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1. Significance Statement

The Fourier cosine and Mellin transforms are used in a wide range of fields in science
and engineering. Some of these applications are in software engineering [1], digital process-
ing for the purposes of pattern recognition and Wiener filtering [2], distribution of sums of
independent random variables [3], application to range radar profiles of naval vessels [4],
gravity effect of a buried sphere and two-dimensional horizontal circular cylinder [5], and
stress distribution in an infinite wedge [6].

The usage of these transforms is vast and covers all aspects of everyday life. In this
present work, we aim to expand on the current compendium of tables of these transforms
available to researchers in order to provide additional formula to AI in new research where
these new formula are applicable. We also provide formal derivations of existing formula,
which is a useful exercise for determining if these formula are correct. We derive new
Fourier cosine and Mellin transforms and summarize these derivations in a table for easy
perusal by interested readers and researchers.

2. Introduction

We apply the simultaneous contour integral method [7] to an integral in Prudnikov
et al. and use it to derive closed forms for a Fourier cosine transform, Mellin transform,
provide formal derivations for integrals in Gradshteyn and Ryzhik originally derived by
Erdéyli et al. and Bierens de Haan, and present a table of definite integrals of results new
and known.

In this paper, we derive the definite integral given by

∫ ∞

0

eax
(

eimx(log(c) + ix)k + e−imx(log(c)− ix)k
)

(eax + 1)2 dx (1)

and used it to achieve several objectives. We derive formula for the Mellin transform,
Fourier cosine, and sine transform. We present formal derivations for some definite
integrals in [8]. We also summarize our derivations with a table of transforms not listed
in current literature. The Mellin transform is used in almost all areas of science and
engineering, such as statistics and analysis of different kinds of geophysical data to name
a few. Regarding our definite integral, the constants a, k, c, and m in Equation (1) are
general complex numbers subject to the restrictions given below. The derivations follow
the method used by us in [7]. The generalized Cauchy’s integral formula is given by
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yk

k!
=

1
2πi

∫
C

ewy

wk+1 dw (2)

where C is in general an open contour in the complex plane where the bilinear concomi-
tant [7] has the same value at the end points of the contour. This method involves using a
form of Equation (2) then multiplying both sides by a function and then takes a definite
integral of both sides. This yields a definite integral in terms of a contour integral. Then,
we multiply both sides of Equation (2) by another function and take the infinite sum of
both sides such that the contour integral of both equations are the same.

2.1. Definite Integral of the Contour Integral

Using the method in [7] involving Cauchy’s integral Equation (2), we replace y by
log(c) + ix and multiply both sides by emxi. Then, we derive a second equation by replacing
x by −x and adding, followed by multiplying both sides by e−ax

2(e−ax+1)2 to get∫ ∞
0

e−ax(eimx(log(c)+ix)k+e−imx(log(c)−ix)k)
4k!(e−ax+1)2 dx

= 1
2πi
∫ ∞

0

∫
C

e−axcww−k−1 cos(x(m+w))

(e−ax+1)2 dwdx

= 1
2πi
∫

C

∫ ∞
0

e−axcww−k−1 cos(x(m+w))

(e−ax+1)2 dxdw

= 1
2πi
∫

C
πcww−k−1(m+w)csch

(
π(m+w)

a

)
2a2 dw

(3)

from Equation (2.5.34.7) in [9] where 0 < Im(w+m
a ). The logarithmic function is given, for

example, in Section 4.1 in [10]. We are able to switch the order of integration over w + m
and x using Fubini’s theorem since the integrand is of bounded measure over the space
C× [0, ∞).

2.2. The Lerch Function

We use Equation (1.11.3) in [11] where Φ(z, s, v) is the Lerch function, which is a
generalization of the Hurwitz zeta and Polylogarithm functions. The Lerch function has a
series representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (4)

where |z| < 1, v 6= 0,−1,−2,−3, . . ., and is continued analytically by its integral represen-
tation given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (5)

where Re(v) > 0, and either |z| ≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.

2.3. Infinite Sum of the Contour Integral
2.3.1. Derivation of the First Contour Integral

In this section we will derive the contour integral given by

1
2πi

∫
C

πmcww−k−1csch
(

π(m+w)
a

)
2a2 dw (6)

Again, we use the method in [7]. Using Equation (2) replace y by π(2y+1)
a + log(c) and

multiply both sides by −πm
a2 e

πm(2y+1)
a . Next, we take the infinite sum over y ∈ [0, ∞) and

simplify in terms of the Lerch function to get
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−
2kπk+1m( 1

a )
k+2

e
πm

a Φ
(

e
2mπ

a ,−k, a log(c)+π
2π

)
k!

