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Abstract: Mixed-level designs have a wide application in the fields of medicine, science, and agricul-
ture, being very useful for experiments where there are both, quantitative, and qualitative factors.
Traditional construction methods often make use of complex programing specialized software and
powerful computer equipment. This article is focused on a subgroup of these designs in which
none of the factor levels are multiples of each other, which we have called pure asymmetrical arrays.
For this subgroup we present two algorithms of zero computational cost: the first with capacity
to build fractions of a desired size; and the second, a strategy to increase these fractions with M
additional new runs determined by the experimenter; this is an advantage over the folding methods
presented in the literature in which at least half of the initial runs are required. In both algorithms,
the constructed fractions are comparable to those showed in the literature as the best in terms of
balance and orthogonality.

Keywords: mixed-level; balance; orthogonality

1. Introduction

One of the goals of experimentation is to establish the form of the relationships that
allow accurate data to be obtained for design purposes. Based on this objective, Wilkie
in 1962 addressed the need to use mixed-level designs with 6 or 8 levels for one or more
factors, and presented a case study, as well as a statistical analysis [1]. Mixed-level designs
are commonly used in different applications, especially when factors are qualitative. Mixed-
level designs are defined as those in which the factors have different numbers of levels [2,3].
Included in this definition there are two cases regarding the factors’ levels: when the levels
are equal for all factors, for example D(45), these designs are called pure or symmetrical;
and when the levels are different for some other factor, for example, D(243141), these are
called mixed or asymmetrical [4]. Within the group of asymmetrical designs, there are two
subgroups with different characteristics: the first of these is a design in which some of its
levels are multiples of each other, for example, D(316171). The second is a design in which
none if its levels are multiples of each other, for example, D(315171). For this research, we
have focused on the second subgroup, which we have called pure asymmetrical arrays.

Practical success when using mixed-level designs is due to efficient use of experimen-
tal runs to study many factors simultaneously [5]. Fractional factorial designs are the most
popular designs in experimental investigation [6]. Traditional construction methods for
mixed-level fractional factorial designs often make use of complex programming, special-
ized software, and powerful computer equipment; see [2,3,7–14]. For this, an important
number of criteria has been developed to measure the balance and orthogonality prop-
erties as quality attributes [3,7,8,15–17]. Even giving way to some comparisons between
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them [5,18] with different applications such as those described in [1,10,19–21] as well as
techniques to perform augmentations, in which the minimal requirement is to add a num-
ber of runs equal to 50% of the initial design size see [22,23]. According to the literature,
there is an area of opportunity that must be attended in favor of the development of an
algorithm with zero computational cost that allows the construction of fractions with the
best levels of balance and orthogonality. Two situations are of particular interest: (1) when
these designs form a design themselves; and (2) when these designs are joined to other
designs to form a new design for example: an orthogonal fraction of the (n, 24) and a
semi-orthogonal fraction (n, 315171) can form a semi-orthogonal fraction for the design
(n, 24315171); this is a common practice to form a mixed-level fraction [9].

At present, the use mixed-level fractional factorial designs in early stages of experi-
mentation opens an important possibility within the oriented use of resources (i.e., human
resources, raw materials, machinery, among others). Allowing the experimenter to scru-
tinize the influential effects in an economic scenario, with advantages such as allocating
resources, obtaining results in a shorter time, reducing the impact of machine deterioration
and equipment, among many others. Although the advantages in the use of mixed-level
fractional factorial designs are widely known, the use of these designs has been limited
because the exiting techniques for generating these fractions require the use of tools that
require extensive domain and investment (i.e., complex methods, specialized computer
equipment, specialist labor, specialized software, among others.).

There is an interest in the development of an instrument that breaks with the need
for these additional resources. This research offers a zero computational cost tool that
expands the tools currently offered by the state of the art, providing the experimenter with
an easy to understand and apply method that does not require complex programming and
can be used by anyone with basic knowledge of statistics, and therefore facilitating the
implementation of mixed-level fractional factorial design in different fields of study.

