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Abstract: The asymptotic expansion for x→ ±∞ of the entire function Fn,σ(x; µ) =
∞
∑

k=0

sin (nγk)
sin γk

xk

k!Γ(µ−σk) ,

γk = (k+1)π
2n for µ > 0, 0 < σ < 1 and n = 1, 2, . . . is considered. In the special case σ = α/(2n),

with 0 < α < 1, this function was recently introduced by L.L. Karasheva (J. Math. Sciences, 250 (2020)
753–759) as a solution of a fractional-order partial differential equation. By expressing Fn,σ(x; µ)

as a finite sum of Wright functions, we employ the standard asymptotics of integral functions of
hypergeometric type to determine its asymptotic expansion. This was found to depend critically on
the parameter σ (and to a lesser extent on the integer n). Numerical results are presented to illustrate
the accuracy of the different expansions obtained.

Keywords: wright function; asymptotic expansions; Stokes phenomenon
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1. Introduction

In a recent paper, L.L. Karasheva [1] introduced the entire function

Θn,α(x; µ) :=
∞

∑
k=0

sin (nγk)

sin γk

xk

k!Γ(µ− αk
2n )

, γk :=
(k + 1)π

2n
, (1)

where µ > 0, 0 < α < 1 and n = 1, 2, . . . and, throughout, x is a real variable. This function
is of interest as it is involved in the fundamental solution of the differential equation

∂αu
∂tα

+ (−1)n ∂2nu
∂x2n = f (x, t)

for positive integer n, where the derivative with respect to t is the fractional derivative
of the order α. In the simplest case n = 1, we have Θ1,α(x; µ) = φ(−σ, µ; x), σ := α/(2n),
where φ(−σ, µ; x) is the Wright function

φ(−σ, µ; x) :=
∞

∑
k=0

xk

k!Γ(µ− σk)
(σ < 1), (2)

which finds application as a fundamental solution of the diffusion-wave equation [2].
Under the above assumptions on n and α it follows that the parameter σ associated with
(1) satisfies 0 < σ < 1

2 .
In this study, however, we shall allow the parameter σ to satisfy 0 < σ < 1 and

consider the function

Fn,σ(x; µ) :=
∞

∑
k=0

sin (nγk)

sin γk

xk

k!Γ(µ− σk)
(0 < σ < 1), (3)
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which coincides with Θn,α(x; µ) when σ = α/(2n). From the well-known expansion

sin (nγk)

sin γk
=

n−1

∑
r=0

eiγk(2r−n+1) =
n−1

∑
r=0

e−i(k+1)ωr ,

where

ωr :=
(n− 2r− 1)π

2n
(0 ≤ r ≤ n− 1), (4)

it follows that (3) can be expressed as a finite sum of Wright functions defined in (2) with
rotated arguments (compare [1], Equation (4))

Fn,σ(x; µ) =
n−1

∑
r=0

e−iωr φ(−σ, µ; xe−iωr ). (5)

We note that the extreme values of ωr satisfy ω0 = −ωn−1 = (n− 1)π/(2n), whence
|ωr| < 1

2 π for 0 ≤ r ≤ n− 1.
We use the representation in (5), with the values of ωr in (4), to determine the asymp-

totic expansion of Fn,σ(x; µ) for x → ±∞ by application of the asymptotic theory of the
Wright function. A summary of the expansion of φ(−σ, µ; z) for large |z| is given in
Section 3. The expansions of Fn,σ(x; µ) for x → ±∞ are given in Sections 4 and 5, where
they are shown to depend critically on the parameter σ (and to a lesser extent on the integer
n). A concluding section presents our numerical results confirming the accuracy of the
different expansions obtained.

2. An Alternative Representation of Fn,σ(x; µ)

The Wright function appearing in (2) can be written alternatively as

φ(−σ, µ; x) =
1
π

∞

∑
k=0

xk

k!
Γ(1− µ + σk) sin π(µ− σk)

=
1

2π

{
eπiϑΨ(xeπiσ) + e−πiϑΨ(xe−πiσ)

}

upon use of the reflection formula for the gamma function, where ϑ := 1
2 − µ. The

associated Wright function Ψ(z) is defined by

Ψ(z) :=
∞

∑
k=0

zk

k!
Γ(σk + δ) (0 < σ < 1, δ = 1− µ), (6)

which is valid for |z| < ∞. Hence, we obtain the representation

Fn,σ(x; µ) =
1

2π

n−1

∑
r=0

e−iωr Υr(σ; x),

where
Υr(σ; x) := eπiϑΨ(xeπiσ−iωr ) + e−πiϑΨ(xe−πiσ−iωr ).