= − 1
2πi ∑∞

y=0
∫

C
πmcww−k−1e

π(2y+1)(m+w)
a

a2 dw

= − 1
2πi
∫

C ∑∞
y=0

πmcww−k−1e
π(2y+1)(m+w)

a
a2 dw

= 1
2πi
∫

C
πmcww−k−1csch

(
π(m+w)

a

)
2a2 dw

(7)

from (1.232.3) in [8] and Im(m+w
a ) > 0 for convergence of the sum.

2.3.2. Derivation of the Second Contour Integral

In this section we will derive the contour integral given by

1
2πi

∫
C

πcww−kcsch
(

π(m+w)
a

)
2a2 dw (8)

Again, we use the method in [7]. Using Equation (2), replace y by π(2y+1)
a + log(c)

and multiply both sides by − π
a2 e

πm(2y+1)
a and simplify in terms of the Lerch function to get

−
2k−1πk( 1

a )
k+1

e
πm

a Φ
(

e
2mπ

a ,1−k, a log(c)+π
2π

)
(k−1)!

= 1
2πi ∑∞

y=0
∫

C
πcww−k−1e

π(2y+1)(m+w)
a

2a2 dw

= 1
2πi
∫

C ∑∞
y=0

πcww−k−1e
π(2y+1)(m+w)

a
2a2 dw

= 1
2πi
∫

C
πcww−kcsch

(
π(m+w)

a

)
2a2 dw

(9)

from (1.232.3) in [8] and Im(m+w
a ) > 0 for convergence of the sum.

3. Main Results
Definite Integral in Terms of the Lerch Function

Theorem 1. k, c ∈ C, Re(m/a) ≤ 0,∫ ∞
0

e−ax(eimx(log(c)+ix)k+e−imx(log(c)−ix)k)
(e−ax+1)2 dx

= k(2π)k
(

1
a

)k+1(
−e

πm
a

)
Φ
(

e
2mπ

a , 1− k, a log(c)+π
2π

)
−(2π)k+1m

(
1
a

)k+2
e

πm
a Φ
(

e
2mπ

a ,−k, a log(c)+π
2π

) (10)

Proof. Since the right-hand side of Equation (3) is equal to the sum of the right-hand sides
of Equations (7) and (9), we can equate the left-hand sides and simplify the factorials.

4. Derivation of a Fourier Cosine Transform

Theorem 2. For all k, c ∈ C, Re(m/a) = 0,∫ ∞
0 sech2( ax

2
)

cos(mx)
(
(log(c)− ix)k + (log(c) + ix)k

)
dx

= −2k+1πk
(

1
a

)k+2
e−

πm
a

(
akΦ

(
e−

2mπ
a , 1− k, a log(c)+π

2π

)
− 2πmΦ

(
e−

2mπ
a ,−k, a log(c)+π

2π

)
+e

2πm
a

(
akΦ

(
e

2mπ
a , 1− k, a log(c)+π

2π

)
+ 2πmΦ

(
e

2mπ
a ,−k, a log(c)+π

2π

)))
(11)
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Proof. Use Equation (10) and form a second equation by replacing m by −m and add to
Equation (10) and simplify. Note we can derive the Fourier sine transform by taking the
first partial derivative with respect to m of Equation (11).

4.1. Derivation of a Mellin Transform

Theorem 3. For all k ∈ C, Re(m/a) = 0,

∫ ∞
0 xk+1sech2(ax) sin(mx)dx = 1

2 πk+1
(

1
a

)k+3
e−

πm
2a sec

(
πk
2

)(
πmΦ

(
e−

mπ
a ,

−k− 1, 1
2

)
− a(k + 1)Φ

(
e−

mπ
a ,−k, 1

2

)
+e

πm
a

(
πmΦ

(
e

mπ
a ,−k− 1, 1

2

)
+a(k + 1)Φ

(
e

mπ
a ,−k, 1

2

)))
(12)

Proof. Use Equation (11) replace a by 2a and set c = 1 and simplify the left-hand side.

