈ [0; T]. Now, since [0; T] is a compact set, hmk → h as k → ∞ weakly in
W1,2;p([0; T]×Rn), and for t ∈ [0; T] fixed, hmk (t, ·) → h(t, ·) in the norm of C1;η(Rn) for
η < 1− n

p as k→ ∞; and for x ∈ Rn fixed, hmk (·, x)→ h(·, x) in the norm of C1([0; T]).
Now, it is needed to prove that ∫

Rn

∫ T

0
g(t, x)Ψ(t, x, πm

t , λm, hm))dtdx

m→∞−→
∫
Rn

∫ T

0
g(t, x)Ψ(t, x, πt, λ, h)dtdx for all g ∈ L1([0; T]×Rn).

To this end, use (A1), and the triangle’s inequality, to write∣∣∣∫Rn

∫ T
0 g(t, x)Ψ(t, x, πm

t , λm, hm)dtdx−
∫
Rn

∫ T
0 g(t, x)Ψ(t, x, πt, λ, h)dtdx

∣∣∣
≤
∣∣∣∫Rn

∫ T
0 g(t, x)[v1(t, x, πm

t )− v1(t, x, πt)]dtdx
∣∣∣

+
∣∣∣∫Rn

∫ T
0 g(t, x){λm(t, x)[v3(t, x, πm

t )− ρ(t, x, πm
t )]− λ(t, x)[v3(t, x, πt)− ρ(t, x, πt)]}dtdx

∣∣∣
+
∣∣∣∫Rn

∫ T
0 g(t, x)[〈∇hm(t, x), b(x, πm

t 〉 − 〈∇h(t, x), b(x, πt〉]dtdx
∣∣∣.

Now work with the terms of the right-hand-side separately.∣∣∣∫Rn

∫ T
0 g(t, x){λm(t, x)[v3(t, x, πm

t )− ρ(t, x, πm
t )]− λ(t, x)[v3(t, x, πt)− ρ(t, x, πt)]}dtdx

∣∣∣
≤
∣∣∣∫Rn

∫ T
0 g(t, x)[λm(t, x)− λ(t, x)]v3(t, x, πt)dtdx

∣∣∣
+
∣∣∣∫Rn

∫ T
0 g(t, x)λm(t, x)[v3(t, x, πm

t )− v3(t, x, πt)]dtdx
∣∣∣

+
∣∣∣∫Rn

∫ T
0 g(t, x)ρ(t, x, πt)[λm(t, x)− λ(t, x)]dtdx

∣∣∣
+
∣∣∣∫Rn

∫ T
0 g(t, x)λm(t, x)[ρ(t, x, πm

t )− ρ(t, x, πt)]dtdx
∣∣∣,
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and ∣∣∣∣∫Rn

∫ T

0
g(t, x)[〈∇hm(t, x), b(x, πm

t 〉 − 〈∇h(t, x), b(x, πt〉]dtdx
∣∣∣∣

≤
∣∣∣∣∫Rn

∫ T

0
g(t, x)〈∇hm(t, x), b(x, πm

t )− b(x, πt)〉dtdx
∣∣∣∣

+

∣∣∣∣∫Rn

∫ T

0
g(t, x)〈∇hm(t, x)−∇h(t, x), b(x, πt)〉dtdx

∣∣∣∣.
Now write∣∣∣∣∫Rn

∫ T

0
g(t, x)Ψ(t, x, πm

t , λm, hm)dtdx−
∫
Rn

∫ T

0
g(t, x)Ψ(t, x, πt, λ, h)dtdx

∣∣∣∣
≤

∣∣∣∣∫Rn

∫ T

0
g(t, x)[v1(t, x, πm

t )− v1(t, x, πt)]dtdx
∣∣∣∣

+

∣∣∣∣∫Rn

∫ T

0
g(t, x)[λm(t, x)− λ(t, x)]v3(t, x, πt)dtdx

∣∣∣∣
+

∣∣∣∣∫Rn

∫ T

0
g(t, x)λm(t, x)[v3(t, x, πm

t )− v3(t, x, πt)]dtdx
∣∣∣∣

+

∣∣∣∣∫Rn

∫ T

0
g(t, x)ρ(t, x, πt)[λm(t, x)− λ(t, x)]dtdx

∣∣∣∣
+

∣∣∣∣∫Rn

∫ T

0
g(t, x)λm(t, x)[ρ(t, x, πm

t )− ρ(t, x, πt)]dtdx
∣∣∣∣

+

∣∣∣∣∫Rn

∫ T

0
g(t, x)〈∇hm(t, x), b(x, πm

t )− b(x, πt)〉dtdx
∣∣∣∣

+

∣∣∣∣∫Rn

∫ T

0
g(t, x)〈∇hm(t, x)−∇h(t, x), b(x, πt)〉dtdx

∣∣∣∣.
Since the mappingW2;p(Rn) ↪→ C1;η(Rn) is continuous, Hypothesis (H2b) yields that

for each t ∈ [0; T] fixed:

max
{
|hm(t, ·)|, max

1≤i≤n
|∂ihm(t, ·)|

}
≤ ‖hm(t, ·)‖C1;η(Rn) ≤ M‖hm(t, ·)‖W2;p(Rn) ≤ M ·M1.

Since t ∈ [0; T], remove the time argument from the latter expression by merely
substituting the constants M and M1 by another constants. To keep the notation as straight-
forward as possible, this will not be done. Now, Hypothesis (H1b) gives the existence
of a constant K1(Rn), such that |b(x, π)| ≤ K1(Rn). Moreover, there also exists a positive
constant k([0; T]×Rn) such that

|v1(t, x, π)|+ |v3(t, x, π)| ≤ k([0; T]×Rn).

Take all of these facts, and observe that:∣∣∣∣∫Rn

∫ T

0
g(t, x)Ψ(t, x, πm

t , λm, hm)dtdx−
∫
Rn

∫ T

0
g(t, x)Ψ(t, x, πt, λ, h)dtdx

∣∣∣∣
≤

∣∣∣∣∫Rn

∫ T

0
g(t, x)[v1(t, x, πm

t )− v1(t, x, πt)]dtdx
∣∣∣∣

+k([0; T]×Rn) · ‖g‖L1([0;T]×Rn) · ‖λm − λ‖Bw([0;T]×Rn)

+‖λm‖Bw([0;T]×Rn) ·
∣∣∣∣∫Rn

∫ T

0
g(t, x)[v3(t, x, πm

t )− v3(t, x, πt)]dtdx
∣∣∣∣

+‖g‖L1([0;T]×Rn) · ‖ρ(·, ·, πt)‖Bw([0;T]×Rn) · ‖λm − λ‖Bw([0;T]×Rn)
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+‖λm‖Bw([0;T]×Rn) ·
∣∣∣∣∫Rn

∫ T

0
g(t, x)[ρ(t, x, πm

t )− ρ(t, x, πt)]dtdx
∣∣∣∣

+nMM1

∣∣∣∣∫Rn

∫ T

0
g(t, x)(b(x, πm

t )− b(x, πt))dtdx
∣∣∣∣

+K1(Rn) · ‖g‖Bw([0;T]×Rn) · sup
t∈[0;T]

‖hm(t, ·)− h(t, ·)‖C1;η([0;T]×Rn).

The boundedness of v1 and v3 in [0; T] × Rn; and the convergence of πm in the
topology of relaxed controls yield that the right hand of the latter expression equals zero
when m→ ∞. Use Theorem 2.10 in [34] to see that

L̂π
λ h = ε in [0; T]×Rn.

This proves the result.
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