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Abstract: In this work, the rectifying isotropic curves are investigated in three-dimensional complex
space C3. The conclusion that an isotropic curve is a rectifying curve if and only if its pseudo
curvature is a linear function of its pseudo arc-length is achieved. Meanwhile, the rectifying isotropic
curves are expressed by the Bessel functions explicitly. Last but not least, the centrodes of rectifying
isotropic curves are explored in detail.

Keywords: complex space; isotropic curve; rectifying curve; structure function

1. Introduction

In 2003, B. Y. Chen first proposed the notion of rectifying curves, which represent a
class of space curves whose position vector always lies in its rectifying plane in Euclidean
3-space [1]. The necessary and sufficient conditions of a curve being a rectifying curve are
found, for example, a curve is a rectifying curve if and only if the ratio of its curvature and
torsion is a non-constant linear function of its arc length. Furthermore, a rectifying curve
r(t) can be expressed via a unit speed space curve y(t) as r(t) = a(sec t)y(t), where a is a
positive constant [1].

Motivated by the achievements of Chen on rectifying curves, a series of further research
works were carried out in different space-times by many mathematicians [2–4]. For instance,
the rectifying curves are generalized into the ones in Minkowski 3-space, which are divided
into space-like (resp. time-like, light-like) rectifying curves. The necessary and sufficient
conditions of three kinds of space curves being rectifying curves were explored completely
in [5,6]. Moreover, the rectifying curves are also defined in Euclidean 4-space, i.e., the po-
sition vector of a space curve lies in the orthogonal complement of its principal normal
vector field [7]. Some examples of rectifying curves as centrodes and extremal curves were
discussed in [8,9].

In recent years, isotropic curves have been discussed widely, such as isotropic Bertrand
curves, the isotropic helix and k-type isotropic helices [10,11]. In 2015, the isotropic curves
in complex space C3 were characterized by one of the authors [11] in which the structure
function of isotropic curves are defined and the relationship between the pseudo curvature
and the structure function is built by a kind of Schwartzian derivative. In this paper,
analogous with the definition of rectifying curves in Euclidean 3-space, we focus on the
rectifying isotropic curves and their centrodes in C3.

This paper is organized as follows. In Section 2, some basic facts about the complex
space, the isotropic curve and the structure function are recalled, and the rectifying isotropic
curves are defined at the same time. In Section 3, the necessary and sufficient conditions of
isotropic curves being rectifying curves are achieved. In addition, the rectifying isotropic
curves are expressed explicitly with Bessel functions by solving the Riccati equation of
the structure function. Based on the conclusions obtained in Section 3, the centrodes of
rectifying isotropic curves are explored precisely.
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The curves considered in this paper are regular and analytic unless otherwise stated.

2. Preliminaries

Let C3 be a three-dimensional complex space with the following standard metric:

〈·, ·〉 = dx2
1 + dx2

2 + dx2
3

in terms of the natural coordinate system (x1,x2,x3).
The norm of a vector is defined by ‖ · ‖ =

√
|〈·, ·〉|. An arbitrary nonzero vector υ ∈ C3

is called an isotropic vector if 〈v, v〉 = 0. For a curve r(t) in C3, if its tangent vector is an
isotropic vector, then we have the following.

Definition 1. Let r(s) be a curve in C3. If the squared distance between two points of r(s) is equal
to zero, then r(s) is called an isotropic curve [11].

The isotropic curves also can be understood as meromorphic mappings r : t ∈ U ⊂
C→ C3 with vanishing complex length of their tangent vectors. A regular isotropic curve
r(t) is full if, and only if, 〈r′′(t), r′′(t)〉 6= 0 [11].

Remark 1. The pseudo arc length parameter for isotropic curves can be defined by normalizing the
acceleration vector of isotropic curves, i.e., 〈r′′(s), r′′(s)〉 = −1 [10,12]. Hereafter, the isotropic
curves are always assumed to be parameterized by the pseudo arc length unless stated specifically,
and the isotropic geodesic is excluded throughout the paper.