If we now exploit the symmetry of the ωr in (4) (and the fact that x is a real variable),
we observe that the values of ωr for 0 ≤ r ≤ N − 1, where N = bn/2c, satisfy

{ω0, ω1, . . . , ωN−1} =
{
(n− 1)π

2n
,
(n− 3)π

2n
, . . . ,

π

2n
εn

}
, εn =

{
1 (n even)
2 (n odd).

(7)
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Then, we can write

Fn,σ(x; µ) =
1
π
<
{N−1

∑
r=0

e−iωr Υr(σ; x) + ∆neπiϑΨ(xeπiσ)

}
, (8)

where

∆n =

{
0 (n even)
1 (n odd).

The form (8) involves half the number of Wright functions Ψ(z) and will be used to
determine the asymptotic expansion of Fn,σ(x; µ) as x → ±∞ in Sections 4 and 5.

3. The Asymptotic Expansion of Ψ(z) for |z| → ∞

We first present the large-|z| asymptotics of the function Ψ(z) in (6) based on the
presentation described in ([3], Section 4); see also ([4], Section 4.2), ([5], §2.3). We introduce
the following parameters:

κ = 1− σ, h = σσ, ϑ = δ− 1
2 , δ = 1− µ, (9)

together with the associated (formal) exponential and algebraic expansions

E(z) := ZϑeZ
∞

∑
j=0

Aj(σ)Z−j, H(z) :=
1
σ

∞

∑
k=0

(−1)k

k!
Γ
(

k + δ

σ

)
z−(k+δ)/σ, (10)

where (The dependence of the coefficients Aj(σ) on the parameter δ is not indicated.)

Z := κ(hz)1/κ , A0(σ) = (2π/κ)1/2 (σ/κ)ϑ. (11)

Then, since 0 < κ < 1, we obtain from ([5], p. 57) the large-z expansion

Ψ(z) ∼





E(z) + H(ze∓πi) (| arg z| ≤ 1
2 πκ)

H(ze∓πi) ( 1
2 πκ < | arg z| ≤ π),

(12)

where the upper or lower signs are chosen according as arg z > 0 or arg z < 0, respectively.
The expansion E(z) is exponentially large as |z| → ∞ in the sector | arg z| < 1

2 πκ, and
oscillatory (multiplied by the algebraic factor zϑ/κ) on the anti-Stokes lines arg z = ± 1

2 πκ.
In the adjacent sectors 1

2 πκ < | arg z| < πκ, the expansion E(z) continues to be present, but is
exponentially small reaching maximal subdominance relative to the algebraic expansion on
the Stokes lines (On these rays, E(z) undergoes a Stokes phenomenon where it switches off
in a smooth manner (see [6], p. 67).) arg z = ±πκ. In our treatment of Fn,σ(x; µ), we will
not be concerned with exponentially small contributions, except in one special case when
x → −∞ where the expansion of Fn,σ(x; µ) is exponentially small.

The first few normalised coefficients cj = Aj(σ)/A0(σ) are [3,4]:

c0 = 1, c1 =
1

24σ
{2 + 7σ + 2σ2 − 12δ(1 + σ) + 12δ2},

c2 =
1

1152σ2 {4 + 172σ + 417σ2 + 172σ3 + 4σ4 − 24δ(6 + 41σ + 41σ2 + 6σ3)

+120δ2(4 + 11σ + 4σ2)− 480δ3(1 + σ) + 144δ4},

c3 =
1

414,720σ3 {(−1112 + 9636σ + 163,734σ2 + 336,347σ3 + 163,734σ4 + 9636σ5

−1112σ6)− δ(3600 + 220,320σ + 929,700σ2 + 929,700σ3 + 220,320σ4 + 3600σ5)

+δ2(65,520 + 715,680σ + 1,440,180σ2 + 715,680σ3 + 65,520σ4)
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−δ3(161,280 + 816,480σ + 816,480σ2 + 161,280σ3)

+ δ4(151,200 + 378,000σ + 151,200σ2)− 60,480δ5(1 + σ) + 8640δ6}. (13)

In addition to the Stokes lines arg z = ±πκ, where E(z) is maximally subdominant
relative to the algebraic expansion, the positive real axis is also a Stokes line. Here, the
algebraic expansion is maximally subdominant relative to E(z). As the positive real axis
is crossed from the upper to the lower half plane the factor e−πi appearing in H(ze−πi)
changes to eπi, and vice versa. The details of this transition will not be considered here;
see ([5], p. 248) for the case of the confluent hypergeometric function 1F1(a; b; z).