Pantoja et al. (2019) developed the NOBA (near-orthogonal balanced array) method to
generate mixed-level fractional factorial designs balanced-orthogonal and semi-orthogonal,
the study showed that a percentage of the designs analyzed proved to be ”infractionable”
due to nature of its factors [24]. Several examples of these designs, including 2 to 6 factors,
are shown in the Tables 1 and 2. In these designs, several of the levels are not multiples of
each other. Therefore, the least common multiple of the levels is equal to the number of runs
of the design matrix. When choosing a design of pure asymmetrical arrays to be fractioned,
the size of this array stops being a multiple of at least one of the factors levels. Thus, this
method is only able to generate near-orthogonal, near-balanced arrays. For this reason, the
fractions generated are called near-orthogonal, near-balanced pure asymmetrical arrays
(NONBPAs). This group is clearly the least studied since fractions belonging to this group
have been only published in [3]. In this work it is possible to see the concept of efficient
array (EA), the design with the best possible balance and orthogonality properties. EAs
have been obtained from the application of genetic algorithms and the optimization of
an objective function resulting from the sum of the standardized J2-optimality and the
standardized balanced coefficient (Form II). It is in this context, and when considering the
possibility that a NONBPA could be required in any field of application just as much as any
other design, that the importance of studying NONBPAs became evident.

Consider a shoe manufacturing company in which the implementation of a NONBPA
is required. The objective is to evaluate different materials for a new shoe concept, focused
on users with foot pathologies. Two response variables are of interest: pathological benefits
and production costs. The required design is (21315171) and the factors to consider are:
buttress material, lining, type sole, and slipper material. Table 3 shows the design levels, in
this case, the alternative of running a full factorial (210 runs) was ruled out due to projected
costs and required times. The decision was to run a NONBPA consisting in only 20 runs
(9.5% of the full factorial).
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Table 1. Examples of pure asymmetrical arrays with 2 to 4 factors.

Number of
Designs 2 Factors Runs Full

Factorial
Number of

Designs 3 Factors Runs Full
Factorial

Number of
Designs 4 Factors Runs Full

Factorial

1 D(2131) 6 1 D(213151) 30 1 D(21315171) 210
2 D(3141) 12 2 D(314151) 60 2 D(31415171) 420
3 D(2151) 10 3 D(213171) 42 3 D(31517181) 840
4 D(3151) 15 4 D(314171) 84 4 D(21517191) 630
5 D(4151) 20 5 D(215171) 70 5 D(41517191) 1260
6 D(5161) 30 6 D(315171) 105 6 D(51718191) 2520
7 D(2171) 14 7 D(415171) 140 7 D(213151111) 330
8 D(3171) 21 8 D(516171) 210 8 D(314151111) 660
9 D(4171) 28 9 D(315181) 120 9 D(213171111) 462
10 D(5171) 35 10 D(317181) 168 10 D(314171111) 924

. . . .

. . . .

. . . .
48 D(91141) 126 93 D(41111151) 660 81 D(4171111151) 4620
49 D(111141) 154 94 D(71111151) 1155 82 D(7181111151) 9240
50 D(131141) 182 95 D(81111151) 1320 83 D(2171131151) 2730
51 D(21151) 30 96 D(21131151) 390 84 D(4171131151) 5460
52 D(41151) 60 97 D(41131151) 780 85 D(7181131151) 10,920
53 D(71151) 105 98 D(71131151) 1365 86 D(21111131151) 4290
54 D(81151) 120 99 D(81131151) 1560 87 D(41111131151) 8580
55 D(111151) 165 100 D(111131151) 2145 88 D(71111131151) 15,015
56 D(131151) 195 101 D(111141151) 2310 89 D(81111131151) 17,160
57 D(141151) 210 102 D(131141151) 2730 90 D(111131141151) 30,030

Table 2. Examples of pure asymmetrical arrays with 5 to 6 factors.

Number of
Designs 5 Factors Runs Full

Factorial
Number of

Designs 6 Factors Runs Full
Factorial

1 D(21315171111) 2310 1 D(21315171111131) 30,030
2 D(31415171111) 4620 2 D(31415171111131) 60,060
3 D(31517181111) 9240 3 D(31517181111131) 120,120
4 D(21517191111) 6930 4 D(21517191111131) 90,090
5 D(41517191111) 13,860 5 D(41517191111131) 180,180
6 D(51718191111) 27,720 6 D(51718191111131) 360,360
7 D(21315171131) 2730
8 D(31415171131) 5460
9 D(31517181131) 10,920

10 D(21517191131) 8190
. .
. .
. .

29 D(518191111131) 51,480
29 D(718191111131) 72,072
30 D(3171101111131) 30,030
31 D(7191101111131) 90,090
32 D(5171111121131) 60,060
34 D(3151111131141) 30,030
35 D(5191111131141) 90,090
36 D(2171111131151) 30,030
37 D(4171111131151) 60,060
38 D(7181111131151) 120,120
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Table 3. Design levels for D(21,21315171).