4.2. Derivation of a Mellin Transform

Theorem 4. For all k ∈ C, Re(m/a) = 0,∫ ∞
0 xksech2( ax

2
)

cos(mx)dx

= (2π)k
(
−
(

1
a

)k+2
)

e−
πm

a sec
(

πk
2

)(
akΦ

(
e−

2mπ
a , 1− k, 1

2

)
−2πmΦ

(
e−

2mπ
a ,−k, 1

2

)
+e

2πm
a

(
akΦ

(
e

2mπ
a , 1− k, 1

2

)
+ 2πmΦ

(
e

2mπ
a ,−k, 1

2

)))
(13)

Proof. Use Equation (12) and take the first partial derivative with respect to m and simplify.

Derivation of Entry 4.118 in [8]

Theorem 5. For allm ∈ C,∫ ∞

0
x sech2(x) sin(mx)dx =

1
4

π
(

πm coth
(πm

2

)
− 2
)

csch
(πm

2

)
(14)

Proof. Use Equation (12) and set k = 0, a = 1 and use entries (2) and (3) in Table below
(64:12:7) in [12] to simplify.

Derivation of Entry 3.982.1 in [8]

Theorem 6. For all m ∈ C,∫ ∞

0
sech2

( ax
2

)
cos(mx)dx =

2πmcsch
(

πm
a
)

a2 (15)

Proof. Use Equation (13) and set k = 0 and use entries (1) and (2) in Table below (64:12:7)
in [12] to simplify.
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4.3. Derivation of an Integral with Combinations of Trigonometric and Rational Functions

Theorem 7. For all c ∈ C, Re(m/a) = 0,∫ ∞
0

sech2( ax
2 ) cos(mx)

c2+x2 dx = e−
πm

a
2πac

(
2πmΦ

(
e−

2mπ
a , 1, ac+π

2π

)
+aΦ

(
e−

2mπ
a , 2, ac+π

2π

)
+e

2πm
a

(
aΦ
(

e
2mπ

a , 2, ac+π
2π

)
−2πmΦ

(
e

2mπ
a , 1, ac+π

2π

)))
(16)

Proof. Use Equation (11) set k = −1 and replace c by ec and simplify.

4.4. Derivation of Logarithmic Functions and Powers

Theorem 8. For all c ∈ C, Re(m/a) = 0,∫ ∞
0 sech2( ax

2
)

log
(
c2 + x2) cos(mx)dx = e−

πm
a

a2

(
−2e

2πm
a

(
aΦ
(

e
2mπ

a , 1, ac+π
2π

)
−2πmΦ′

(
e

2πm
a , 0, ac+π

2π

))
+4πm

(
log
( 2π

a
)(

coth
(

πm
a
)
+ 1
)

−Φ′
(

e−
2πm

a , 0, ac+π
2π

))
−2aΦ

(
e−

2mπ
a , 1, ac+π

2π

))
(17)

Proof. Use Equation (11) and take the first partial derivative with respect to k then set
k = 0 and use entries (2) and (3) in Table below (64:12:7) in [12] to simplify.

5. A General Case

In this section, we will derive a formula for the general case for deriving equations in
Table 4.376 in [8].

Theorem 9. For all k, γ, β ∈ C, Re(m/a) = 0,∫ ∞
0 xk log(x)sech2(ax)((2γ + 1) cosh(mx)− βx sinh(mx))dx

= 1
4 πk

(
1
a

)k+3
e−

iπm
2a sec

(
πk
2

)(
−iπβ

(
−2a(k + 1)Φ′

(
e−

iπm
a ,−k, 1

2

)
−iπm

(
π tan

(
πk
2

)
Φ
(

e−
imπ

a ,−k− 1, 1
2

)
− 2Φ′

(
e−

iπm
a ,−k− 1, 1

2

))
+e

iπm
a

(
2a(k + 1)Φ′

(
e

iπm
a ,−k, 1

2

)
− iπm

(
Φ
(

e
imπ

a ,−k− 1, 1
2

)(
2 log

(
π
a
)

+π tan
(

πk
2

))
− 2Φ′

(
e

iπm
a ,−k− 1, 1

2

)))
− 2iπm log

(
π
a
)
Φ
(

e−
imπ

a ,−k− 1, 1
2

)
+aΦ

(
e−

imπ
a ,−k, 1

2

)(
2(k + 1) log

(
π
a
)
+ π(k + 1) tan

(
πk
2

)
+ 2
)

−ae
iπm

a Φ
(

e
imπ

a ,−k, 1
2

)(
2(k + 1) log

(
π
a
)
+ π(k + 1) tan

(
πk
2

)
+ 2
))

