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Abstract: This paper considers the time continuum of Brouwer in terms of the complex system
physics. It is based upon a processual definition of real numbers which concern the measurement
problem. The multiresolution hierarchy of the measurement process is represented by the time
operator acting on continuous signals. The wavelet domain hidden Markov model, which recapit-
ulates statistical properties of the hierarchy, is verified experimentally on a wide range of signal
ensembles. It indicates a novel method that has already been proved to be tremendously useful in
applied mathematics.

Keywords: intuitionism; real numbers; measurement problem; multiresolution hierarchy; time
operator; self-organization

1. Introduction

Chaitin has announced the decline and fall of reductionism in mathematics, consider-
ing the randomness in arithmetic elucidated by some results of the computation theory.
The concluding remark concerns experimental mathematics in order to stress the impact
of computers that have an enormous contribution to the mathematical experience, which
impels people to proceed in a more pragmatic fashion. Mathematicians are coerced to go
ahead proof, postulating hypotheses based upon results of computer experiments. He
particularly points out a relation to the contemporary physics wherein randomness is a
crucial agent, which is regarded to be the core of an emergent science paradigm. Chaitin
finally remarked that the question of how one should actually do mathematics requires at
least another generation of work [1] (pp. 156–159).

Randomness that emerges in a formal theory set upon deterministic assumptions
concerns the complex system physics, which considers systems wherein the best method
of description is not clear a priori [2] (p. 203). The statistical complexity suggested by Grass-
berger [3], which corresponds to stochastic computing in terms of the Bernoulli–Turing
machine, is analogous to the deterministic one designed on the Turing machine [4]. Within
the stochastic computation theory, deterministic and random behaviors are regarded to be
elemental extremes deprived of a vital component since they both share a common failure
to support emergent properties. Being the amalgam of both, complex patterns have an
inherent tendency towards hierarchical organization [2] (p. 200).

Such a hierarchy has substantial implications concerning cognition, since observa-
tion and intellection are related to the neural architecture whose structure is reflected
by cognitive complexity [2] (pp. 204–206). It corresponds to the evolution in a hierarchical
manner [5] (pp. 470–477), indicating the concept of time that operates not only physically
or biologically but also in terms of organization theory. In this regard, time corresponds
to a primordial intuition which is the very base of conscious life—as stated by Brouwer‘s
intention to establish the continuum upon such intuitionism [6] (pp. 36–45). Intuitionistic
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mathematics is considered to be the intellection of increasingly complex features, which is
related to self-organization of complex systems due to the definition that originates from
Shalizi concerning the increase in complexity over time [7]. The issue requires formulation
of the complex system physics based upon the time operator acting on the space of con-
tinuous signals, which is actually a straightforward generalization of a multiresolution
hierarchy that relates the measurement process [8] (p. 107).

The paper is intended to elucidate the intuitionistic mathematics in terms of complex
systems. The next section briefly outlines the intuitionism by Brouwer and suggests the
time operator formulation of the complex system physics, which was developed by the
Brussels school of thermodynamics. The third section concerns the continuum structure
presenting a processual definition of real numbers corresponding to the measurement. In
order to consider the time operator of a multiresolution hierarchy, the concept of a signal
ensemble was derived in analogy to the quantum theory one. The fourth section elaborates
on results in regard to a signal processing model that recapitulates statistical properties
of the hierarchy, which is obtained by experimental mathematics methods. The last section
contains concluding remarks.

The article contents have mostly been published in the form of a conference paper
by M.M. and S.V. [9].The main advancement corresponds to the discussion of the measurement
problem, wherein some corroborations of the statistical model are presented. Proofs are
indicated using the theory of quantum ensembles, which has not appeared in relation to the
signal processing so far. The paper also contains an elaboration of the measurement process
in terms of the signal space and its dual, which is seldom encountered in the literature. Novel
illustrations have been added as well in order to make the article more comprehensible.

2. Materials and Methods
2.1. The Intuitionistic Mathematics

Brouwer’s contribution to mathematics foundations concerns the context of the XIX
and the XX centuries, whose eminent personalities were Hilbert, Russell and Whitehead.
Russell and Whitehead‘s view was based upon the statement that logic represents the
fundament of mathematical thought as Hilbert stated that a formal language was the
design of mathematics. Brouwer referred to both viewpoints as platonic ones, since they
use timeless conceptions which make them deterministic theories.

He advocated irreducibility of mathematics to a language, in aim to separate it from
formalism and logicism as well [10]. In his opinion, the base of consciousness is the
time continuum transcending any language in order to provide the original creation. It
represents a continual activity of the creative subject that is not formally determined,
which means that for mathematics there is no certain language [11]. He used the term
choice sequence, also separating intuitionism from constructive mathematics based upon
deterministic decisions [6] (pp. 38–40).

Considering the intuitionistic logic, one discerns its deviation from formal laws of the
excluded middle and of the double negation. Brouwer regarded a structure to be discrete
if the law of excluded middle x = y ∨ x 6= y holds, which is not generally true [12].
Intuitionism is actually a logic of continuum, unlike the formal logic that is a discrete one.
The double negation law ¬x 6= y ⇒ x = y is also violated, which makes the existence
of infinitesimals possible since the negation of diversity from zero ¬ε 6= 0 is not reduced
to the identity ε = 0 [13]. The continuum in such a regard does not reduce to a pointwise
set, which means that the primordial intuition is not dependent on a formal spatiality.
However, the sense of time has been seriously damaged by treating it as an additional
dimension of the formal space that modern science peddles for an ultimate reality [6]
(pp. 36–37).

Brouwer actually refers to the elimination of time stated by Meyerson due to his
definition of modern science in terms of progressively realizing the fundamental bias in
human reasoning, which concerns the reduction of difference and change onto identity and
constancy [14]. As early as 1754, d‘Alambert noted that one should consider duration as a
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fourth dimension supplementing the common three-dimensional design [15] and Lagrange
went so far to term it the four-dimensional geometry [16] (p. 223). Such a historical trail
reached its climax in Einstein, who was categorically rejecting the existence of change,
considered by him to be a mere illusion [17] (pp. 201–203). Einstein‘s intension to reach
the timeless world of supreme rationality was definitely manifested in the celebrated
Einstein–Bohr debate on the foundations of quantum theory. The core of the debate
concerned the fundamental role of randomness in specifying a system‘s state, which was
emphatically denied by Einstein who was supporting an objective epistemology of science.
Although he overturned Newtonian mechanics, Einstein firmly held the Cartesian view
of reducing physics to geometry in terms of the formal spatiality that was but a deterministic
assumption. In that respect, contemporary restoration of time indicates postmodernism in
science, whose forerunner has been Brouwer [6] (p. 49).