Buttress Material Type Lining Type Sole Slipper Material

Type caliber 0.3 Machito Poliurethane Synthetic leather
Type caliber 0.5 Pig flower PVC Cow leather

— Oropal PVC nitrile Sgearling leather
— — TR Tissue
— — PVC-EV Plastic
— — — Synthetic mix
— — — Synthetic-leather

A notable contribution from this research is the development of two algorithms of
zero computational cost. The first algorithm allows the construction of a NONBPA fraction
and the second algorithm provides a strategy to increase these fractions with M additional
runs. Both designs, the original NONBPA and its augmented version were compared to the
EAs presented in [3]. The results showed that the NONBPAs are just as good as the EAs in
terms of GBM (general balanced metric), J2 (orthogonal parameter), and VIFs (Average
variance inflation factors).

The paper has been organized as follows: Section 1 presents the introduction and mo-
tivation. Section 2 presents several new concepts and two algorithms (NONBPA structure,
method to build a NONBPA and an example, as well as a strategy to increase NONBPAs
with M additional runs). In Section 3, a comparison of NONBPAs vs. EAs is provided.
Section 4 presents a practical application, and finally, the conclusions are presented in
Section 5.

1.1. Mixed-Level Fractional Factorial Designs

The study of orthogonal arrays has been the focus of many investigations; two desir-
able properties for these arrays are balance and orthogonality. Orthogonal arrays contain
pairs of linearly independent columns and are useful to evaluate the importance of several
factors. Orthogonality ensures that the effects can be estimate independently [7]. For a
matrix to be balanced, in each column, each possible factor level must appear the same
number of times. Columns whose levels do not appear with the same frequency are called
unbalanced. The concept of near-balanced denotes that, although not all levels appear
equally due to design size limitations, all levels appear with the most similar frequency.
The importance of preserving the balance lies in the fact that executing the same number of
times each level of a factor in an experiment, results in a uniform distribution of information
for each level. Thus, there is consistency in the variances of the difference of observations
in pairs of treatment combinations [3].

Mixed-level fractional factorial designs have led to the continued generation of param-
eters to measure the quality of these arrays. Xu and Wu (2001) developed the generalized
minimum aberration (GMA) for comparing asymmetrical fractional factorial designs. This
criterion is independent of the choice of treatment contrasts, and thus model free and it is
applicable to symmetrical and asymmetrical designs [15]. Xu (2003) proposed the minimum
moment aberration (MMA) to assess the goodness of nonregular designs and supersatu-
rated designs [16]. Xu and Deng (2005) proposed the moment aberration projection (MAP)
to rank and classify nonregular designs, it measures the goodness of a design through
moments of the number of coincidences between the rows of its projection designs [17].
Xu (2002) presented the J2 parameter (see Section 1.3) [7]. Dean and Lewis (2006) offered
an important revision of this criteria from the minimum aberration criterial approach [21].
Liu et al. (2006) generalized χ2 (D) criterial and investigated connections between GMA,
MMA, and MAP criteria [5]. Guo et al. (2007) defined the balanced coefficient criterion
for main effects and used it as an objective function to measure the degree of balance
and orthogonality of a near orthogonal array generated by using genetic algorithms; in
this research he presents a catalog of 20 arrays also called EAs; one characteristic of these
designs is they require a reduced number of runs while preserving high levels for balance
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and orthogonality [3]. Guo et al. (2009) extended the balance coefficient beyond main
effects giving rise to the GBM a minimum aberration criterion that can be used to evaluate
and compare mixed-level fractional factorial designs [8] (see, Section 2.3).