−a(2γ + 1)
(
−2akΦ′

(
e−

iπm
a , 1− k, 1

2

)
+ 2iπmΦ′

(
e−

iπm
a ,−k, 1

2

)
−2ake

iπm
a Φ′

(
e

iπm
a , 1− k, 1

2

)
− 2iπme

iπm
a Φ′

(
e

iπm
a ,−k, 1

2

)
−iπmΦ

(
e−

imπ
a ,−k, 1

2

)(
2 log

(
π
a
)
+ π tan

(
πk
2

))
+iπme

iπm
a Φ

(
e

imπ
a ,−k, 1

2

)(
2 log

(
π
a
)
+ π tan

(
πk
2

))
+aΦ

(
e−

imπ
a , 1− k, 1

2

)(
2k log

(
π
a
)
+ πk tan

(
πk
2

)
+ 2
)

+ae
iπm

a Φ
(

e
imπ

a , 1− k, 1
2

)(
2k log

(
π
a
)
+ πk tan

(
πk
2

)
+ 2
)))

(18)



Mathematics 2021, 9, 1453 6 of 12

Proof. Use Equation (12) and first replace m by mi, multiply both sides by β
i , and take the

first partial derivative with respect to k to get∫ ∞
0 βxk+1 log(x)sech2(ax) sinh(mx)dx

= 1
4 iβπk+1

(
1
a

)k+3
e−

iπm
2a sec

(
πk
2

)(
−2a(k + 1)Φ′

(
e−

iπm
a ,−k, 1

2

)
−iπm

(
π tan

(
πk
2

)
Φ
(

e−
imπ

a ,−k− 1, 1
2

)
− 2Φ′

(
e−

iπm
a ,−k− 1, 1

2

))
+e

iπm
a

(
2a(k + 1)Φ′

(
e

iπm
a ,−k, 1

2

)
−iπm

(
Φ
(

e
imπ

a ,−k− 1, 1
2

)(
2 log

(
π
a
)
+ π tan

(
πk
2

))
− 2Φ′

(
e

iπm
a ,−k− 1, 1

2

)))
−2iπm log

(
π
a
)
Φ
(

e−
imπ

a ,−k− 1, 1
2

)
+aΦ

(
e−

imπ
a ,−k, 1

2

)(
2(k + 1) log

(
π
a
)
+ π(k + 1) tan

(
πk
2

)
+ 2
)

−ae
iπm

a Φ
(

e
imπ

a ,−k, 1
2

)(
2(k + 1) log

(
π
a
)
+ π(k + 1) tan

(
πk
2

)
+ 2
))

(19)

Next, using Equation (13), we multiply both sides by 2γ + 1, replace m by mi then
take the first partial derivative with respect to m to get∫ ∞

0 (2γ + 1)xk log(x)sech2(ax) cosh(mx)dx

= − 1
4 (2γ + 1)πk

(
1
a

)k+2
e−

iπm
2a sec

(
πk
2

)(
−2akΦ′

(
e−

iπm
a , 1− k, 1

2

)
+2iπmΦ′

(
e−

iπm
a ,−k, 1

2

)
− 2ake

iπm
a Φ′

(
e

iπm
a , 1− k, 1

2

)
−2iπme

iπm
a Φ′

(
e

iπm
a ,−k, 1

2

)
−iπmΦ

(
e−

imπ
a ,−k, 1

2

)(
2 log

(
π
a
)
+ π tan

(
πk
2

))
+iπme

iπm
a Φ

(
e

imπ
a ,−k, 1

2

)(
2 log

(
π
a
)
+ π tan

(
πk
2

))
+aΦ

(
e−

imπ
a , 1− k, 1

2

)(
2k log

(
π
a
)
+ πk tan

(
πk
2

)
+ 2
)

+ae
iπm

a Φ
(

e
imπ

a , 1− k, 1
2

)(
2k log

(
π
a
)
+ πk tan

(
πk
2

)
+ 2
))

(20)

Take the difference between Equations (19) and (20) and simplify.