Proposition 1. Let r(s) be an isotropic curve in C3. Then r(s) can be framed by a unique Cartan
Frenet frame {e1, e2, e3} such that the following is true [10]: e′1

e′2
e′3

 =

 0 −i 0
iκ 0 i
0 −iκ 0

 e1
e2
e3

, (1)

where 〈e1, e1〉 = 〈e3, e3〉 = 〈e1, e2〉 = 〈e2, e3〉 = 0, 〈e2, e2〉 = 〈e1, e3〉 = 1; e1 × e2 = ie1,
e2 × e3 = ie3, e3 × e1 = ie2; det(e1, e2, e3) = i; i2 = −1.

In sequence, e1, e2, e3 is called the tangent, principal normal and binormal vector field of r(s),
respectively. From Equation (1), it is easy to know that κ(s) = 1

2 〈r′′′(s), r′′′(s)〉. The function κ(s)
is called the pseudo curvature of r(s).

For an isotropic curve r(s) in C3 with Frenet frame {e1, e2, e3}, there exists a vector
field D = D(s) such that the following is true:

e′1(s) = D× e1(s),
e′2(s) = D× e2(s),
e′3(s) = D× e3(s),

which is called the Darboux vector field of r(s). From Proposition 1, the Darboux vector
field of r(s) is as follows:

D = D(s) = κ(s)e1(s)− e3(s). (2)

Definition 2. Let r(s) be an isotropic curve in C3. The curve denoted by the Darboux vector field
is called the centrode of r(s).

In [11], the authors introduced the structure function and the representation formula
for isotropic curves, namely, the following:
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Proposition 2. Let r(s) be an isotropic curve in C3. Then r(s) can be written as follows [11]:

r(s) =
i
2

∫
f−1
s
(
( f 2 − 1), 2 f ,−i( f 2 + 1)

)
ds (3)

for some non-constant analytic function f (s), which is called the structure function of r(s).

Proposition 3. Let r(s) be an isotropic curve in C3. Then the pseudo curvature κ(s) can be
expressed by the structure function f (s) as follows [11]:

κ(s) = −(S f )(s) =
1
2

(
fss

fs

)2
−
(

fss

fs

)
s
, (4)

where (S f )(s) is the Schwarzian derivative of the structure function f (s).

For an isotropic curve r(s) framed by {e1, e2, e3} in C3, the planes spanned by {e1, e2},
{e1, e3} and {e2, e3} are known as the osculating, the rectifying and the normal planes,
respectively. In Euclidean 3-space, a curve is called a rectifying curve if its position vector
always lies in its rectifying plane [1]. Naturally, we have the following definition.

Definition 3. Let r(s) be an isotropic curve in C3. If its position vector always lies in its rectifying
plane, then r(s) is called a rectifying isotropic curve.

Remark 2. Obviously, the position vector of a rectifying isotropic curve r(s) can be expressed as
follows:

r(s) = λ(s)e1(s) + µ(s)e3(s),

where λ(s) and µ(s) are nonzero analytic functions.

3. Rectifying Isotropic Curves

In this part, the properties and expression forms of rectifying isotropic curves are
studied.

Theorem 1. Let r(s) be an isotropic curve in C3. Then r(s) is congruent to a rectifying isotropic
curve if, and only if, the pseudo curvature κ(s) of r(s) is a non-constant linear function of the
pseudo arc length s, i.e., the following:

κ(s) = c1s + c2, (0 6= c1, c2 ∈ C).

Proof. Let r(s) be a rectifying isotropic curve framed by {e1, e2, e3}. From Remark 2, it
gives rise to the following:

r(s) = λ(s)e1(s) + µ(s)e3(s) (5)

for some nonzero analytic functions λ(s) and µ(s).
Taking the derivative of both sides of (5) with respect to s, we get the following

equation system: 
λ′(s) = 1,
λ(s) + µ(s)κ(s) = 0,
µ′(s) = 0.