2.2. The Time Operator

The occurrence of postmodern science is related to quantum theory, whose origin
dates back to the beginning of the XX century [18]. The statistical formulation concerning
the evolution of probabilities has given rise to the operator mechanics by Koopman and von
Neumann, in which a system corresponds to the evolutionary group of transformations
Ut acting on the Hilbert space L2

µ(Ω). Considering that the transformation is induced
by pointwise dynamics Xt : Ω → Ω, which preserves the probability measure µ in the
phase space Ω, the operator Ut = Xt ◦ · should be unitary and, according to the Stone
theorem, the group has an infinitesimal generator termed the Liouvillian L [19].

The uncertainty principle concerns a pair of complementary observables, which consist
of the position Q = q· and the momentum operator P = ∂·

i∂q . Formulated in terms of the
commutator [Q, P] = QP− PQ, the uncertainty implies relation [Q, P] = iI. In the same
manner, the time operator T is defined to satisfy the uncertainty relation

[T, L] = iI (1)

concerning the Liouvillian L [17].
The variable F, whose domain is Ω, evolves by action of the group Ut = e−iLt, whilst

the distribution density ρ is governed by its adjoints Ut† = eiLt, which implies the Liouville
equation ∂ρ

i∂t = Lρ. Consequently, the Liouvillian L and the time operator T correspond to
complementary observables in analogy to the position and the momentum in quantum
theory. In terms of the group action, the relation (1) is equivalent to

[T, Ut] = tUt (2)

which comes down to [T, U] = U, supposing the cyclic group generated by U ≡ U1.
The time operator existence in the system induces a change in representation Λ =

λ(T), transfiguring, with no loss of information, the group to a semigroup action [20]. The
semigroup

Wt† = ΛUt†Λ−1, t ≥ 0 (3)

corresponds to an irreversible evolution of the complex system, conjugated to the reversible
one of the group. It addresses a stochastic process that is irreducible to deterministic de-
scription, whose existence is analogous to the Gödel theorem concerning an incompleteness
of the arithmetic [21].

In modern science, based upon the elimination of time, irreversibility is cognized
through the measurement problem that demands a departure from determinism in favor
of statistical causality [17] (pp. 65–67). Quantum measurement corresponds to a reduction
in the distribution density, which is a nonunitary transformation. Von Neumann expressed
its difference from the unitary evolution by the Liouville equation in terms of the entropy
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increase, invoking a substantial role of the observer [22] (pp. 347–416). Irreversibility
therefore appears to be at the very core of physics.

3. Results
3.1. The Continuum of Reals
3.1.1. Real Numbers

The concept of continuum corresponds to real numbers which designate the mea-
surement process originating from Euclide’s geometrical algebra. In the V book of the
Elements, he elaborates on the doctrine of proportion, which concerns commensuration
of magnitudes. According to the Euclidean algorithm, magnitudes a and b measure each
other through

a
b
=

1
n1 +

1
n2+

1

...

(4)

which is termed the continued fraction, having the spectrum n1, n2, . . . One assumes that
a ≤ b, i.e., a/b ≤ 1. The proportion a

b = c
d , which is indicated by matching of the respective

terms in both spectra, induces identity on the continuum of reals. Consequently, a real
number corresponds to the fraction expansion (4), implying a measurement process that
takes place step by step over time (Figure 1).

Figure 1. Rectangular diagram of the Euclidean algorithm. Steps of the measurement process are
dyed in different shades.

The time evolution is represented by the Ford diagram of circles [23], whose intersec-
tions with a vertical line correspond to the sequence

ξi =
1

n1 +
1

. . .+ 1
ni

(5)

identifying a real number x (Figure 2). The element ξi =
hi
ki

is termed the Diophantine

approximation, being the most approximate to the real number x in regard to fractions h
k ,

k ≤ ki whose denominators are not greater than one of ξi. Denominators and numerators
of the sequence are obtained by the recurrence equations

hi+1 = ni+1hi + hi−1, ki+1 = ni+1ki + ki−1 (6)
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considering the initial conditions h0 = 0, h1 = 1 and k0 = 1, k1 = n1. The difference
of successive members is

∆ξi = ξi+1 − ξi =
hi+1

ki+1
− hi

ki
=

hi+1ki − hiki+1

ki+1ki
=

vh, kwi
ki+1ki

(7)

supposing vh, kwi = hi+1ki − hiki+1, which implies

vh, kwi = (ai+1hi + hi−1)ki − hi(ai+1ki + ki−1) = hi−1ki − hiki−1 = −vh, kwi−1 (8)

and keeping in mind vh, kw0 = h1k0 − h0k1 = 1, one obtains vh, kwi = (−1)i, i.e.,

∆ξi =
(−1)i

kiki+1
(9)

In this respect, the continued fraction concerning a real number takes the form of an
alternating series

x = ∆ξ0 + ... + ξi + ... =
1

k0k1
− ...

(−1)i

kiki+1
... (10)

which is a sparse representation [24] composed of terms from the redundant dictionary
1
1 , 1

2 , 1
3 ....

Figure 2. The Ford diagram of circles. The real number corresponds to the progression of a vertical
line represented by the arrow.

3.1.2. The Continuum Structure

Equation (10) corresponds to a binary code wherein 0 is assigned to the terms of the
dictionary that do not participate in the series and 1 to those that do participate, preceded
by an alternating ± sign. Such a representation of the real number is highly redundant
since the entire dictionary cannot be involved in a series. One should therefore eliminate
excess zeros, which is achieved by coding the spectrum n1, n2, . . . A binary code like this is
composed of alternative ± values different from zero at positions n1, n1 + n2, . . . , which
gives rise to the Minkowski question mark function (Figure 3)
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? :
1

n1 +
1

n2+
1

...