Derivation of Entry 4.376.2 in [8]

Using Equation (18), set a = m = β = 1, replace k by µ and γ by µ/2, and simplify in
terms of the Hurwitz zeta function (12.7) in [13] using entry (4) in Table below (64:12:7) in
[12] to get∫ ∞

0
xµ log(x)sech(x)(µ− x tanh(x) + 1)dx = −2µπµ+1

(
ζ

(
−µ,

1
4

)
− ζ

(
−µ,

3
4

))
sec
(πµ

2

)
(21)

Derivation of Entry 4.376.3 in [8]

Using Equation (21) and simplifying in terms of the Bernoulli polynomials Bµ(x)
using Equation (12.11.17) in [13], we get

∫ ∞

0
xµ log(x)sech(x)(µ− x tanh(x) + 1)dx = −

e
iπµ

2 (2π)µ+1Bµ+1
( 3

4
)

µ + 1
(22)

Derivation of Entry 4.376.7 in [8]

Using Equation (18), replace β by a, k by 2n, and γ by n and simplify using the Hurwitz
zeta function (12.7) in [13] and entry (4) in Table below (64:12:7) in [12] to get
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∫ ∞
0 x2n log(x)sech(ax)(−ax tanh(ax) + 2n + 1)dx

= −4nπ2n+1
(

1
a

)2n+1(
ζ
(
−2n, 1

4

)
− ζ
(
−2n, 3

4
))

sec(πn)
(23)

Derivation of Entry 4.376.8 in [8]

For this entry, we derive the solution which is continued analytically using the Hurwitz
zeta function from Equation (9.521.1) in [8].

Theorem 10. For all a, k ∈ C,∫ ∞
0 xk log(x)sech2(ax)(−2ax tanh(ax) + 2n + 1)dx

= −4−k
(

1
a

)k+1(
ζ(k)Γ(k)

(
2
(

2k − 2
)

k log
(

π
a
)
(k− 2n)− 4

(
2k − 2

)
n

+4k
(

2k + k log(2)− n log(4)− 2
)
+ π

(
2k − 2

)
k(k− 2n) tan

(
πk
2

))
−
(

2k − 2
)

k(2π)k(k− 2n) sec
(

πk
2

)
ζ ′(1− k)

)
(24)

Proof. Use Equation (13) and multiply both sides by −(2n + 1) and set m = 0, then take
the first partial derivative with respect to k, simplify using entry (2) in Table below (64:7)
and entry (4) in Table below (64:12:7) in [12] to get∫ ∞

0 (−2n− 1)xk log(x)sech2(ax)dx

= 4−k(2n + 1)
(

1
a

)k+1(
ζ(k)Γ(k)

(
−2
((

2k − 2
)

k log
(

π
a
)
+ 2k + k log(4)− 2

)
−π
(

2k − 2
)

k tan
(

πk
2

))
+
(

2k − 2
)

k(2π)k sec
(

πk
2

)
ζ ′(1− k)

) (25)

Next, use Equation (13), take the first partial derivative with respect to a and set m = 0
and simplify using entry (2) in Table below (64:7) and entry (4) in Table below (64:12:7)
in [12] to get ∫ ∞

0 2axk+1 log(x) tanh(ax)sech2(ax)dx

=
(

1
a

)k+1(
4−kζ(k)Γ(k)

(
2
((

2k − 2
)

k(k + 1) log
(

π
a
)
+ 2k + 2k

(
2k + k log(2)− 2 + log(2)

)
− 2
)

+π
(

2k − 2
)

k(k + 1) tan
(

πk
2

))
−
(

2k − 2
)

k(k + 1)
(

π
2
)k sec

(
πk
2

)
ζ ′(1− k)

) (26)

Next, add Equations (25) and (26) and simplify.

Derivation of Entry 4.376.8 in [8]

Using Equation (24) and replace k by 2n, and simplifying we get∫ ∞
0 x2n log(x)sech2(ax)(−2ax tanh(ax) + 2n + 1)dx

=

−41−2n(4n − 2)n
(

1
a

)2n+1
ζ(2n)Γ(2n), for n 6= 0

− 1
a , for n = 0

(27)

Note the the formula quoted in [8] is in error.

5.1. Derivation of More Examples
Example 2

Using Equation (17) and setting m = πi, c = 1, a = π, simplify to get

∫ ∞

0
log
(

x2 + 1
)
(πx tanh(πx) + 1)sech(πx)dx = −3 + π + log

 81Γ
(
− 3

4
)4

64Γ
(
− 1

4

)4

 (28)
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5.2. Integral in Terms of the Polylogarithmic Function

In this section we will derive formula using the Polylogarithms Lik(z) given in Sec-
tion (25:12) in [12]. Polylogarithms are also known as Jonquière’s functions (Ernest Jean
Philippe Fauque de Jonquières, 1820–1901, French naval officer and mathematician), they
appear in the Feynman diagrams of particle physics.