From the above equation system, we notice that µ(s) is a nonzero constant denoted
by a and λ(s) is a linear function as λ(s) = s + b, (b ∈ C). Thus, the pseudo curvature
κ(s) satisfies the following:

κ(s) = − s
a
− b

a
, c1s + c2, (0 6= c1, c2 ∈ C).
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Conversely, assume that r(s) is an isotropic curve in C3 such that κ(s) = c1s + c2
for some constants c1 6= 0 and c2. By invoking the Frenet–Serret equation, we obtain
the following:

d
ds

[r(s)− (s +
c2

c1
)e1(s) +

1
c1

e3(s)] = 0,

from which and after appropriate translation, r(s) is congruent to a rectifying isotropic curve.

Theorem 2. Let r(s) be an isotropic curve in C3. Then r(s) is a rectifying isotropic curve if, and
only if, one of the following statements holds:

(1) 〈r(s), r(s)〉 = 2a(s + b);

(2) the tangent component 〈r(s), e1(s)〉 = a;

(3) the binormal component 〈r(s), e3(s)〉 = s + b,

where a 6= 0 and b are constants.

Proof. Let r(s) be a rectifying isotropic curve framed by {e1, e2, e3}. According to the proof
of Theorem 1, we have the following:

r(s) = (s + b)e1(s) + ae3(s), (6)

where a 6= 0 and b are constants.
Taking the scalar product of (6) with the tangent vector e1(s), the binormal vector e3(s)

and itself successively, we obtain the following:
〈r(s), e1(s)〉 = a,
〈r(s), e3(s)〉 = s + b,
〈r(s), r(s)〉 = 2a(s + b).

Conversely, let r(s) be an isotropic curve in C3 which satisfies the following statement:

〈r(s), r(s)〉 = 2a(s + b) (7)

for some constants a 6= 0 and b. Differentiating (7) twice with respect to s, we have
〈r(s), e′1(s)〉 = 0, therefore 〈r(s), e2(s)〉 = 0, which implies that r(s) is a rectifying isotropic curve.

Continuously, suppose that r(s) satisfies 〈r(s), e1(s)〉 = a. We can easily find that
〈r(s), e2(s)〉 = 0, thus r(s) is a rectifying isotropic curve. Finally, assume that r(s) satisfies
the following:

〈r(s), e3(s)〉 = s + b (8)

for some constant b. Taking the derivative on both sides of (8) with respect to s, we have
〈r(s), e′3(s)〉 = 0, thus κ〈r(s), e2(s)〉 = 0. Since κ 6= 0, then 〈r(s), e2(s)〉 = 0, which means
r(s) is a rectifying isotropic curve.

Next, we explore the expression forms of rectifying isotropic curves via the structure
function of isotropic curves.

Theorem 3. Let r(s) be a rectifying isotropic curve in C3. Then r(s) can be represented as follows:

r(s) =
i
2

∫
u2(s)

{
[c0(

∫ 1
u2(s)

ds)2 − 1
c0
], 2
∫ 1

u2(s)
ds,−i[c0(

∫ 1
u2(s)

ds)2 +
1
c0
]
}

ds,

where

u(s) =
√

s

[
(C1 +

√
3

3
C2)

∞

∑
m=0

(−1)m

m!Γ(m + 4
3 )

(

√
2c
6

s
3
2 )2m+ 1

3−

2
√

3
3

C2

∞

∑
m=0

(−1)m

m!Γ(m + 2
3 )

(

√
2c
6

s
3
2 )2m− 1

3

]
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for some constants C1, C2, cc0 6= 0 and Gamma functions Γ(m + 4
3 ), Γ(m + 2

3 ).