7→ 1
2n1−1 −

1
2n1+n2−1 + ... (11)

that is a procedure transfiguring the continued fraction to the binary code. It represents an
automorphism of the continuum, mapping the real number x = 1

n1+
1

n2+
1

...

to an analog

value ?(x) = ∑i
(−1)i−1

2n1+...+ni−1 . Under the term continuum, one assumes the skeletal category
that is specified up to an isomorphism. The transformation ? is therefore considered to be
an automorphism of the structure, since an isomorphism (12) hereinafter is also the identity.

Figure 3. The Minkowski question mark function that is an automorphism of the continuum
transfiguring its representation from the continued fraction to the binary code.

The Ford diagram is structured by the hierarchy of scales, each one corresponding
to the insertion of circles tangent to two of them at the previous scales, as well as to the
number line (Figure 4). In such a hierarchy, each circle is attributed to an irreducible
fraction that represents its contact with the line.

Figure 4. Inserting new circle of the Ford diagram, whose designator is the mediant of the adja-
cent ones.



Mathematics 2021, 9, 1452 7 of 20

If designators of two circles are r1
s1

and r2
s2

, the inserted circle between them corre-

sponds to the fraction r1+r2
s1+s2

. One denotes it as r1
s1
⊕ r2

s2
, which is an operation termed the

mediant or the Farey sum. It is due to John Farey, who noticed that successive fractions
ζ < ξ < η, whose denominators in the reduced form are up to a given value, relate
by ξ = ζ ⊕ η. For instance, the fractions up to the denominator value 5 form the order
0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1, where each successive threesome is
related by the Farey sum [25].

The question mark function maps the mediant to the arithmetic mean [26]

?(x⊕ y) =
?(x)+?(y)

2
(12)

which is an isomorphism of topological quasigroups, whose action turns circles of the Ford
diagram into square-like diamonds (Figure 5). Such a diagram has the binary tree structure
wherein nodes, coordinated by x = 2k−1

2j+1 and y = 1
2j+1 , correspond to paracomplex numbers

x + ıy, ı2 = 1 [27] that form the algebra of segments [x− y, x + y]. Branching of segments
[ k−1

2j , k
2j ], 1 ≤ k ≤ 2j designates binary digits of the real number and, in this regard, the

hierarchy of the continuum is related to such a binary coding. The Rényi map

R(x) =
{

2x, 0 ≤ x < 1
2

2x− 1, 1
2 < x ≤ 1

(13)

that concerns a shift in terms of binary digits is a self-similarity of the structure, mapping
both the left and right subtrees to the entire one.

Figure 5. Isomorphic representations of the Ford diagram related through the question mark function.

3.2. Wavelets and Multiresolution Hierarchy
3.2.1. The Signal Space

In order to regard the measurement process in terms of the time operator, one requires
the space of continuous signals that should be discussed in a dual manner. If one considers
the measurement states Σ, a dual space Σ′ = ∆ corresponds to the devices evaluating them.
If one, on the other hand, considers the measurement devices ∆, states appear in the form
of a dual space ∆′ = Σ. These options may differ in more than a conceptual sense: taking
the dual of the dual does not necessarily bring back to the departure. Even if it does, there
may be some reasons to favor one over the other since an aspect of the continuum structure
is obscured [28] (pp. 16–23).

The intention presented in the paper considers continuous signals to be both states and
devices concurrently, which should lead to a source–detector interchangeability, termed
crossing in quantum theory [28] (p. 20). This is a reason the signal space is an autodual
one Σ = ∆ = L2(I), emphasizing the Lebesgue measure on the domain I = [0, 1]. The
topology of the Hilbert space L2(I) is not a trivial issue, since it is governed by equality
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that tolerates continuous signals to differ in zero measured domains. Such an occasion
makes it possible to establish the norm ‖ · ‖ and the scalar product 〈·|·〉 playing an essential
role in autoduality.

The continuum structure is reflected by wavelet bases of L2(I), which are hierarchically
indexed according to nodes of the binary tree. The signal decomposition considering
a wavelet base takes place in the representational form

A0 + ∑
j≥0

2j

∑
k=1

Dj,kψj,k (14)

whereat A0 is the approximate coefficient and Dj,k are detail coefficients that corresponds to
tree nodes [29] (pp. 304–307). The Haar base is paradigmatically designed by translations

and normalized dilatations of the mother wavelet χ(x) =

{
−1, 0 ≤ x < 1

2
+1, 1

2 < x < 1
in the

manner of

χj,k(x) =

{
−2j/2, k

2j ≤ x < k+1/2
2j

+2j/2, k+1/2
2j < x ≤ k+1

2j

(15)

meaning that the basic elements have a value of zero elsewhere.
A wavelet base is also interpreted in a dual manner concerning states and devices

of the measurement process. It corresponds to a distribution density, which implies the
unit norm ‖ψj,k‖ = 1. A variable Xj,k, which is distributed according to the density |ψj,k|2,
has the expectation value EXj,k = 2k−1

2j+1 , which is actually the spatial position of a tree
node. On the other hand, it consists of variables ψj,k that are mutually independent since
(j, k) 6= (l, m) ⇒ Eψj,kψl,m = Eψj,kEψl,m = 0, which means orthogonality 〈ψj,k|ψl,m〉 =
δ
(l,m)
(j,k) . Moreover, their expectations are zero and they are equally distributed within each

scale. Such an interpretation of the wavelet base represents measurement devices ∆
which are modelled due to hierarchical structuring. In that respect, measurement states
are represented by detail coefficients Dj,k = 〈ψj,k|·〉 and the approximation coefficient
A0 = 〈1|·〉, which form a base of the dual space Σ = ∆′.

The hierarchical structure of a wavelet base is reflected in detail coefficients, which
means that each of them at a scale j of the binary tree has two successors at the next one j+ 1
(Figure 6). The succession is related to the measurement process whose steps correspond
to scales of the hierarchy. In that respect, the time concerning a wavelet base is presented
by the operator

Tψj,k = jψj,k (16)

whose eigenvalues are scales of basic eigenfunctions [30]. It acts on a dense subset
of L2(I)	 1, which is the signal space reduced by the subspace of constant signals. The
time operator domain includes finite sums ∑J

j=0 ∑2j

k=1 ·ψj,k whose components ∑2j

k=1 ·ψj,k
constitute detail subspaces Dj wandering by the unilateral shift

U = R ◦ · (17)

induced by the Rényi map (13). It generates the time succession of L2(I)	 1, establishing
the multiresolution hierarchy whose main axiom is the shift property

U−1(Dj+1) = Dj (18)

Represented through the spectral decomposition

T = ∑
j

jPDj (19)
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whereby each projector

PDj = ∑
k

Dj,kψj,k (20)

corresponds to details at a resolution scale, the time operator appears to be a straightfor-
ward generalization of a multiresolution hierarchy [8] (p. 107). The axiom (18) is equivalent
to the uncertainty relation

[T, U] = U (21)

which concerns the definition of time in complex systems (2).