4. The Asymptotic Expansion of Fn,σ(x; µ) for x→ +∞

4.1. Asymptotic Character as a Function of σ

Let us denote the arguments of the Ψ functions appearing in (8) by

z±r = x exp [iφ±r ], φ±r = ±πσ−ωr.

The representation of the asymptotic structure of the functions Ψ(z±r ) is illustrated in
Figure 1 for different values of σ. The figures show the rays arg z = ±πσ and the anti-
Stokes lines (dashed lines) arg z = ± 1

2 πκ. In the case σ = 2
3 , the exponentially large sector

is | arg z| < 1
6 π, and it is seen from Figure 1a that the arguments z±r for 0 ≤ r ≤ N − 1 and

xe±πiσ all lie in the domain where Ψ(z) has an algebraic expansion; this conclusion applies
a fortiori when 2

3 < σ < 1. When σ = 1
2 , the exponentially large sector is | arg z| < 1

4 π;
when n = 2, we have ω0 = 1

4 π so that z+0 is situated on the boundary of the exponentially
large sector.

Other values of n ≥ 3 will have some z+r inside this sector, whereas the z−r are in the
algebraic sector for n ≥ 2. Similarly, the case σ = 1

3 , where the rays arg z = ±πσ and
arg z = ± 1

2 πκ coincide, has all the z+r situated in the exponentially large sector, with the
z−r situated in the algebraic domain. Finally, when σ = 1

6 , the exponentially large sector
| arg z| < 5

12 π encloses the rays arg z = ±πσ with the result that all the z+r lie in the
exponentially large sector, whereas the z−r lie in the algebraic domain (except when n = 2
when z−0 lies on the lower boundary of the exponentially large sector).
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Figure 1. Diagrams representing the rays arg z = ±πσ and the boundaries of the exponentially
large sector (shown by dashed rays) | arg z| < 1

2 πκ, κ = 1− σ for (a) σ = 2/3, (b) σ = 1/2, (c)
σ = 1/3 and (d) σ = 1/6. Outside the exponentially large sector the expansion of Ψ(z) is algebraic
in character. The circular quadrants represent the range of the arguments arg z = ±πσ − ωr for
0 ≤ r ≤ bn/2c − 1, with n ≥ 2 and the arrow-head corresponds to n = ∞. When σ = 1/3 the rays
arg z = ±πσ and arg z = ± 1

2 πκ coincide.

To summarise, we have the following asymptotic character of Fn,σ(x; µ) when x → +∞
as a function of the parameter σ:

0 < σ < 1
2 Exp. large + Algebraic (for n ≥ 2)

1
2 ≤ σ < 2

3 Exp, large (dependent on n) + Algebraic

2
3 ≤ σ < 1 Algebraic (for n ≥ 2).





(14)

Figure 1. Cont.
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as a function of the parameter σ:

0 < σ < 1
2 Exp. large + Algebraic (for n ≥ 2)
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4.2. Asymptotic Expansion

From (8) and (10), we have the algebraic expansion associated with Fn,σ(x; µ) given by

H(x) =
1
σ

∞

∑
k=0

x−K

k!Γ(1− K)
θn,k , K :=

k + δ

σ
, (15)

where, with appropriate choices of the factors e±πi in H(z),

θn,k =
(−1)k

sin πK
<
{N−1

∑
r=0

eπiϑ−iωr (eπiσ−iωr · e−πi)−K + e−πiϑ−iωr (e−πiσ−iωr · eπi)−K

+∆neπiϑ(eπiσ · e−πi)−K
}

=
(−1)k

sin πK
<
{N−1

∑
r=0

e(K−1)iωr (eπi(ϑ+κK) + e−πi(ϑ+κK)) + ∆neπi(ϑ+κK)
}

= <
{

2
N−1

∑
r=0

e(K−1)iωr + ∆n

}
, (16)

as cos π(ϑ + κK) = cos π(K− k− 1
2 ) = (−1)k sin πK.