Proof. Let r(s) be a rectifying isotropic curve. From Theorem 1, we have κ(s) = c1s + c2,
(0 6= c1, c2 ∈ C). Through appropriate transformation, we can let c2 = 0, c1 = −c 6= 0.
Then, by Proposition 3, we have the following differential equation:(

fss

fs

)
s
− 1

2

(
fss

fs

)2
= cs, (0 6= c ∈ C). (9)

Putting fss
fs

= g(s) and substituting it into (9), we obtain

g′(s) =
1
2

g2(s) + cs,

which is a Riccati equation. By taking the substitution u(s) = e−
∫ 1

2 g(s)ds, the Riccati
equation can be reduced to a second order linear equation, i.e., u′′(s) + c

2 su(s) = 0. Solving

it, there is u(s) =
√

s
[
C1 J 1

3
(
√

2c
3 s

3
2 ) + C2Y1

3
(
√

2c
3 s

3
2 )
]
, where J 1

3
(
√

2c
3 s

3
2 ) and Y1

3
(
√

2c
3 s

3
2 ) are

Bessel functions and C1, C2 are some constants. Hence, we have g(s) = − 2u′(s)
u(s) , that is,

the following:
fss

fs
= −2u′(s)

u(s)
, (10)

where u(s) =
√

s
[
C1 J 1

3
(
√

2c
3 s

3
2 ) + C2Y1

3
(
√

2c
3 s

3
2 )
]
, J 1

3
(
√

2c
3 s

3
2 ) and Y1

3
(
√

2c
3 s

3
2 ) are Bessel func-

tions and C1, C2 are some constants.
Integrating on both sides of (10) with respect to s, we obtain the following:

fs =
c0

u2(s)
, (c0 6= 0), (11)

substituting (11) into (3), we have the following

r(s) =
i
2

∫
u2(s)

{
[c0(

∫ 1
u2(s)

ds)2 − 1
c0
], 2
∫ 1

u2(s)
ds,−i[c0(

∫ 1
u2(s)

ds)2 +
1
c0
]
}

ds.

Moreover, the Bessel function of first kind can be expressed as follows [13]:

J 1
3
(

√
2c
3

s
3
2 ) =

∞

∑
m=0

(−1)m

m!Γ(m + 4
3 )

(

√
2c
6

s
3
2 )2m+ 1

3

and

J− 1
3
(

√
2c
3

s
3
2 ) =

∞

∑
m=0

(−1)m

m!Γ(m + 2
3 )

(

√
2c
6

s
3
2 )2m− 1

3 .

By the relationship between the Bessel function of first kind and the Bessel function of
second kind, there is the following:

Y1
3
(

√
2c
3

s
3
2 ) =

√
3

3
J 1

3
(

√
2c
3

s
3
2 )− 2

√
3

3
J− 1

3
(

√
2c
3

s
3
2 ),

i.e.,

Y1
3
(

√
2c
3

s
3
2 ) =

√
3

3

∞

∑
m=0

(−1)m

m!Γ(m + 4
3 )

(

√
2c
6

s
3
2 )2m+ 1

3 − 2
√

3
3

∞

∑
m=0

(−1)m

m!Γ(m + 2
3 )

(

√
2c
6

s
3
2 )2m− 1

3 .



Mathematics 2021, 9, 1451 6 of 12

Thus, u(s) can be rewritten as follows:

u(s) =
√

s

[
(C1 +

√
3

3
C2)

∞

∑
m=0

(−1)m

m!Γ(m + 4
3 )

(

√
2c
6

s
3
2 )2m+ 1

3−

2
√

3
3

C2

∞

∑
m=0

(−1)m

m!Γ(m + 2
3 )

(

√
2c
6

s
3
2 )2m− 1

3

]
,

where C1, C2, c 6= 0 are constants and Γ(m + 4
3 ), Γ(m + 2

3 ) are Gamma functions.

Theorem 4. Let r(s) be an isotropic curve in C3. Then, it is a rectifying curve if, and only if, it
can be represented as follows:

r(s) =
√

2asψ(s), (0 6= a ∈ C),

where ψ(s) satisfies the following:
〈ψ(s), ψ(s)〉 = 1,
〈ψ′(s), ψ′(s)〉 = − 1

4s2 ,
〈ψ′′(s), ψ′′(s)〉 = − 3

16s4 − 1
2as .