Figure 6. The tree of detail coefficients. Each node at a scale has two successors at the next one in
the hierarchy.

3.2.2. Signal Ensembles

In order to generate the evolutionary group, U should be extended to an invertible
operator. The natural extension concerns the baker map

B(x, y) =


(

2x, y
2

)
, 0 ≤ x < 1/2(

2x− 1, y+1
2

)
, 1/2 < x ≤ 1

(22)

inducing the bilateral shift Uχ = B ◦ ·, which is invertible [31] (pp. 35–38). To that end,
L2(I) should be embedded into the space L2(I× I) = L2(I)⊗ L2(I), containing variables
I→ L2(I), whose codomain L2(I) is constituted of signals. In that respect, variables of the
extended space come to be signal ensembles.

On the other hand, L2(I× I) = Σ⊗ ∆ is regarded to be the tensor product of devices
and states acting on them. One therefore implements the matrix multiplication in the space
of signal ensembles, which results in the representational form considering a wavelet base

A0 ⊗ 1 + ∑
j≥0

2j

∑
k=1

Dj,k ⊗ ψj,k (23)

The baker map crosses information between coordinates of the domain in such a manner
that the first binary digit of x, which has been lost by the Rényi map, becomes the first digit
of y. The induced operator crosses between components of the space, whereby devices



Mathematics 2021, 9, 1452 10 of 20

of the measurement process become states in the next step. A concise discussion of the
measurement problem considering signal ensembles is given in the following section.

The time operator Tχ of the system whose evolutionary group is generated by Uχ, has
been explicitly constructed and the relation (21) is generalized [8] (pp. 47–60). Its projection
onto the signal space L2(I) corresponds to multiresolution hierarchy generated by the
Haar wavelet (15). The time operator of any hierarchy is obtained through conjugation
T = CTχC−1 by C, which transforms the Haar base to the other one. It corresponds to the
system whose evolutionary group is generated by U = CUχC−1, which is also an extension
of the operator U. However, it is not the natural extension in a manner that it is induced
by any pointwise dynamics of the domain I × I. A problem might occur concerning
preservation of positivity, since the approximation operators ∑j≤J PDj do not preserve it
any more [32] (pp. 16–18). The distribution density, however, does not correspond to the
state but to its absoulte square, which evolves in another manner. The evolution shares
time operator, which is corroborated in the Discussion, and according to that the change
in representation is constructed analogously.

The fact that the Haar wavelet is privileged in that respect does not really mean
anything. The Rényi map (13) that has been extended to the baker one (22), is actu-
ally not defined pointwisely, since there is no definite value corresponding to the point
¬x 6= 1/2. The Brouwer continuum is not a pointwise set and therefore it does not reduce
to the identity x = 1/2, also involving choice sequences 0.011... and 0.100... in the binary
code that correspond to diverse values of the Rényi map. Since it is a zero-measured
domain, there is no obstruction to induce the operator U considering the topology of L2(I).
However, it is not induced by pointwise dynamics, as well as the operator U for any
wavelet base. Elaborating on the relation between wavelets and stochastic processes, An-
toniou asserted that wavelets are not motivated by any pointwise dynamics of the phase
space. He concludes that the ergodic theory is richer than the wavelet one, since the
former fundamentally involves an underlying dynamical system of point trajectories [31] (p. 96).
Such a remark is irrelevant in regard to the wavelet multiresoultion hierarchy, considering
that none of them is defined pointwisely. The evolutionary operator is not affected at all
by dynamics of particular points, but of domains which are continuum powered. The main
advantage of the operator mechanics is just an avoidance of single trajectories that concern
points of the phase space in order to distinguish a common behavior. The pointwise dy-
namics is actually an incomplete description of the system, which is analogous to the Gödel
theorem [21]. The completization required gives rise to the concept of the point operator
acting on the space of continuous signals [28] (pp. 57–65).

The operator U has been extended to U , which acts on signal ensembles, generating
the evolutionary group that corresponds to a wavelet multiresolution hierarchy. The
time operator T , which is the extension of (16), induces a change in representation that
should transfigure the group evolution to the semigroup one (3) representing the Markov
process [20] (p. 9)

W f (ω) =

1∫∫
0

f (v)p(ω, dv) (24)

The semigroup action concerns blurring of the signal, which is related to the expansion
of the spatial domain due to the action of U on the signal space (Figure 7). It extends
to diverse operators in the space of signal ensembles, depending on the wavelet that is
represented by the time operator. In that manner, the optimality issue arises, which means
a multiresolution hierarchy that is best fitted to the ensemble.
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Figure 7. The semigroup action that concerns blurring of the signal, which is related to an expansion
of the spatial domain.

4. Discussion
4.1. Self-Organization of the Time Continuum
4.1.1. Local and Global Complexity

In the poem On the Nature of Reality, Lucretius describes not only how things vanish at
a distance, but also how they appear to change [33] (p. 156). For instance, distant square
towers look rounded. A pair of distinct islands appear to merge into a single one. When
distance is increased, details become generalized and distinctions might merge or van-
ish [34] (p. xv). The effect concerns blurring of the signal wherewith details are successively
suppressed. The opposite process, in which there is an emergence of details unfolding the
time of a system, is termed self-organization, implying an increase in complexity [7]. The
concept originates from Grassberger, who defined statistical complexity as the minimal
information required for an optimal prediction of system’s behavior [3]. Crutchfield and
Young extended the conception by an accurate definition of the optimal predictor. The
causal structure has been established in that manner, relating to the intrinsic computability
of a process in terms of the Bernoulli–Turing machine [4].