Methods for construction of mixed-level fractional factorial designs include Wang and
Wu (1992), they proposed an approach for construction of orthogonal designs based upon
difference matrices [10]. Wang (1996) presented a method for construction of orthogonal
asymmetrical arrays through the generalized Kronecker sum mixed-level matrix and mixed
difference matrices [11]. Nguyen (1996) presented a method to augment orthogonal arrays
with additional columns in such a way that the resulting design possesses good level for E
and other criteria [19]. DeCock and Stufken (2000) designed and algorithm for construction
of orthogonal mixed-level design through searching some existing two-level orthogonal
designs [25]. Xu (2002) developed an algorithm to add columns sequentially to a design by
using the generalized minimum aberration and minimum moment aberration criteria [7].
Salawu (2012) used the balanced coefficient and J2 optimality criteria to compare the two
forms of balanced coefficient methods using the generalized minimum aberration and
minimum moment aberration criteria [26]. Fontana (2017) presented a methodology based
on the joint use of polynomial counting function, complex counting of levels and algorithms
for quadratic optimization [13]. Grömping and Fontana (2018) proposed an algorithm
for generation of mixed-level arrays with generalized minimum aberration using mixed
integer optimization with conic quadratic constraints [14]. Pantoja et al. (2019) developed
the NOBA method, an algorithm based on divisor factors and permuted vectors that can
generate mixed-level fractional factorial designs [24].

One consequence of using a fractional factorial design is the aliasing of factorial effects.
A standard follows up strategy involves adding a second fraction called foldover. A foldover
can be constructed for various reasons. If the analysis of the initial design reveals that
a particular set of main effects and interaction are significant, the foldover design can be
chosen to resolve confounding problems; if one factor is very important, it should not be
confused with other factors. On the other hand, if the goal is to dealias all, or as many as
possible main effects from 2FIs, or 2FIs from each other [27,28]. A full foldover consists of
adding a second fraction of the same size as the initial fraction, obtained by inverting the
signs of one or more columns two-level designs or by rotating one or more columns (for
three-level and mixed level designs) [29].

The foldover is only one of several augmentation techniques developed for two-level
designs, other techniques include semifold, D-optimal semifold, quarterfold, and R3 algorithm.
Sequential experimentation techniques for mixed-level designs include foldover [22] and
semifold [23]. The foldover is constructed by rotating columns and the semifold by perform-
ing exhaustive research. The foldover technique is computationally more efficient when
compared to searching for additional runs in the full factorial, which could not be practical.
The main disadvantage of this method is that it requires the same number of runs as the
initial array and the size of the augmented design may be large in some situations. In order
to reduce the number of runs required by a foldover, the concept of semifold was introduced
making it possible to reduce the foldover plans to half the number of runs. [23].

1.2. General Balanced Metric and Balanced Columns

Balanced columns contain all levels equally often. Therefore, a balanced matrix for
main effects has a value of GBM = 0 (Equation (5)). Columns whose levels do not appear
equally often are called unbalanced. The concept of near-balanced denotes that while
not all levels appear equally often, due to the size limitations, all levels appear as equally
often as possible. Therefore, both balanced and near-balanced designs are considered to
have optimal balanced status given the constraint on the number of runs. An unbalanced
column is considered not near-balanced when it is neither balanced nor near-balanced [8].
Ghosh and Chowdhury mentioned the importance of balance for achieving some or all
treatment contrasts estimated with the same variance, they also mentioned the importance
of common variance (CV) designs when the objective is to discriminate between two
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models having common as well as uncommon parameter. This paper emphasizes the major
role played by the uncommon parameters and generalizes the concept of CV designs when
there are at most k (≥1) uncommon parameters. They also introduce a new concept of
“Robust CV designs for replications” having the possibility of replicated observations and
demonstrate the robustness for equally replicated observations. In addition, two general
designs for three level symmetric factorial experiments are presented [30].

Guo et al. (2009) defines the GBM as a measure of the degree of balance for both, main
effects and interactions in a mixed-level design [8]. It is defined as an n × k design matrix d,
n is the number of rows and k is the number of factors. Let dt(t = 1, . . . , k) denote matrices
including all t-factor interaction columns, and d1 is the one-factor-interaction matrix for
the main effects. Note that d1 is equivalent to d. Therefore, the whole interaction matrix
involves all t-factor interaction matrices dt. That is (see Equation (1)),

D =
[
d1 d2 . . . dt . . . dk

]
(1)

Let lt
j be the number of levels of the jjh column in dt(1 ≤ t ≤ k). Let ct

rj be the

number of times the rth levels appears in the jth column of dt. Let ct
j = [ct

1j, ct
2j, . . . ct

lt
j j]

T be

the counts for each level for the jth column of dt. The notation Ht is used for the balance
coefficient of dt. We can employ a distance function to reflect the degree of balance and
define the jth columns balance coefficient as shown in Equation (2),