Proof. Let r(s) be a rectifying isotropic curve framed by {e1, e2, e3}. Based on (6), making
appropriate transformation with b = 0, r(s) can be expressed as follows:

r(s) = se1(s) + ae3(s).

Assuming that ψ(s) = r(s)√
2as

, then the following is true:

r(s) =
√

2asψ(s). (12)

From now on, we study the properties of ψ(s). Firstly, by differentiating (12) with
respect to s, we have the following:

e1(s) =
a√
2as

ψ(s) +
√

2asψ′(s). (13)

Taking the scalar product on both sides of (13) with ψ(s), ψ′(s) and e1(s) respectively,
we obtain, after arrangement, the following:

〈ψ′(s), ψ′(s)〉 = − 1
4s2 . (14)

Furthermore, taking the derivative of (13) with respect to s, then taking the scalar
product with itself, we obtain the following:

−〈e2(s), e2(s)〉 =
a

(2s)3 〈ψ(s), ψ(s)〉 − a
s2 〈ψ(s), ψ′(s)〉 − a

s
〈ψ(s), ψ′′(s)〉+

2a
s
〈ψ′(s), ψ′(s)〉+ 4a〈ψ′(s), ψ′′(s)〉+ 2as〈ψ′′(s), ψ′′(s)〉,

which yields the following:

〈ψ′′(s), ψ′′(s)〉 = − 3
16s4 −

1
2as

. (15)
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Conversely, let r(s) be an isotropic curve in C3 with the form r(s) =
√

2asψ(s) for
a nonzero constant a, and a curve ψ(s) satisfies (14), (15) and 〈ψ(s), ψ(s)〉 = 1. Through
direct computations, we have the following:

r′(s) =
√

2as(
1
2s

ψ(s) + ψ′(s)). (16)

Differentiating (16) together with (14) and (15), we can obtain 〈r′′(s), r′′(s)〉 = −1,
i.e., s is the pseudo arc length parameter of r(s). Thus, r′(s) = e1(s) and 〈r(s), e1(s)〉 = a,
that is, the tangent component of the position vector of r(s) is a nonzero constant. From
Theorem 2, r(s) is a rectifying isotropic curve.

From Theorems 3 and 4, the following conclusion is straightforward.

Corollary 1. Let r(s) be a rectifying isotropic curve in C3 expressed as follows:

r(s) =
√

2asψ(s)

for nonzero constant a and analytic function ψ(s) such that the following is true:
〈ψ(s), ψ(s)〉 = 1,
〈ψ′(s), ψ′(s)〉 = − 1

4s2 ,
〈ψ′′(s), ψ′′(s)〉 = − 3

16s4 − 1
2as .

Then, ψ(s) can be represented by the following:

ψ(s) =
i√
8as

∫
u2(s)

{
[c0(

∫ 1
u2(s)

ds)2 − 1
c0
], 2
∫ 1

u2(s)
ds,−i[c0(

∫ 1
u2(s)

ds)2 +
1
c0
]
}

ds,

where

u(s) =
√

s

[
(C1 +

√
3

3
C2)

∞

∑
m=0

(−1)m

m!Γ(m + 4
3 )

(

√
2c
6

s
3
2 )2m+ 1

3−

2
√

3
3

C2

∞

∑
m=0

(−1)m

m!Γ(m + 2
3 )

(

√
2c
6

s
3
2 )2m− 1

3

]
,

C1, C2, cc0 6= 0 ∈ C, Γ(m + 4
3 ) and Γ(m + 2

3 ) are Gamma functions.

In the following, we reparameterize r(s) with a proper parameter t, such that dt
ds := i

2s , i.e.,
the following:

t =
i
2

ln s + c1

for some constant c1. Without loss of generality, we can let c1 = 0, then s = e−2it. By the
Euler formula, we have the following:

s = cos 2t− i sin 2t.