Mathematics 2021, 9, 1454 6 of 10

For the exponential component, we introduce the quantities

X = κ(hx)1/κ , Φ±r = ±πϑ

κ
−ωr

(
1 +

ϑ

κ

)
(17)

and the formal asymptotic sum

S(XeiΩ) :=
∞

∑
j=0

Aj(σ)(XeiΩ/κ)−j. (18)

Then, from (8) and (10), we have the exponential expansion in the form

E(x) =
Xϑ

π
<
{N−1

∑
r=0

(
exp [Xeiφ+

r /κ + iΦ+
r ] S(Xeiφ+

r ) + exp [Xeiφ−r /κ + iΦ−r ] S(Xeiφ−r )

)

+ ∆n exp [Xeπiσ/κ + πiϑ/κ] S(Xeπiσ)

}
. (19)

It is important to stress that only the exponential terms with |φ±r | ≤ 1
2 πκ, that is

those with
| ± πσ−ωr| ≤ 1

2 πκ,

are to be retained in E(x) in (19). In addition, it is seen by inspection of Figure 1 that the
second term involving S(Xeiφ−r ) does not contribute to E(x) when 1

3 ≤ σ < 1, since, for
this range of σ, the ray arg z = −πσ lies outside (or, when σ = 1

3 , on the lower boundary
of) the exponentially large sector | arg z| < 1

2 πκ. Thus, when 1
2 ≤ σ < 2

3 , the exponential
expansion is significant if πσ−ω0 ≤ 1

2 πκ; that is, if n ≥ n0 = 1/(2− 3σ).
In summary, we have the following theorem.

Theorem 1. The following expansion holds for x → +∞:

Fn,σ(x; µ) ∼





E(x) + H(x) (0 < σ < 1
2 ; n ≥ 2)

E(x) + H(x) ( 1
2 ≤ σ < 2

3 ; n ≥ n0)

H(x) ( 1
2 ≤ σ < 2

3 ; n < n0)

H(x) ( 2
3 ≤ σ < 1; n ≥ 2),

where n0 = 1/(2− 3σ) and the exponential and algebraic expansions E(x) and H(x) are defined
in (15) and (19).

4.3. Karasheva’s Estimate for |Θn,α(x; µ)|
When σ = α/(2n) < 1

2 , we see from Theorem 1 that the dominant exponential
expansion as x → +∞ corresponds to r = 0, yielding

Θn,α(x; µ) ∼ A0(σ)Xϑ

π
< exp [Xei(πσ−ω0)/κ+iΦ+

0 ]

=
A0(σ)Xϑ

π
exp [X cos(πσ−ω0)/κ)] cos[X sin(πσ−ω0)/κ) + Φ+

0 ],

where
πσ−ω0

κ
=

2nπσ− (n− 1)π
2n− α

=
(α + 1− n)π

2n− α
.
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Thus, we have the leading order estimate

Θn,α(x; µ) ∼ A0(σ)Xϑ

π
exp

[
X cos

(
(n−1−α)π

2n−α

)]
cos

[
X sin

(
(n−1−α)π

2n−α

)
−Φ+

0

]
(20)

as x → +∞. When expressed in our notation, Karasheva’s estimate for |Θn,α(x; µ)| in ([1],
§8) agrees with (20) (when the second cosine term is replaced by 1), except that she did
not give the value of the multiplicative constant A0(σ)/π given in (11). However, the
presentation of her result as an upper bound is not evident due to the presence of possibly
less dominant exponential expansions and also the subdominant algebraic expansion.

5. The Expansion of Fn,σ(x; µ) for x→−∞

To examine the case of negative x, we replace x by e∓πix, with x > 0, and use the fact
that Ψ(ze2πi) = Ψ(z) to find, from (8), that

Fn,σ(−x; µ) =
1
π
<
{N−1

∑
r=0

e−iωr Υr(−κ; x) + ∆n eπiϑΨ(xe−πiκ)

}
. (21)

The rays arg z = ±πσ in Figure 1 are now replaced by the Stokes lines arg z = ±πκ.
The Stokes and anti-Stokes lines arg z = ± 1

2 πκ are illustrated in Figure 2 when 0 < σ < 1
2

and 1
2 < σ < 1. In the sectors 1

2 πκ < | arg z| < πκ, we recall that the exponential expansion
E(z) is still present but is exponentially small as |z| → ∞.
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sector (shown by dashed rays) | arg z| < 1

2 πκ, κ = 1− σ for (a) 0 < σ < 1
2 and (b) 1

2 < σ < 1. The
circular quadrants represent the range of the arguments arg z = ±πκ −ωr for 0 ≤ r ≤ N − 1 with
the arrow-head corresponding to n = ∞. The ± signs in (b) denote the signs to be chosen in H(z) on
either side of the Stokes line arg z = 0.