Theorem 11. For all c, k, m ∈ C,∫ ∞
0

(
(c− ix)k + (c + ix)k

)
sech2(πx

2c
)

cos(mx)dx

= − 2k+1ck+1e−cm

π

(
kLi1−k

(
e2cm)+ e2cm(kLi1−k

(
e−2cm)− 2cmLi−k

(
e−2cm))

+2cmLi−k
(
e2cm)) (29)

Proof. Use Equation (11) and replace a by π
c and simplify using Equation (64:12:2) in [12].

5.3. Definite Integral in Terms of the Hurwitz Zeta Function

Theorem 12. For all a, k, c ∈ C,∫ ∞
0 sech

( ax
2
)(

(c− ix)k + (c + ix)k
)

dx

= 2k+2πk+1
(

1
a

)k+1(
2kζ
(
−k, ac+π

4π

)
− 2kζ

(
−k, 1

2
( ac+π

2π + 1
))) (30)

Proof. Use Equation (11) and replace m by ai
2 and simplify using entry (4) in Table below

(64:12:7).

Derivation of Entry 4.373.1 in [8]

Using Equation (30) and taking the first partial derivative with respect to k and setting
k = 0 simplifying using Equation (64:10:2) in [12], we get

∫ ∞

0
log
(

a2 + x2
)

sech(bx)dx =
π

b
log

2πΓ
(

ab
2π + 3

4

)2

bΓ
(

2ab+π
4π

)2

 (31)

Derivation of Entry 4.373.2 in [8]

Using Equation (31) and setting a = 1, b = π/2 we get∫ ∞

0
log
(

x2 + 1
)

sech
(πx

2

)
dx = 2 log

(
4
π

)
(32)

6. Definite Integral Involving the Arctangent Function in Terms of the Stieltjes
Constant γ1

Theorem 13. For all a, c ∈ C,∫ ∞
0

sech( ax
2 )(c log(c2+x2)+2x tan−1( x

c ))
c2+x2 dx

= −γ1

(
1
4
( ac

π + 3
))

+ γ1
( ac+π

4π

)
+ log

(
4π
a

)(
ψ(0)

(
1
4
( ac

π + 3
))
− ψ(0)( ac+π

4π

)) (33)

Proof. Use Equation (30) and take the first partial derivative with respect to k followed by
applying L’Hopital’s rule to the right-hand side as k→ −1 and simplify the left-hand side for
the addition and subtraction of logarithmic functions and using Equation (64:4:1) in [12] and
Equation (3.2) in [14]. Note the digamma function ψ0(z) is defined Section 6.3 in [10].
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Example in Terms of the Riemann Zeta Function ζ(k)

Theorem 14. For all k ∈ C,∫ ∞

0

(
(1− ix)k + (1 + ix)k

)
sech

(πx
2

)
dx = −2k+2

(
2k+1 − 1

)
ζ(−k) (34)

Proof. Use Equation (30) and replace c by π
a and simplify using entry (2) in Table below

(64:7) in [12].

Derivation of Entry 4.373.1 in [8]

Theorem 15. For all a, c ∈ C,

∫ ∞

0
sech2

( ax
2

)
log
(

c2 + x2
)

dx =
4
(

ψ(0)( ac+π
2π

)
+ log

( 2π
a
))

a
(35)

Proof. Use Equation (11) set m = 0, replace c by ec and take the first partial derivative
with respect to k followed by applying L’Hopital’s rule to the right-hand side as k→ 0 and
simplify using Equation (64:4:1) and entry (4) in Table below (64:12:7) in [12].

Derivation of Entry 4.372.2 in [8]

Using Equation (35) and setting c = 0, a = 2 and simplifying we get∫ ∞

0
log(x)sech2(x)dx = −γ− log

(
4
π

)
(36)

where γ is Euler’s constant given in Section 8.367 in [8].
Please See Table 1 for the table of integrals.