From Theorem 4, r(s) can be expressed by parameter t as follows:

r(t) =
√

2a(cos t− i sin t)ψ(t),

where 〈ψ(t), ψ(t)〉 = 1.
Furthermore, through direct calculations, we have the following:{

ψ′(s) = ψ′(t) dt
ds = i

2s ψ′(t),
ψ′′(s) = ψ′′(t)( dt

ds )
2 + ψ′(t) d2t

ds2 = −ψ′′(t)
4s2 −

iψ′(t)
2s2 .
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Since 〈ψ′(s), ψ′(s)〉 = − 1
4s2 , we know 〈ψ′(t), ψ′(t)〉 = 1. What is more, from 〈ψ′′(s),

ψ′′(s)〉 = − 3
16s4 − 1

2as , we have the following:

〈ψ′′(t), ψ′′(t)〉 = 1− 8
a

e−i6t = 1− 8
a
(cos 6t− i sin 6t).

Theorem 5. Let r(t) be an isotropic curve with proper parameter t in C3. Then, it is a rectifying
isotropic curve if, and only if, it can be represented as follows:

r(t) =
√

2a(cos t− i sin t)ψ(t), (0 6= a ∈ C),

where ψ(t) satisfies the following:{
〈ψ(t), ψ(t)〉 = 〈ψ′(t), ψ′(t)〉 = 1,
〈ψ′′(t), ψ′′(t)〉 = 1− 8

a (cos 6t− i sin 6t).

From Theorems 3 and 5, the following conclusion is straightforward.

Corollary 2. Let r(t) be a rectifying isotropic curve in C3 expressed as follows:

r(t) =
√

2a(cos t− i sin t)ψ(t)

for nonzero constant a and analytic function ψ(t) such that the following is true:{
〈ψ(t), ψ(t)〉 = 〈ψ′(t), ψ′(t)〉 = 1,
〈ψ′′(t), ψ′′(t)〉 = 1− 8

a (cos 6t− i sin 6t).

Then ψ(t) can be represented by the following:

ψ(t) =
eit
√

2a

∫ u2(t)
e2it

{
[−4c0(

∫ 1
e2itu2(t)

dt)2 − 1
c0
],−4i

∫ 1
e2itu2(t)

dt,

i[4c0(
∫ 1

e2itu2(t)
dt)2 − 1

c0
]
}

dt,

where

u(t) =e−it

[
(C1 +

√
3

3
C2)

∞

∑
m=0

(−1)m

m!Γ(m + 4
3 )

(

√
2c

6e3it )
2m+ 1

3−

2
√

3
3

C2

∞

∑
m=0

(−1)m

m!Γ(m + 2
3 )

(

√
2c

6e3it )
2m− 1

3

]
,

C1, C2, cc0 6= 0 ∈ C, Γ(m + 4
3 ) and Γ(m + 2

3 ) are Gamma functions.

4. The Centrodes of Rectifying Isotropic Curves

Suppose that r(s) is an isotropic curve framed by {e1(s), e2(s), e3(s)} with the pseudo
curvature κ(s). Then from Definition 2, the centrode D(s) of r(s) is as follows:

D(s) = κ(s)e1(s)− e3(s). (17)

Rearranging (2), (17) can be rewritten as follows:

D(s) = 2κ(s)e1(s) + ie′2(s). (18)
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Differentiating (3) three times with respect to s, we have the following:
r′ = e1,
r′′ = −ie2,
r′′′ = −ie′2.

Then by simple calculations and arrangements, we can make out the following:
e1 = i

2 f−1
s
(

f 2 − 1, 2 f ,−i( f 2 + 1)
)
,

e′2 = ( 1
2 f−2

s fsss − f−3
s f 2

ss)
(

f 2 − 1, 2 f ,−i( f 2 + 1)
)
+

f−1
s fss( f , 1,−i f )− ( fs, 0,−i fs).

(19)

Substituting (4) and (19) into (18), we can rewrite D(s) with the structure function f
as the following conclusion.

Theorem 6. Let r(s) be an isotropic curve with the structure function f in C3 and D(s) its
centrode. Then, the centrode D(s) can be expressed as follows:

D(s) =
f 2
ss − fs fss

2 f 3
s

(
i( f 2 − 1), 2i f , f 2 + 1

)
+

fss

fs
(i f , i, f )− (i fs, 0, fs).