For the algebraic component of the expansion two cases arise when the argument
πκ −ωr of the second Ψ function in Υr(−κ; x) is either (i) positive or (ii) negative. In case
(i) the algebraic expansion H(z) does not encounter a Stokes phenomenon as its argument
does not cross arg z = 0, whereas in case (ii) a Stokes phenomenon arises for those values
of r that make πκ −ωr < 0. In case (i), the algebraic component contains the factor inside
the sum over r in (21)

eπiϑ(e−πiκ−iωr · eπi)−K + e−πiϑ(eπiκ−iωr · e−πi)−K

= eiωrK(eπi(ϑ−σK) + e−πi(ϑ−σK)) = 2eiωrK cos π(k + 1
2 ) ≡ 0

upon recalling the definition of K in (15) and noting that δ− ϑ = 1
2 . Similarly, the final

term involves the factor <eπiϑ(e−πiκ · eπi)−K = cos π(ϑ − σK) = 0. Thus the algebraic
contribution to Fn,σ(−x; µ) vanishes in case (i).

For case (ii) to apply, we require that πκ − ω0 < 0; that is, n > n∗ = 1/(2σ − 1).
Suppose that πκ−ωr < 0 for 0 ≤ r ≤ r0. Then the algebraic component resulting from the
terms with r ≤ r0 becomes

1
πσ
<
{ ∞

∑
k=0

(−1)kΓ(K)
k!

x−K
r0

∑
r=0

e(K−1)iωr

(
eπiϑ(e−πiκ · eπi)−K + e−πiϑ(eπiκ · eπi)−K

)}

=
2

πσ
<
{ ∞

∑
k=0

(−1)kΓ(K)
k!

x−K
r0

∑
r=0

e(K−1)iωr−πiK cos π(ϑ− σK + πK)
}

,

where in the second term in round braces we have taken account of the Stokes phenomenon
(the first term and that multiplied by ∆n are unaffected). Some routine algebra then
produces the algebraic contribution

Ĥ(x) :=
2
σ

∞

∑
k=0

x−K

k!Γ(1− K)
θ̂n,k, θ̂n,k :=

r0

∑
r=0

cos
{

πK− (K− 1)ωr

}
(22)

Figure 2. Diagrams representing the rays arg z = ±πκ and the boundaries of the exponentially large
sector (shown by dashed rays) | arg z| < 1

2 πκ, κ = 1− σ for (a) 0 < σ < 1
2 and (b) 1

2 < σ < 1. The
circular quadrants represent the range of the arguments arg z = ±πκ −ωr for 0 ≤ r ≤ N − 1 with
the arrow-head corresponding to n = ∞. The ± signs in (b) denote the signs to be chosen in H(z) on
either side of the Stokes line arg z = 0.

For the algebraic component of the expansion two cases arise when the argument
πκ −ωr of the second Ψ function in Υr(−κ; x) is either (i) positive or (ii) negative. In case
(i), the algebraic expansion H(z) does not encounter a Stokes phenomenon as its argument
does not cross arg z = 0, whereas in case (ii), a Stokes phenomenon arises for those values
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of r that make πκ −ωr < 0. In case (i), the algebraic component contains the factor inside
the sum over r in (21)

eπiϑ(e−πiκ−iωr · eπi)−K + e−πiϑ(eπiκ−iωr · e−πi)−K

= eiωrK(eπi(ϑ−σK) + e−πi(ϑ−σK)) = 2eiωrK cos π(k + 1
2 ) ≡ 0

upon recalling the definition of K in (15) and noting that δ− ϑ = 1
2 . Similarly, the final

term involves the factor <eπiϑ(e−πiκ · eπi)−K = cos π(ϑ − σK) = 0. Thus, the algebraic
contribution to Fn,σ(−x; µ) vanishes in case (i).