The optimal base requires minimizing of the correlation between scales in a signal
ensemble. In that respect, detail coefficients D = (Dj,k) are regarded as joint variable
whose component is obtained by applying a state Dj,k from Σ to the ensemble form
Σ⊗ ∆. However, such an application should also result in the state of Σ, which means
that the energy of a coefficient |Dj,k|2 corresponds to the distribution density. Random
realizations of detail coefficients are therefore distorted measurements of a physical entity
whose appearance corresponds to hidden variables Sj,k evolving in a stochastic manner.
Elaboration of the measurement problem has been left for the following subsection.

In this section, a statistical model of signal ensembles is presented which has been ob-
tained in the manner of experimental mathematics. The model is based upon the statistical
properties of the wavelet transform, among which the most significant one is approximate
decorrelation. It claims that correlations between detail coefficients are realized entirely
through hidden variables Sj,k forming a Markovian tree, due to inheritance along branches
which follow the continuum structure (Figure 8). In that manner, the wavelet domain
hidden Markov model has been established, which has been extremely useful in a variety
of applications, including speech recognition and artificial intelligence [35] (p. 887).
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Figure 8. The wavelet domain hidden Markov model. Black nodes represent the detail coefficients
and blue ones the hidden states.

Exhausting all correlations in the ensemble, the Markovian tree S = (Sj,k) is proven to
be a causal structure of the system [36]. It is appropriate to assume statistical stationarity,
which means that detail coefficients Dj,k and causal variables Sj,k are equally distributed
within each scale j, independent of the spatial position k. Statistical stationarity of the
system enables a reduction in the model parameters, which is the practice known as
tying [37]. It is about sharing statistical information between related variables at certain
scales, whose distribution parameters are tied to a common value, with the aim to perform
a robust estimation. A usage of the Baum–Welch algorithm, given an observation from the
signal space, usually converges in as few as ten iterations supposing a locally two state
causal structure of the model [35] (p. 893).

The information entropy of local variables

Cj = H(Sj,·) (25)

dependent on the scale only, is termed the local complexity, whose increase in the tem-
poral domain represents self-organization. Time unfolds in the sense of the complexity
increase, and so it is essential to find the optimal base wherein self-organization is the most
prominent. Entropy of the causal structure

C = H(S) (26)

termed the global complexity, is proven to be a measure of the representation optimality [36].
The information of an ensemble is decomposed through the canonical relation

H(D) = H(S) + H(D|S) (27)

wherein H(S) is entropy of the causal variable and the conditional entropy H(D|S) is
an irreducible randomness that remains even after all correlations are subsumed. When
adding white noise to the signal ensemble, only the extensive term H(D|S) should increase
while the complexity H(S) remains unchanged. The optimal base performs superior
denoising since it best respects the self-organization of a system corresponding to the time
operator. The multiresolution hierarchy it provides temporally decomposes the ensemble,
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specifying its significance through a complexity insight. In that regard, multiscale pyramids
are proposed to be likely models of visual perception [34] (p. xx).

An incisive phenomenology of the fact has been presented by Ruskin, who gave it a
complete description [38] (p. 174):

Go to the top of Highgate Hill on a clear summer morning at five o’clock, and
look at Westminster Abbey. You will receive an impression of a building enriched
with multitudinous vertical lines. Try to distinguish one of these lines all the
way down from the one next to it: You cannot. Try to count them: You cannot.
Try to make out the beginning or end of any of them: You cannot. Look at it
generally, and it is all symmetry and arrangement. Look at it in its parts, and it is
all inextricable confusion.

Yet, he adamantly insists that the draughtsman should render such a confusion veridically,
meaning that the complexity is optimally represented. Rendering like that is carried out in
the hierarchical manner, since it is a description of the complex system [5] (p. 477).

4.1.2. Dynamical Identity

Koendreink has indicated that one is faced with a fundamental and important, though
unfortunately ill understood, aspect of perception [34] (pp. xvii–xx). Having taken a
first look at the subject, he admitted a shock by the fact that there existed essentially no
science on the topic. The only discipline that considered such phenomena turned out to be
cartography [39]. Although there is certainly a lot of science in cartography, its arguably
most important aspect has always remained an art conducted largely on intuition. It
corresponds to an esthetical criterion relating truth to the original creation [40], which has
been termed by Bachelard as the poetics of space [41].

Concerning the physical reality, Koenderink concludes the same as Mandelbrot about
fractal geometry, i.e., that a complex description of nature is required [42]. The phrase
experimental mathematics comes up a lot in a field of chaos, fractals and nonlinear dynam-
ics [1] (p. 158). Fractal signals appear in the spectral decomposition of significant operators,
including one induced by the Rényi map (17). Results like this should be relevant for
exploring the wavelet theory and its relationship to stochastic processes [43] (p. 243). The
conception is concisely exposed in the book Powers of Ten, which has assigned a signifi-
cance of the multiresolution hierarchy to such a number [44]. A link between the number
of ten and multiscaling is the time continuum designed upon the measurement process.
Information entropy of the continued fraction expansion (4) evolving by the Gauss map
is π2

6log2 that approximates to log 10, which means that each term of the fraction should
designate a decimal digit almost certainly [45]. The result was disclosed by Lochs, but
it has been subsequently elaborated in the ergodic theory of continued fractions [46–48].
However, a distinction between the continued fraction and the binary coding is evident.
Scales of the binary hierarchy evolving by the Rényi map correspond to the time that
counts, one by one, squares of (Figure 1), while the continued fractions consider all squares
of the same size to be one step in evolution by the Gauss map. In that regard, dynamical
systems are not equivalent and results are incomparable since their time operators are
diverse. Nevertheless, the importance of the decimal system in coding numbers is also
related to the continuum structure since the real number corresponds to a choice sequence
of the continued fraction terms, as well as the binary ones unfolding in time. It is easy to
see that the Gauss map is equivalent to a power Rn of the Rényi one in the domain of real
numbers x whose first term of the continued fraction is n = b 1

x c. The isomorphism is
realized through the question mark function (11).

The time continuum in that manner appears to be the paradigm of intuitionistic logic,
whereat the excluded middle x = y ∨ x 6= y does not hold, considering a dynamical
identity unfolded by choice [49]. Such an identity has also appeared in the Jungian
psychology wherein the natural number emerges as a timestamp [50]. It is a feature
inherent to complex systems, since the time operator is contingent on the mixing property,
which means that the states of the system become indiscernible as it goes on [8] (p. 99).
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Since the validity of the excluded middle is the definition of a discrete structure by Brouwer,
the complex system physics inevitably falls under the continuum category. In that respect,
the time continuum is a categorical skeleton of complex systems.