By differentiating (17) with respect to s, we have D′(s) = κ′(s)e1(s) and 〈D′(s),
D′(s)〉 = 0. Hence, we have Theorem 7.

Theorem 7. The centrode of an isotropic curve is an isotropic curve.

Assume that the centrode D(s) is reparameterized by the pseudo arc-length sD =
sD(s) and framed by {eD

1 , eD
2 , eD

3 }. Differentiating (17) twice with respect to s, we have
the following: {

eD
1

dsD

ds = κ′e1,
−ieD

2 ( dsD

ds )2 + eD
1

d2sD

ds2 = κ′′e1 − iκ′e2.
(20)

Taking the scalar product on both sides of the second equation in (20) with itself,
we have the following:

dsD

ds
=
√

κ′, (21)

from which κ is non-constant and (20) can be rewritten as follows:{
eD

1 =
√

κ′e1(s),
eD

2 = iκ′′
2κ′ e1 + e2.

(22)

Differentiating the second equation in (22) with respect to s, we easily obtain the following:

(κDeD
1 + eD

3 )
dsD

ds
= [

1
2
(

κ′′

κ′
)′ + κ]e1 −

iκ′′

2κ′
e2 + e3, (23)

where κD is the pseudo curvature of the centrode D(s). Taking the scalar product on both
sides of (23) with itself, then substituting (21) into it, we have the following:

κD =
κ

κ′
+

1
2κ′

(
κ′′

κ′
)′ − 1

8κ′
(

κ′′

κ′
)2. (24)

Substituting (21), (22) and (24) into (23), we have the following:

eD
3 =

1

8
√

κ′
(

κ′′

κ′
)2e1 −

iκ′′

2(κ′)
3
2

e2 +
1√
κ′

e3.
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From the deduction process above, we can get the following conclusions.

Theorem 8. Let r(s) be an isotropic curve with the pseudo curvature κ framed by {e1, e2, e3} in
C3, D(s) its centrode framed by {eD

1 , eD
2 , eD

3 }. Then, they satisfy the following: eD
1

eD
2

eD
3

 =

 (κ′)
1
2 0 0

i(2κ′)−1κ′′ 1 0
1
8 (κ
′)−

5
2 (κ′′)2 − i

2 (κ
′)−

3
2 κ′′ (κ′)−

1
2


 e1

e2
e3

.

Theorem 9. Let r(s) be an isotropic curve with the pseudo curvature κ in C3, D(s) its centrode
with the pseudo curvature κD. Then, they satisfy the following:

κD =
κ

κ′
+

1
2κ′

(
κ′′

κ′
)′ − 1

8κ′
(

κ′′

κ′
)2.

From now on, the centrode of a rectifying isotropic curve is discussed. Suppose that
r(s) is a rectifying isotropic curve with the pseudo curvature κ and the structure function f ,
D(s) is the centrode of r(s) with the pseudo curvature κD and the structure function f D.

From Theorem 1, we have κ(s) = c1s + c2, (0 6= c1, c2 ∈ C). Through appropriate
transformation, we can let c2 = 0, i.e., κ(s) = c1s, (0 6= c1 ∈ C). Substituting it into (24),
we obtain the following:

κD = s. (25)

Taking (4) into consideration together with (25), we have the following:

1
2

(
f D
sDsD

f D
sD

)2

−
(

f D
sDsD

f D
sD

)
sD

= s. (26)

Putting
f D
sDsD

f D
sD

= gD(s) and substituting it into (26), we obtain the following:

(gD)′ =

(
1
2
(gD)2 − s

)
dsD

ds
. (27)

Substituting (21) into (27), we have

(gD)′ =

√
c1

2
(gD)2 −

√
c1s, (0 6= c1 ∈ C)

which is a Riccati equation. Solving this Riccati equation, we obtain the following:

gD = − 2u′(s)√
c1u(s)