Ht
j =

lt
j

∑
r=1

(ct
rj − Tt

j )
2 (2)

for the k-factor interaction matrix, where Tt
j = n

lt
j

is fixed. Substituting Tt
j = n

lt
j
, then Ht

j

becomes in the Equation (3),

Ht
j =

lt
j

∑
r=1

(ct
rj −

n
lt
j
)2 (3)

The balance coefficients Ht for dt just sum the Ht
j and are defined as shown in Equation (4),

Ht =

(
k
t

)

∑
j=1

Ht
j =

(
k
t

)

∑
j=1

lt
j

∑
r=1

(ct
rj −

n
lt
j
)2 (4)

Then, the GBM can be defined as in Equation (5),

GBM = (H1, H2, . . . , Ht, . . . , Hk) (5)

For two designs d1 and d2, suppose r is the smallest value such that Hr(d1) 6= Hr(d2).
Say that d1 is more general balanced than d2 if Hr (d1) < Hr (d2). If no design is more
general balanced than d1, then d1 is said to be the most general balanced design. To
calculate the value of the GBM parameter, consider that Hj

t (Equation (2)) represents the
error between the frequencies with which each level appears with respect to the frequency
with which it should appear. Therefore, it is notable that for a semi-balanced column Hj

t > 0
and said value will tend to increase when the frequency of one or more the levels in that
column moves away from the mean, which in this context corresponds to the frequency
with each level should appear.
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1.3. J2 and VIFs for Orthogonal Arrays

The J2 optimality parameter was proposed by Xu [7]. For an N x n matrix d = [xik],
weight wk > 0 is assigned for column k, which has sk levels. For 1 ≤ i, j ≤ N, let (see
Equation (6),

δi,j(d) =
n

∑
k=1

wkδ(xik, xjk) (6)

where δ(x, y) = 1 if x = y and 0 otherwise. The δi,j(d) value measures the similarity
between the ith and jth rows of d. In particular, if wk = 1 is chosen for all k, then δi,j(d) is
the number of coincidences between the ith and jth rows. Defined in the Equation (7),

J2(d) = ∑
1≤i<j≤N

[δi,j(d)]2 (7)

A design is J2-optimal if it minimizes J2. Obviously, by minimizing J2(d), it is desired
that the rows of d be as dissimilar as possible.

For an N × n matrix d whose kth columns has sk levels and weight wk, and the equality
holds if and only of d is OA (see Equation (8)).

J2 ≥ L (n) = 2−1[(
n

∑
k=1

Ns−1
k wk)

2 + (
n

∑
k=1

(sk − 1)(Ns−1
k wk)

2)− N(
n

∑
k=1

wk)
2

] (8)

L(n); is the minimum value that is reached by J2 when a matrix is orthogonal. Therefore,
since the NONBPAs are semi-orthogonal arrays, the value of L(n) cannot be considered
as a reference point to minimize J2. A more direct comparison is achieved by calculating
the VIFs.

VIF (variance inflation factor), of the predictor xj is calculated based on the linear
relationship between the predictor xj and the other independent variables [x1, x2, . . . , xj-1,
xj+1, . . . , xm]. As shown in Equation (9).

VIFj =
1

1− (Rj)
2 (9)

where, Rj
2 is the coefficient of determination of the regression of xj on all other independent

variables in the data set [x1, x2, . . . , xj-1, xj+1, . . . , xm] (see Equation (10)).

Rj
2 =

∑t
i=1 (Ŷt −Y)2

∑t
i=1 (Yt −Y)2 (10)

As it is known if the value of VIF = 1; then el coefficient of determination Rj
2 = 0 and

the predictors are not correlated, if 1 ≤ VIF ≤ 5; the predictors are moderately correlated
and if VIF > 10 indicates that the correlation between predictors is excessively influencing
the regression results. VIFs are easy to interpret since the higher the VIFs value, the greater
the correlation between the predictors [31,32].

2. Methodology
2.1. NONBPA Structure

A NONBPA is a fraction of the model matrix formed by k columns and n rows, in
which column A has symbols of (1,2, . . . ,la) column B has symbols of (1,2, . . . ,lb) and so on.
A balanced N-column is a column that contains NTN number of times each element of the
vector VLN, formed by the levels present in the N-column, see Equation (11). In addition, a
near-balanced N-column is a column formed by two segments: the first segment (balanced
segment) is formed by NTN; number of times the VLN (vector of levels for the N-factor)
and the second segment (non-balanced segment) by the vector of complementary levels
for the N-factor (VCLN); which is formed by elements from 1 to SVCLN (where SVCLN is
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the size of the vector of complementary levels for the N-factor), see Equation (12). Figure 1
shows the structure for a balanced and a near-balanced N-column.