The law of the excluded middle is valid concerning the diversity, since it holds

x 6= y ∨ ¬x 6= y (28)

In terms of intuitionism, the negation of identity = is diversity 6=, whose negation is
undiversity ≈, which is a discrete relation. The negation 6≈ of undiversity is diversity 6=,
and therefore the law of the excluded middle (28) holds in the form

x ≈ y ∨ x 6≈ y (29)

indicating a discrete structure of the formal logic. It is obtained through negative trans-
lation of the intuitionistic one [51], which means that formalism is a reduction of the
intuitionistic continuum onto a discrete method. The reduction concerns deterministic
computation based upon the Turing machine, which is analogous to the stochastic one
using the Bernoulli–Turing machine. In that manner, the concept of statistical complexity is
reduced onto the algorithmic one [4].

The discretization due to the double negation of identity makes a pointwise structure
based upon undiversity of elements, which also emerges in JavaScript as the legendary cast-
to-bool operator !! that is written in the form of a double negation. In terms of the signal
space, it gives rise to the point operator corresponded to the Markov process (24) that needs
to be sufficiently smooth in order to transfer the concepts of continuity and differentiation
to discrete signals [28] (pp. 57–65). In the time continuum domain, however, all signals
have been considered continuous since they represent morphisms of the structure [52].

4.2. The Measurement Problem
4.2.1. Quantum Measurement

The space of signal ensembles L2(I× I) = Σ⊗ ∆ is regarded as the tensor product
of devices and states acting on them. One, therefore, implements the matrix multiplication

FG(x, y) =
∫ 1

0
F(·, y)G(x, ·)d· (30)

which is a semigroup operation corresponding to the action. Measurement devices ψj,k
from ∆ embed into the space by the form of 1⊗ ψj,k, and states Dj,k from Σ are embedded
by Dj,k ⊗ 1. The baker map (22) crosses information between coordinates of the domain
in such a manner that the first binary digit of x, which has been lost by the Rényi map,
becomes the first digit of y. The induced operator crosses between space components,
which is evident in the relation Uχχ = 〈χ|·〉 that transforms a device to a state considering
the embedment, and likewise for other wavelets.

At the beginning of a measurement, there are devices ∆ and states Σ. The interaction
between them takes place according to the action of an operator U on Σ ⊗ ∆. Such a
procedure is completed as soon as all devices have become states from Σ⊗ Σ acting on
∆⊗ ∆ through the inner product

〈F|G〉 =
1∫∫
0

F(·)G(·)d· (31)

which means sampling in signal processing terminology [28] (p. 40). In that respect,
all states have also become devices that the psychophysics of the observer is involved
in. Both states Σ and devices ∆ are therefore embedded into Σ ⊗ Σ = ∆ ⊗ ∆ by the
form of projectors Pj,k = Dj,k ⊗ ψj,k. It concerns crossing between these options, which is
quantum measurement characterized by.
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The distribution of a quantum ensemble is given by probability P 7→ p(P), which
maps each projector onto I, such that p(0) = 0, p(1) = 1 and p(∑i Pi) = ∑i p(Pi) for
mutually orthogonal projectors of the sum [8] (pp. 131–134). According to the Gleason
theorem, it corresponds to p(P) = 〈ρ|P〉, wherein ρ is the density operator which is
positive semidefinite and the Hermitian one. It follows that ρ = FF†, wherewith F is
the root operator having the unit norm ||F|| = 1. The measurement in a wavelet base is
represented by the operation M(ρ) = ∑j,k Pj,kρPj,k, whereby a density is reduced to the
sum ∑j,k |dj,k|2Pj,k of projectors multiplying probabilities

|dj,k|2 = 〈ρ|Pj,k〉 = 〈Pj,kF|Pj,kF〉 = ||Dj,kF||2 (32)

which are equal to expectations E|Dj,kF|2. The measurement problem concerns the issue
of how such a reduction has taken place. Considering the representational form

F = ∑
j,k

Dj,kF⊗ ψj,k (33)

the variables |Dj,kF|2 are interpreted as distribution densities and the reduction is a col-
lapse to expected values |dj,k|2. The process implies the time operator whose eigenvalues
constitute the base ψj,k (16).

Since the density operator ρ = FF† is Hermitian, there is an orthonormal base of their
eigenfunctions, which is assumed to be the optimal wavelet base ψo

j,k corresponding to
projectors Po

j,k. If the root operator F has an optimal wavelet base, they should be the
same and

F = ∑
j,k

do
j,kPo

j,k (34)

In that instance, there is no reduction in the signal ensemble due to the measurement
process. Detail coefficients are represented by the variables Do

j,kF = do
j,kψo

j,k, which are
mutually independent, considering their orthogonality. In that manner, the signal ensem-
ble is decorrelated, which suits well with the maximization of the statistical complexity.
Regarding another base ψl,m, detail coefficients of the same ensemble are

Dl,mF = ∑
j,k
〈ψl,m|ψo

j,k〉 do
j,kψo

j,k (35)

Since basic elements ψo
j,k and ψl,m are almost entirely localized in the domains [ k−1

2j , k
2j ]

and [m−1
2l , m

2l ], respectively, the values 〈ψl,m|ψo
j,k〉 are negligible if these segments do not

intersect. The consequence is an approximate decorrelation of the ensemble, which
means that the dependence between coefficients predominantly concerns inheritance
along branches of the tree representing the continuum structure. The signal ensemble is
statistically stationary if detail coefficients are equally distributed within each scale, which
means that the eigenvalues dj = do

j,k do not depend on the spatial position k and both the

root F = d(T) and the density ρ = |d(T)|2 are operator functions of the optimal time

T = ∑
j

jPDo
j

(36)

whereby PDo
j
= ∑k Po

j,k are projectors in the subspaces Do
j that constitute the optimal

multiresolution hierarchy.
Discussing quantum theory foundations, von Neumann noted that the measurement

process should not be regarded in terms of a temporal evolution [22] (pp. 351–354). The
reason for this is determinism of modern science which has eliminated time, reducing
it to a linear parameter. The elimination makes not only optimal measurements but
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any measurement impossible, since the process implies the time operator constituting a
multiresolution hierarchy. Although in the classical formulation of quantum theory there
is no potential for such an institution, the time operator is consistent with the Liouville–
von Neumann formulation, which elaborates on the evolution of the density operator [8]
(pp. 131–134).