,

whence we have the following:

(ln f D
sD )
′ = −2u′(s)

u(s)
, (28)

where u(s) =
√

s
[
C1 J 1

3
(
√

2c1
3 s

3
2 i) + C2Y1

3
(
√

2c1
3 s

3
2 i)
]
, J 1

3
(
√

2c1
3 s

3
2 i) and Y1

3
(
√

2c1
3 s

3
2 i) are Bessel

functions and 0 6= c1, C1, C2 ∈ C.
Integrating on both sides of (28) with respect to s, we obtain the following:

f D
sD =

c0

u2(s)
, (0 6= c0 ∈ C). (29)
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On the other hand, from Proposition 2, D(sD) can be expressed as follows:

D(sD) =
i
2

∫
( f D

sD )
−1(( f D)2 − 1, 2 f D,−i(( f D)2 + 1)

)
dsD. (30)

Substituting (21) and (29) into (30), we have the following:

D(s) =
i

2
√

c1

∫
u2(s)

{
[c0(

∫ 1
u2(s)

ds)2 − 1
c0
], 2
∫ 1

u2(s)
ds,−i[c0(

∫ 1
u2(s)

ds)2 +
1
c0
]
}

ds.

Moreover, the Bessel function of first kind can be expressed as follows:

J 1
3
(

√
2c1

3
s

3
2 i) =

∞

∑
m=0

(−1)m

m!Γ(m + 4
3 )

(

√
2c1

6
s

3
2 i)2m+ 1

3

and

J− 1
3
(

√
2c1

3
s

3
2 i) =

∞

∑
m=0

(−1)m

m!Γ(m + 2
3 )

(

√
2c1

6
s

3
2 i)2m− 1

3 .

By the relationship between the Bessel function of the first kind and the Bessel function
of the second kind, there is the following:

Y1
3
(

√
2c1

3
s

3
2 i) =

√
3

3
J 1

3
(

√
2c1

3
s

3
2 i)− 2

√
3

3
J− 1

3
(

√
2c1

3
s

3
2 i),

i.e.,

Y1
3
(

√
2c1

3
s

3
2 i) =

√
3

3

∞

∑
m=0

(−1)m

m!Γ(m + 4
3 )

(

√
2c1

6
s

3
2 i)2m+ 1

3−

2
√

3
3

∞

∑
m=0

(−1)m

m!Γ(m + 2
3 )

(

√
2c1

6
s

3
2 i)2m− 1

3 .

Thus, u(s) can be rewritten as follows:

u(s) =
√

s

[
(C1 +

√
3

3
C2)

∞

∑
m=0

(−1)m

m!Γ(m + 4
3 )

(

√
2c1

6
s

3
2 i)2m+ 1

3−

2
√

3
3

C2

∞

∑
m=0

(−1)m

m!Γ(m + 2
3 )

(

√
2c1

6
s

3
2 i)2m− 1

3

]
,

where C1, C2, c1 6= 0 are some constants and Γ(m + 4
3 ), Γ(m + 2

3 ) are Gamma functions.

Theorem 10. Let r(s) be a rectifying isotropic curve in C3 and D(s) its centrode. Then, the
centrode D(s) can be written as follows:

D(s) =
i

2
√

c1

∫
u2(s)

{
[c0(

∫ 1
u2(s)

ds)2 − 1
c0
], 2
∫ 1

u2(s)
ds,−i[c0(

∫ 1
u2(s)

ds)2 +
1
c0
]
}

ds,

where

u(s) =
√

s

[
(C1 +

√
3

3
C2)

∞

∑
m=0

(−1)m

m!Γ(m + 4
3 )

(

√
2c1

6
s

3
2 i)2m+ 1

3−

2
√

3
3

C2

∞

∑
m=0

(−1)m

m!Γ(m + 2
3 )

(

√
2c1

6
s

3
2 i)2m− 1

3

]

for some constants C1, C2, c0c1 6= 0 and Gamma functions Γ(m + 4
3 ), Γ(m + 2

3 ).
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