Figure 1. Structure of a balanced and a near-balanced N-column.

For a given N-column, where NTN value is the ratio of n with respect to the number
of levels in the column (ln) (see Equation (11)). If NTN is integer the vector complementary
levels does not exist and the column is balanced, in the other case; the column is near-
balanced and the vector of complementary levels exists.

NTN =
n
ln

(11)

The size of the vector of complementary levels for a column near-balanced is SVCLN,
defined in the Equation (12).

SVCLN = n− (NTN · ln) (12)

Then, VCLN = [1:SVCLN]T.

2.2. Method to Build a NONBPA

This section shows the NONBPA method see Figure 2. The method consists in 3 steps
described below.

Figure 2. NONBPA method.

Step 1. Select a pure asymmetrical array. Select a mixed-level design in which factor
levels are not multiples of each other.

Step 2. Define the size of the array, n. Determine n ensuring that this is equal or greater
to the necessary degrees of freedom needed. For example, for a design with 4 qualitative
factors with 5, 6, 7, and 9 levels, the minimum degrees of freedom required to estimate all
effects are: 4 + 5 + 6 + 8 (main effects) + 1 (intercept) + 1 (error) = 25, the smallest fraction
that can be constructed is size 25.

Step 3. Construction of NONBPA. For the ith factor, replicate the vector 1, . . . , li (with
li, the number of levels) until n runs have been assembled. The last vector can be completed
(balanced column) or cut before being completed (near-balanced column).
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Example, Construction of NONBPA (24,516171)

Consider a situation that involves three qualitative factors: A, B, and C with 5, 6, and
7 levels, respectively. The experimenter is interested in running a fraction, given that factor
levels are not multiple of each other, he decides to use the NONBPA method. Figure 3
shows step by step the construction of a NONBPA.

Figure 3. Construction of NONBPA (24,516171).

In step 1, the design selected is the D(516171). In Step 2, the size of the array is
determined by the experimenter, in this case, a size of 24 was chosen, n = 24. Step 3 consists
in the construction of array. First, we will mention column B, note that last vector can be
completed, therefore the column is balanced. For columns A and C, the last vector is cut
before being completed, for this reason columns A and C are near-balanced.
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If the experimenter is interested in keeping a specific factor balanced, this can be done
by changing the size of the array. Table 4 shows several possibilities of n for this design.
Note that to preserve the balance property, it is advisable to select an array size that is a
multiple of la × lb . . . . × ln, where la, lb . . . . ln are the levels of the factors we want to be
balanced in the fraction. This table can also be useful to select n, for example, n = 30, keeps
factors A and B balanced while maintaining a reasonable fraction size.

Table 4. Several possibilities of size fraction for D(516171) with qualitative factors.

Balanced Factors la × lb . . . . × ln Possible Choices of n Number of Possibilities

A 5 20,25,30, . . . , 200, 205, 210 38
B 6 18, . . . , 192, 198,204, 210 33
C 7 21, 28, 35, . . . , 189, 196, 210 28

A, B 5 × 6 = 30 30, 60, 90, . . . , 150, 180, 210 7
A, C 5 × 7 = 35 35, 70, 105, 140, 175, 210 6
B, C 6 × 7 = 42 42, 84, 126, 168, 210 5

A, B, C 5 × 6 × 7 = 210 210 1

Figure 4 shows the GBM calculation for the design (315171) note that the column of
factor B is a balanced column. Therefore, Hj

t = 0. That is, all the levels for this column
appear with the same frequency Ct

j = [4,4,4,4,4,4]T. On the other hand, since columns A
and C are semi-balanced, they have values of Hj

t > 0. That is, they have a contribution of
0.8 and 1.71 respectively and GBM = 0.80 + 0 + 1.71 = 2.51. Regarding orthogonality, J2
=112 while VIFs = 1.01. Therefore, NONBPA (516171) is a semi-orthogonal array in which
the predictors are minimally correlated.