If a root F is governed by the operator U , the density ρ = FF† evolves according to
the operation Uρ = (UF)(UF)† = UρU−1 and U is the unitary operator whose adjoint is
U † = U−1. The time operator T of the evolution by U is also relevant to the evolution by U,
since the uncertainty relation (2) is satisfied considering that [T ,U]ρ = [T ,U ]ρU−1 = Uρ.
It induces a change in representation Λ = λ(T ), which should transfigure the evolutionary
group generated by U† to the semigroup (3) generated by W† = ΛU†Λ−1, whose adjoint is
the Markov process acting on a density ρ = FF† in the manner of

Wρ = Λ−1†UΛ†ρ = Λ−1†UΛ†ρU−1 = (WF)(UF)† (37)

In that respect,W = Λ−1†UΛ† represents the irreversible evolution (24) of the root operator
F = ∑j,k Dj,kF⊗ ψj,k. The measurement reduces the density operator

FF† = ∑
j,k,l,m

E(Dj,kFDl,mF)ψl,m ⊗ ψj,k (38)

to the sum ∑j,k |dj,k|2ψj,k⊗ψj,k, wherein the probabilities |dj,k|2 = E|Dj,kF|2 are the expected
values of variables |Dj,kF|2, which are interpreted as the distribution densities. In order to
consider their evolution, one regards the adjoint root F† = ∑j,k ψj,k ⊗ Dj,kF and the sum
F†F = ∑j,k Dj,kF⊗ Dj,kF, whose components correspond to the density operators ρj,k. Due
to the change in representation, they become densities Λρj,k of hidden variables Sj,k that
are governed by the semigroup generator W†.

Prigogine discerned that the theory of quantum ensembles should be both com-
plete and probabilistic, whereby the celebrated Einstein–Bohr debate began to take new
shapes [17] (p. 255). The link between reversible and irreversible evolution, established due
to the time operator, is the fundamental one for elucidation of the measurement problem.
The process concerns statistical causality of complex systems, which operates through
the Markovian tree S = (Sj,k) of hidden variables that evoke a stochastic computation. It
corresponds to an experimental mathematics whose paradigmatic framework is the time
continuum of Brouwer.

4.2.2. The Euclidean Paradigm

A paradigm of the measurement process is commensuration of magnitudes, due to the
Euclidean algorithm which is transfigured to the binary code through the question mark
function (11). Binary digits cj of the measurement F = d(T) correspond to eigenvalues
Fχj,k = djχj,k, wherein one has preferably assumed the Haar eigenbase to represent
devices. It is thought to be the root operator of an ensemble that is the embedment

of the signal ∑j cjU jχ = ∑j,k 2−
j
2 cjχj,k = ∑j,k djχj,k, which makes the correspondence

of each digit to an eigenvalue in the manner of dj = 2−
j
2 cj. The density operator ρ = FF†

suggests normalization by the divisor ‖F‖2 = ∑j 2−jcj, and in that respect the normalized

squares |d|2j =
2−jcj

∑j 2−jcj
are probabilities representing the contribution of a digit to the real

number. It suits well to an expected value of |Dj,kF|2, that is the normalized square of a
detail coefficient Dj,kF = djχj,k, which means that the variables |Dj,kF|2 are interpreted as
distribution densities and the reduction concerns a collapse to expectations |d|2j = E|Dj,kF|2.

In order to elucidate evolution, one should consider the density operator ρ=∑j,k Dj,kF⊗
Dj,kF, which is the sum of tensor squares corresponding to the densities ρj,k = χj,k⊗χj,k. They
evolve according to Uρj,k = ρj+1,k + ρj+1,k+2j , which is reminiscent of the density evolution
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|Dj,kF|2 by the Rényi map Uχ2
j,k =

1
2 χ2

j+1,k +
1
2 χ2

j+1,k+2j . The detail coefficient Dj,kF diverges

from zero only in the range of the variable distributed by χ2
j,k. It relates a hidden variable

evolving in a stochastic manner, due to a change in representation that should delocalize
distribution densities [21]. The transformation Λ corresponds to describing a system in
novel terms of elementary events that cover both states in which the detail coefficient has a
nonzero value and those in which it does not. In terms of the novel description, one speaks
of irreversible processes which concern an inheritance of states in the temporal domain that is
constituted by the time operator of a wavelet. Considering that the measurement has been
performed in the optimal base, detail coefficients are mutually independent. If it had been
performed suboptimally, such an inheritance with respect to the time operator should have
presented a causal structure that suggests correlation of detail coefficients.

The Euclidean algorithm corresponds to the optimal measurement, which concerns
the fact that the signal ensemble is a function of the time operator T = ∑j,k jPj,k. The
process is represented by the operation M(ρ) = ∑j,k Pj,kρPj,k, which the density ρ = |d(T)|2
is an invariant of. One should adopt a conception of the Euclidean paradigm that concerns
ensembles which are invariant in regard to such an operation. Such ensembles are therefore
operator functions of the optimal time, which means equal distribution of detail coefficients
within each scale. Respecting that, any measurement process is represented by M(FF†) =

∑j
1
2j E|PDj F|2PDj , which actually comes down to the application of projectors PDj = ∑k Pj,k

to the root operator of a signal ensemble.
Supposing the Haar multiresolution hierarchy, projectors evolve in the manner of

PDj+1 = UχPDjU−1
χ , which makes them reducible to the measurement operator P0 that

corresponds to a primary device χ0 = 1⊗ χ whose evolution χj = U
j
χχ0 generates the base

∏j∈(j1<···<jn) χj of signal ensembles [8] (pp. 29–32). Each element χ #» of the base is specified
by an increasing sequence of integers #» = (j1 < · · · < jn) and it evolves Uχχ #» = χ #» +1,
wherein #» + 1 = (j1 + 1 < · · · < jn + 1). The measurement operator P0 should fix the
element χ #» = χj1 · · · · · χjn if it is started by χj1 = χ0 and annihilate it if it is not. The

operators PDj = U
j
χP0 U

−j
χ first of all imply the process U−j

χ χ #» = χ #» −j due to which some
states have become devices. The measurement operator P0 annihilates all devices except
the primary one χ0. The terminal step concerns the evolution U j

χχ #» = χ #» +j in which
some devices become states. In that respect, crossing between these options through the
evolutionary operator is fundamental for the multiresolution hierarchy.