For case (ii) to apply, we require that πκ − ω0 < 0; that is, n > n∗ = 1/(2σ − 1).
Suppose that πκ −ωr < 0 for 0 ≤ r ≤ r0. Then, the algebraic component resulting from
the terms with r ≤ r0 becomes

1
πσ
<
{ ∞

∑
k=0

(−1)kΓ(K)
k!

x−K
r0

∑
r=0

e(K−1)iωr

(
eπiϑ(e−πiκ · eπi)−K + e−πiϑ(eπiκ · eπi)−K

)}

=
2

πσ
<
{ ∞

∑
k=0

(−1)kΓ(K)
k!

x−K
r0

∑
r=0

e(K−1)iωr−πiK cos π(ϑ− σK + πK)
}

,

where, in the second term in round braces, we have taken account of the Stokes phe-
nomenon (the first term and that multiplied by ∆n are unaffected). Some routine algebra
then produces the algebraic contribution

Ĥ(x) :=
2
σ

∞

∑
k=0

x−K

k!Γ(1− K)
θ̂n,k, θ̂n,k :=

r0

∑
r=0

cos
{

πK− (K− 1)ωr

}
(22)

when n > n∗ and Ĥ(x) ≡ 0 when n < n∗. (We avoid here consideration of the algebraic
contribution when πκ −ωr = 0, that is, on the Stokes line arg z = 0.)

Reference to Figure 2 shows that there is no exponential contribution to Fn,σ(−x; µ)
from the terms Ψ(xe−πiκ) and Ψ(xe−πiκ−iωr ). From (10) and (21), we find the exponential
expansion results from the terms Ψ(xeπiκ−iωr ), which is given by

Ê(x) :=
Xϑ

π
<

N−1

∑
r=0

exp [−Xe−iωr/κ − iΦ] S(−Xe−iωr/κ), (23)

where X and the asymptotic sum S are defined in (17) and (18) with Φ := ωr(1 + ϑ/κ).
For σ < 1

2 (when the algebraic expansion vanishes), the expansion of Fn,σ(−x; µ) will
be exponentially small provided πκ − ω0 > 1

2 πκ; that is, when n < 1/σ. If n = 1/σ,
there is an exponentially oscillatory contribution, and when n > 1/σ, the expansion is
exponentially large.

To summarise, we have the theorem:

Theorem 2. The following expansion holds for x → +∞:

Fn,σ(−x; µ) ∼





Ê(x) (0 < σ ≤ 1
2 )

Ê(x) + Ĥ(x) ( 1
2 < σ < 1),

(24)

where the exponential expansion Ê(x) is defined in (23). This last expansion is exponentially small
as x → −∞ when 0 < σ < 1

2 and n < 1/σ. The algebraic expansion Ĥ(x) is given by

Ĥ(x) :=
2
σ

∞

∑
k=0

x−K

k!Γ(1− K)
θ̂n,k (n > n∗), 0 (n < n∗),

where n∗ = 1/(2σ− 1) and K, θ̂n,k are specified in (15) and (22).
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6. Numerical Results

In this section, we describe numerical calculations that support the expansions given
in Theorems 1 and 2. The function Fn,σ(x; µ) was evaluated using the expression in terms
of Wright functions (valid for real x)

Fn,σ(x; µ) = 2<
N−1

∑
r=0

eiωr φ(−σ, µ; xeiωr ) + ∆nφ(−σ, µ; x), N = bn/2c, (25)

which follows from (5) and the symmetry of ωr.
In Table 1, we present the results of numerical calculations for x → +∞ compared

with the expansions given in Theorem 1. We choose four representative values of σ that
focus on the different cases of Theorem 1 and n = 2, 3 and 4. The numerical value of
Fn,σ(x; µ) was obtained by high-precision evaluation of (25). The exponential expansion
E(x) was computed with the truncation index j = 3 and the algebraic expansion H(x) was
optimally truncated (that is, at or near its smallest term).

The first case σ = 1
3 has an exponentially large expansion with a subdominant alge-

braic contribution for all three values of n. The second case σ = 1
2 corresponds to n0 = 2;

when n = 2, E(x) is oscillatory and makes a similar contribution as H(x), whereas when
n = 3 and 4, E(x) is exponentially large. The third case σ = 5

9 corresponds to n0 = 3; when
n = 2, there is no exponential contribution, whereas when n = 3, E(x) is oscillatory and
thus makes a similar contribution as H(x); when n = 4, E(x) is exponentially large. Finally,
when σ = 2

3 , the expansion of Fn,σ(x; µ) is purely algebraic in character.

Table 1. The values of the exponential and algebraic expansions compared with Fn,σ(x; µ) for large
x > 0 for different values of σ and n when µ = 3/4 and x = 8.