2.3. Augmentation Strategies vs. NONBPAs

Ghosh and Rao (1996) presented a comprehensive study on sequential assembly of
fractions (see Figure 5) [33]. They used the design presented by Box [34] (p. 394), this design
is presented in T1; it contains 7 factors and 8 runs. T2 is obtained from T1 by switching
the signs of column 4. T3 is obtained from T1 by switching the signs of all columns and
T4 is presented as T2 with the columns (1,2,3) as (4, 5, 6), (4, 5, 6) as (1,2,3) and the runs
(rows) are also in different order. T4 is known as a Search Design [35]. Then a series of
augmentation options are presented and evaluated in terms of balance and orthogonality.

The coincidence between these matrices and the NONBPAs is notable. Because in the
NONBPAs in a similar way; when renaming the levels of one or more factors it is possible
to construct a new fraction. Original NONBPAs and new NONBPAs whit renamed levels
have similar properties for balance and orthogonality. Figure 6 shows the level rotation of
factor B of NONBPA (213151), note that two additional designs have been generated.

NONBPAs, like many other designs can be augmented. In this section we show a
simple strategy to augment the NONBPAs with M additional new runs determined by the
experimenter. To increase a NONBPA, it is enough to decide M and then to add the M
additional rows by rotating factor levels.
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Figure 4. Calculated GBM for NONBPA (24,516171).
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Figure 5. Sequential assembly of fraction.

Figure 6. Level rotation for factor B of NONBPA(213151).

Example, Augmenting a NONBPA (15,21315171111) with 7 Additional Runs

Figure 7 shows a NONBPA (15,21315171111) augmented with M = 7 additional runs.
Note that the first 15 runs belong to the original NONBPA and the new M = 7 runs are
added by rotating factor levels. Note that creating a NONBPA of size n + M from scratch
would produce the same fraction.

Table 5 shows a comparison between the NONBPA (15,516171) and its augmented
versions. In both designs the number of balanced columns is 2. Increasing the number of
runs directly benefits columns A and E, minimally effects B and C and has no effect on D.
This provoked a significant reduction in the GBM value from 3.90 to 2.72 improving the
balance. Regarding the orthogonality property, the values of J2 and VIFs were calculated;
as it is already known, J2 increases as the number of runs increases. Therefore, a direct
comparison is not possible. A direct comparison is achieved with the VIFs; from 1.03 to
1.01, note that the design becomes more orthogonal as the number of runs increases.
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Figure 7. NONBPA (15,21315171111) augmented with 7 runs.

Table 5. Properties NONBPA (15,516171) vs. NONBPA augmented (21,516171).
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3. Results Comparison of NONBPAs vs. EAs

NONBPAs were compared with its competitors, the EAs, presented in [3]. To per-
form the comparison, four EAs were selected, including EA(21,314171), EA(20,314151),
EA(24,516171), and EA(15,21315171). The equivalent NONBPAs were constructed and aug-
mented so that the number of runs of the NONBPAs were equal to the number of runs of
the EAs. In this way, a more direct comparison was possible. To compare the designs, the
balance (GBM) and orthogonality (J2 and VIFs) are measured. Figures 8 and 9 show that
the EAs and the NONBPAs have similar levels for balance and orthogonality, the difference
is only minimal only with respect to VIFs values. It was also observed that GBM and J2
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remain equal for EAs and NONBPAs even if the size of the array changes. Figure 10 shows
an efficient array for a D(315171) compared to its corresponding NONBPA. The comparison
was made by using 15, 21, and 30 runs. Note that in all cases, the GBM and the J2 were
identical for EAs and NONBPAs, and VIFs values are very similar.

Figure 8. Comparison of EAs vs. NONBPAs for the (21,314171) and (20,314151).
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Figure 9. Comparison of EAs vs. NONBPAs for the (24,516171) and (20,21315171).



Mathematics 2021, 9, 1455 16 of 20

Figure 10. Comparison of EA vs. NONBPA using different run size.

4. Practical Application

To demonstrate de capacity of the NONBPAs to estimate factorial effects, the method
was compared to full factorial and EA using simulated data (Figure 11). The design selected
to perform the comparisons was the D(210,21315171). To generate the simulated data, a
simple model with the form Y = 6 [A] + 10 [C] + ε(0, σ2), was used and an experimental
error was introduced, which is a random variable with zero mean (u = 0) and variance
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(σ2) [27]. Based on research performed by Ríos et al. (2011), the size of the variance must
be one third of the regression coefficient for the regressor to be reported as significant [23].