Table 1. Table of Integrals.

f (x)
∫ ∞

0 f (x)dx

xsech2(x) sin(mx) 1
4 π
(
πm coth

(
πm

2
)
− 2
)
csch

(
πm

2
)

sech2( ax
2
)

cos(mx) 2πm
a2 csch

(
πm

a
)

xµ log(x)sech(x)(µ− x tanh(x) + 1) − 1
µ+1 e

iπµ
2 (2π)µ+1Bµ+1

(
3
4

)
xµ log(x)sech(x)(µ− x tanh(x) + 1) −2µπµ+1

(
ζ
(
−µ, 1

4

)
− ζ
(
−µ, 3

4

))
sec
(πµ

2
)

x2k log(x)sech(ax)(−ax tanh(ax) + 2k + 1) −4kπ2k+1
(

1
a

)2k+1(
ζ
(
−2k, 1

4

)
− ζ
(
−2k, 3

4

))
sec(πk)

x2n log(x)sech2(ax)(−2ax tanh(ax) + 2n + 1) −41−2n(4n − 2)n
(

1
a

)2n+1
ζ(2n)Γ(2n)

log
(
x2 + 1

)
(πx tanh(πx) + 1)sech(πx) −3 + π + log

(
81Γ(− 3

4 )
4

64Γ(− 1
4 )

4

)
sech(ax)(log(c− ix) + log(c + ix)) π

a log
(

2πΓ( ac
2π +

3
4 )

2

aΓ( 2ac+π
4π )

2

)
log
(
a2 + x2)sech(bx) π

b log
(

2πΓ( ab
2π +

3
4 )

2

bΓ( 2ab+π
4π )

2

)
log
(
x2 + 1

)
sech

(
πx
2
)

2 log
(

4
π

)(
(1− ix)k + (1 + ix)k

)
sech

(
πx
2
)

−2k+2
(

2k+1 − 1
)

ζ(−k)

sech2( ax
2
)

log
(
c2 + x2) 4

a

(
ψ(0)( ac+π

2π

)
+ log

(
2π
a

))
log(x)sech2(x) −γ− log

(
4
π

)
7. Mathematica Code

In this section, we give the Mathematica code [15] for the Table in Section 20. In
some cases Mathematica is not able to evaluate the integrals, in which cases our formulae
are provided.
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I n t e g r a t e [ Cos [m x ] Sech [ ( a x )/2]^2 , { x , 0 , \[ I n f i n i t y ] } ]

Condit ionalExpress ion [ ( 2 m \[ Pi ] Csch [ (m \[ Pi ] ) / a ] ) / a ^2 ,
Im [ Global ‘m] <

Re [ Global ‘ a ] && ( Re [( −1)^(1/ Global ‘ a ) ] >= 1 ||
Re [( −1)^(1/ Global ‘ a ) ] <= 0 || ( −1)^(1/ Global ‘ a ) \[ NotElement ]

Reals ) && Im [ Global ‘m] + Re [ Global ‘ a ] > 0]

I n t e g r a t e [ x Sech [ x ]^2 Sin [m x ] , { x , 0 , \[ I n f i n i t y ] } ]

Condit ionalExpress ion [
1/4 \[ Pi ] ( −2 + m \[ Pi ] Coth [ (m \[ Pi ] ) / 2 ] ) Csch [ (m \[ Pi ] ) / 2 ] , −2 <

Im [m] < 2]

I n t e g r a t e [
x^\[Mu] Log [ x ] Sech [ x ] (1 + \[Mu] − x Tanh [ x ] ) , { x ,

0 , \[ I n f i n i t y ] } ] , −2^\[Mu] \[ Pi ] ^ (
1 + \[Mu] ) ( HurwitzZeta [ −\[Mu] , 1/4] −

HurwitzZeta [ −\[Mu] , 3/4] ) Sec [ ( \ [ Pi ] \[Mu] ) / 2 ]

I n t e g r a t e [
x^\[Mu] Log [ x ] Sech [ x ] (1 + \[Mu] − x Tanh [ x ] ) , { x ,

0 , \[ I n f i n i t y ] } ] , −((E ^ ( ( I \[ Pi ] \[Mu] ) / 2 ) (2 \[ Pi ] ) ^ ( 1 + \[Mu] ) ) / ( 1 + \[Mu] ) )
Bernoul l iB [1 + \[Mu] , 3/4]

I n t e g r a t e [
x ^(2 n ) Log [ x ] Sech [ a x ] (1 + 2 n − a x Tanh [ a x ] ) , { x ,

0 , \[ I n f i n i t y ] } ] , −4^n (1/ a ) ^ (1 + 2 n ) \[ Pi ] ^ (
1 + 2 n ) ( HurwitzZeta [ −2 n , 1/4] − HurwitzZeta [ −2 n , 3/4] ) Sec [

n \[ Pi ] ]

I n t e g r a t e [
x^\[Mu] Log [ x ] Sech [ x ] (1 + \[Mu] − x Tanh [ x ] ) , { x ,