σ n = 2 n = 3 n = 4

1/3 E(x) −1.81418881× 102 −1.08294258× 103 −3.08231679× 103

H(x) +0.34241316 +0.17280892 +0.34497729

E(x) + H(x) −1.81076468× 102 −1.08276977× 103 −3.08197181× 103

Fn,σ(x; µ) −1.80709370× 102 −1.08284759× 103 −3.08254767× 103

1/2 E(x) +0.06317153 +1.15957937× 103 −4.47945373× 104

H(x) +0.74012019 +1.09449277 +1.45169481

E(x) + H(x) +0.80329172 +1.16067387× 103 −4.47930856× 104

Fn,σ(x; µ) +0.80329527 +1.16069221× 103 −4.47921506× 104

5/9 E(x) −− −0.14805870 +2.77243091× 102

H(x) +0.79825166 +1.17615555 +1.55857242

E(x) + H(x) +0.79825166 +1.02809685 +2.78801663× 102

Fn,σ(x; µ) +0.79825119 +1.02809649 +2.78801134× 102

2/3 H(x) +0.84046066 +1.23266920 +1.63072031
Fn,σ(x; µ) +0.84046066 +1.23266920 +1.63072031

In Table 2, we present illustrative examples of Theorem 2 when x → −∞. The first
case, σ = 1

4 (κ = 3
4 ), has an expansion that is exponential in character; for n < 1/σ = 4,

Ê(x) is exponentially small, whereas for n = 4, the argument πκ − ω0 = 3
8 π lies on the

upper boundary of the exponentially large sector | arg z| < 3
8 π, and thus Ê(x) is oscillatory.

For n ≥ 5, Ê(x) becomes exponentially large as x → −∞. In the second case, σ = 2
5 (κ = 3

5 ),
Ê(x) is exponentially small for n = 2 and exponentially large for n ≥ 3.

In the third case, σ = κ = 1
2 , Ê(x) is oscillatory for n = 2 and exponentially large

for n ≥ 3. Finally, when σ = 3
4 (κ = 1

4 ), the function Fn,σ(x; µ) is exponentially large for
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n = 2, 3 and n ≥ 5. However, for n = 4, the two values ω0 = 3
8 π and ω1 = 1

8 π yield
arguments πκ −ωr (r = 0, 1) situated on both boundaries of the exponentially large sector
| arg z| < 1

8 π. In this case Ê(x) is oscillatory and, since n∗ = 2, there is, in addition, an
algebraic contribution Ĥ(x).

Table 2. The values of the exponential and algebraic expansions compared with Fn,σ(x; µ) for large
x < 0 for different values of σ and n when µ = 3/4 and |x| = 8 (for σ = 1/4, 1/2, 2/5), |x| = 5 (for
σ = 3/4).

σ n = 2 n = 3 n = 4

1/4 Ê(x) +1.59003829× 10−2 +1.77442984× 10−1 +6.49578248× 10−1

Fn,σ(−x; µ) +1.59003416× 10−2 +1.77011100× 10−1 +6.49580223× 10−1

2/5 Ê(x) −4.18901636× 10−2 −3.79446870× 100 −3.02428770× 101

Fn,σ(−x; µ) −4.18889220× 10−2 −3.79475882× 100 −3.02402120× 101

1/2 Ê(x) −0.56022532 +1.23070020× 103 −1.28808653× 104

Fn,σ(−x; µ) −0.56023534 +1.23066913× 103 −1.28803505× 104

3/4 Ê(x) +1.81213632× 1028 +7.55354383× 1013 −0.84956415
Ĥ(x) −− −1.93112636× 10−1 −0.28756658

Ê(x) + Ĥ(x) +1.81213632× 1028 +7.55354383× 1013 −1.13713072
Fn,σ(−x; µ) +1.81213650× 1028 +7.55354314× 1013 −1.13713081

7. Concluding Remarks

We employed the standard asymptotics of the Wright function Ψ(z) defined in (6)
to determine the asymptotic expansion of Fn,σ(x; µ) for x → ±∞. We found that this
behaviour depended critically on the parameter σ. The numerical results presented in
Tables 1 and 2 demonstrate that the asymptotic forms of Fn,σ(x; µ) stated in Theorems 1
and 2 agreed well with the numerically computed values of Fn,σ(±x; µ). In particular, we
showed that, when σ < 1

2 , the expansion of Fn,σ(x; µ) exponentially decays as x → −∞.
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