Figure 11. Simulated data for full factorial, EA and NONBPA.
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Table 6 shows the ANOVA tables and the optimization for the three designs. Results
are very consistent for the three methods; ANOVA tables look similar, and all the designs
were able to detect A and C as significant effects. Regarding the optimization, a desirability
function for maximization was used and the three designs produced the same recom-
mended levels for factors A and C, which are two and five, respectively. In all cases, the
optimal value for the response is very similar.

Table 6. ANOVA tables and optimization for full factorial, EA, and NONBPA.

ANOVA OPTIMIZATION
A C Y

Sum of df Mean F p-value

Fu
ll

Fa
ct

or
ia

l Source Squares Square Value prob > F

Model 43,681.47 5 8736.29 3888.22 <0.0001 significant
A 2012.19 1 2012.19 895.56 <0.0001 2 5 64.854
C 41,669.28 4 10,417.32 4636.38 <0.0001

Residual 458.36 204 2.25
Cor Total 44,139.83 209

Sum of df Mean F p-value

EA

Source Squares Square Value prob > F

Model 2813.65 5 562.73 576.57 <0.0001 significant
A 126.3 1 126.3 129.4 <0.0001 2 5 61.376
C 2801.63 4 700.41 717.64 <0.0001

Residual 8.78 9 0.98
Cor Total 2822.44 14

Sum of df Mean F p-value

N
O

N
BP

A

Source Squares Square Value prob > F

Model 2898.28 5 579.66 1156.46 <0.0001 significant
A 146.24 1 146.24 291.75 <0.0001 2 5 61.376
C 2726.79 4 681.7 1360.04 <0.0001

Residual 4.51 9 0.5
Cor Total 2902.79 14

5. Conclusions

Industrial experiments often involve situations in which categorical and numerical
factors with different numbers of levels are present, these experiments are commonly
known as mixed-level designs. Mixed-level designs require a high number of runs and
are difficult to carry out because of the cost and time required. One alternative to avoid
running a full factorial is to run a mixed-level fractional factorial design. Unfortunately,
these fractions are not easy to construct because they often require complex programming
techniques, specialized software, and expensive computer equipment.

The new method presented here, called NONBPA, is an algorithm capable of generat-
ing mixed-level fractional factorial designs when the factor levels are not multiple of each
other. The near-orthogonal near-balanced pure symmetrical arrays generated are extremely
flexible in run size and possess high levels of balance and orthogonality. The arrays gener-
ated with this method were compared to the EAs presented in [3] and the results showed
that the balance and orthogonality property were identical for both methods. In addition
to the construction method, a method to perform augmentations was also provided, this
method allows augmenting any NONBPA with M additional runs while preserving the
balance and orthogonality properties.

The main advantages of the NONBPA method are that it is easy to understand and
apply, it does not require complex programming, the computational cost is low and it can
be used by any person with basic knowledge in statistics.

GBM and VIFs are parameters that allow to compare respectively, balance and or-
thogonality between arrays with the same or different number of runs. On the other hand,
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J2 only allows the comparison of the level of orthogonality between arrays that have same
number of runs. A disadvantage in the use of J2 for NONBPAs is that it is not possible to
know the minimum value of L(n) for semi-orthogonal arrays. Therefore, for the NONBPAs
the use of VIFs is recommended.

Future research for the NONBPA will focus on evaluating balance and orthogonality
beyond main effects, opening a greater number of possibilities for experimenters in the
various fields of application.
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Abbreviations

Notation Interpretation
NOBA Near-orthogonal balanced array
NONBPA Near-balanced pure asymmetrical array
d Design matrix
n Number of runs (rows) of d
k Number of factors (columns) of d
ln, sk Number of levels in the column
M Additional runs in a design
EA Efficient array
GBM General balanced metric
J2 Orthogonal parameter
VIF Variance inflation factors
VIFs Average variance inflation factors
GMA Generalized minimum aberration
MMA Minimum moment aberration
MAP Moment aberration projection
Ht

j Balance coefficient
L(n) The minimum value that is reached by J2 when a matrix is orthogonal
CV Common variance
Rj

2 Coefficient of determination of the regression
NTN Number of times the VLN
VLN Vector of levels for the N-factor
VCLN The vector of complementary levels for the N-factor
SVCLN The size of the vector of complementary levels for a column near-balanced
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