0 , \[ I n f i n i t y ] } ] , −2^\[Mu] \[ Pi ] ^ (
1 + \[Mu] ) ( HurwitzZeta [ −\[Mu] , 1/4] −

HurwitzZeta [ −\[Mu] , 3/4] ) Sec [ ( \ [ Pi ] \[Mu] ) / 2 ]

I n t e g r a t e [
x ^(2 k ) Log [ x ] Sech [ a x ] (1 + 2 k − a x Tanh [ a x ] ) , { x ,

0 , \[ I n f i n i t y ] } ] , −4^k (1/ a ) ^ (1 + 2 k ) \[ Pi ] ^ (
1 + 2 k ) ( HurwitzZeta [ −2 k , 1/4] − HurwitzZeta [ −2 k , 3/4] ) Sec [

k \[ Pi ] ]

I n t e g r a t e [
x ^(2 n ) Log [ x ] Sech [ a x ]^2 (1 + 2 n − 2 a x Tanh [ a x ] ) , { x ,

0 , \[ I n f i n i t y ] } ] , −4^(1 − 2 n ) ( −2 + 4^n ) (1/ a ) ^ (
1 + 2 n ) n Gamma[2 n ] Zeta [2 n ]

I n t e g r a t e [
Log [1 + x ^2] Sech [ \ [ Pi ] x ] (1 + \[ Pi ] x Tanh [ \ [ Pi ] x ] ) , { x ,

0 , \[ I n f i n i t y ] } ] , −3 + \[ Pi ] +
Log[81/64 (Gamma[ −(3/4) ]/Gamma[ − ( 1 / 4 ) ] ) ^ 4 ]

I n t e g r a t e [ ( Log [ c − I x ] + Log [ c + I x ] ) Sech [ a x ] , { x ,
0 , \[ I n f i n i t y ] } ] , ( \ [ Pi ] Log [ (
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2 \[ Pi ] Gamma[3/4 + ( a c )/ ( 2 \[ Pi ] ) ] ^ 2 ) / (
a Gamma[ ( 2 a c + \[ Pi ] ) / ( 4 \[ Pi ] ) ] ^ 2 ) ] ) / a

I n t e g r a t e [
Log [ a^2 + x ^2] Sech [ b x ] , { x , 0 , \[ I n f i n i t y ] } ] , ( \ [ Pi ] Log [ (

2 \[ Pi ] Gamma[3/4 + ( a b )/ ( 2 \[ Pi ] ) ] ^ 2 ) / (
b Gamma[ ( 2 a b + \[ Pi ] ) / ( 4 \[ Pi ] ) ] ^ 2 ) ] ) / b

I n t e g r a t e [
Log [1 + x ^2] Sech [ ( \ [ Pi ] x ) / 2 ] , { x , 0 , \[ I n f i n i t y ] } ] , 2 Log[4/\[ Pi ] ]

I n t e g r a t e [ ( ( 1 − I x )^k + (1 + I x )^k ) Sech [ ( \ [ Pi ] x ) / 2 ] , { x ,
0 , \[ I n f i n i t y ] } ] , −2^(2 + k ) ( −1 + 2^(1 + k ) ) Zeta [ −k ]

I n t e g r a t e [
Log [ x^2 + c ^2] Sech [ ( a x )/2]^2 , { x ,

0 , \[ I n f i n i t y ] } ] , (4 ( Log [ ( 2 \[ Pi ] ) / a ] +
PolyGamma [ 0 , ( \ [ Pi ] + a c ) / (2 \[ Pi ] ) ] ) ) / a

I n t e g r a t e [
Log [ x ] Sech [ x ]^2 , { x , 0 , \[ I n f i n i t y ] } ] , − ( EulerGamma + Log[4/\[ Pi ] ] )

8. Discussion

In this work, using our contour integration method, we achieve a few objectives from
the definite integral in terms of the Lerch function formula. Firstly, we derived Fourier
cosine and Fourier sine transforms along with two Mellin transforms. Furthermore we
produce formal derivations for a few definite integrals in the book of Gradshteyn and
Ryzhik [8]. We also derive a few new interesting definite integrals in terms of fundamental
constants. We also provide extended evaluation for integrals through analytic continuation
where possible. Finally, we summarized our work in the form a table of integrals for easy
perusal by interested readers. We will be using our method to derive more formulae to
produce more tables of integrals. We used Wolfram Mathematica to assist with the numeric
evaluation of these formulae for complex values of the parameters.
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