Tracking the evolution of an ensemble requires its decomposition into elements of the
base, which evolves in a common manner. Such a procedure corresponds to the untangling
of entangled ensembles, since each of elements χ #» = ∏0≤j∈ #» χj ·∏0>j∈ #» χj is the tensor
product of a state and a device. The entanglement does not communicate between states
and devices, which is an implementation of the no-signalling principle. The only commu-
nication in that respect occurs through their crossing due to the action of the evolutionary
operator on signal ensembles.

4.2.3. Psychophysical Parallelism

Except for the temporal evolution, the process comes down to the measurement
projector P0, which annihilates signal ensembles out of a display, determining the boundary
between states and devices, which is arbitrary to a very large extent. Autoduality of the
signal space representing both states and devices concurrently concerns the principle
of psychophysical parallelism as has been noticed by von Neumann [22] (p. 420). The
problem occurs in that the principle is violated so long as it is not demonstrated that the
display has been placed in an arbitrary manner, which is achieved by crossing due to the
action of an evolutionary operator. In that regard, the projector evolution PDj+1 = UPDj
corresponds to its displacement by designating another device as the primary one. Devices
of the measurement are continually crossing into states and the concept of psychophysics
is used in order to transcend any separation between the two.
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Von Neumann made a reference to Bohr, who was the first to have pointed out that
the dual description of quantum theory relates to the principle of psychophysical paral-
lelism [22] (p. 207). Although Bohr never mentioned it in the print, he adopted Fechner’s
psychophysics as taught by his mentor Harald Höffding [53] (pp. 244–245). The most sig-
nificant source for phychophysical parallelism of Fechner is the foreword and introduction
from the book Elements of Psychophysics [54] (pp. vii–xiii, 1–20). His attitude is termed the
identity view, since the observer is not to be considered a conglomeration of two substances
but one single entity. The outer psychophysics, which is a link between sensation and stim-
ulation, is realized through the neuroesthetical computation, which relates sensation and
neural activity. It is regarded by Fechner to be the inner psychophysics [40] (pp. 2147–2149).

An important consequence of von Neumann‘s solution to the measurement problem
is that the irreversibility takes place in the presence of the observer‘s mind, which seems to
play an active role in the process. The only manner to make such an unpleasant situation
compatible to the psychophysical parallelism is to switch into the inner psychophysics
through a change in representation, which should elucidate the irreversible evolution of the
causal variable. In that regard, self-organization of the time continuum appears in a relation
to the entropy production, which is a measurement characterized by [22] (pp. 398–416).
The optimal measurement corresponds to the most significant increase in the information
entropy, considering that the statistical complexity is maximized.

The outer psychophysical information of a signal ensemble is independent of the
wavelet base, since H(CD) = H(D) + log |det C| = H(D) for any unitary matrix C
designating the coordinate transformation related to a base substitution. The canonical
relation (27) separates the inner psychophysical information H(S) contained in the causal
variable from an irreducible randomness H(D|S), having the noise property [40] (p. 2150).
An innate component of the wavelet domain hidden Markov model is the denoising
procedure that is proven to be advantageous over other methods [35] (pp. 894–895). It
is performed in a superior manner by the use of the optimal base, and in that regard
the inner psychophysics corresponds to such a denoising procedure [36] (pp. 4–5). The
optimal measurement is therefore related to recognition of the causal structure that should
maximize the information it contains. The process is represented by the time operator
constituting an optimal multiresolution hierarchy of the signal space.

Statistical properties of the wavelet domain hidden Markov model reproduce the
Fechner law that relates the outer psychophysical stimulus to the inner psychophysical
sensation scale [40] (p. 2150). The logarithmic dependence between them is a consequence
of the exponential decay concerning detail coefficients, which is applicable as well to
the Euclidean paradigm of signal ensembles. It has been demonstrated that eigenvalues

dj = cj2−
j
2 correspond to binary digits cj of a real number. The exponential decay should

follow from the fact that digits meet the uniform distribution almost certainly [1] (pp. 151–
153). Some form of the Fechner law is therefore satisfied by almost all ensembles of the
Euclidean paradigm. Its formulation in terms of the statistical causality is a completion
of former studies in the area concerned [55].

5. Conclusions

The main advantage of the operator mechanics is that it avoids the concept of single
trajectories which concern points of the phase space in order to distinguish a common
behavior. It has been demonstrated by operators corresponding to evolution of wavelets,
which are not induced by any pointwise dynamics. A wavelet multiresolution hierarchy
gives rise to the evolutionary group acting on the space of signal ensembles. Due to the
time operator, the group action comes down to the semigroup one, which is a blurring
related to expansion of the spatial domain.

According to Brouwer‘s view, time is a primordial intuition that is the base of conscious
life. Mathematics is regarded as the paradigm of self-organization, i.e., an intellection
of increasingly complex features. In that respect, the main structure is the time continuum
that is regarded to be the categorical skeleton of complex systems. The dynamical identity
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it implies is unfolded by choice, similar to one of Jungian psychology, wherein the natural
number is found to be a timestamp.

The complex description of nature following an evolution of the continuum is de-
signed by fractal geometry, wherewith time is established in terms of the multiresolution
hierarchy. The wavelet domain hidden Markov model considering the statistics of continu-
ous signals has been extremely useful in a variety of applications. It is obtained in a manner
of experimental mathematics, which makes the time continuum a paradigmatic framework
for such an activity. Referring to Chaitin‘s remark from the beginning of the paper, one
concludes that another generation of mathematics has come aligned to Brouwer‘s method.
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6. Tasić, V. Mathematics and the Roots of Postmodern Thought; Oxford University Press Inc.: New York, NY, USA, 2001.
7. Shalizi, C.R.; Shalizi, K.L.; Haslinger, R. Quantifying self-organization with optimal predictors. Phys. Rev. Lett. 2004, 93, 1–4.

[CrossRef]
8. Antoniou, I.; Misra, B.; Suchanecki, Z. Time Operator: Innovation and Complexity; John Wiley & Sons: New York, NY, USA, 2003.
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