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Abstract: Along with the rapid development of the geographic information system, high-dimensional
spatial heterogeneous data has emerged bringing theoretical and computational challenges to sta-
tistical modeling and analysis. As a result, effective dimensionality reduction and spatial effect
recognition has become very important. This paper focuses on variable selection in the spatial
autoregressive model with autoregressive disturbances (SARAR) which contains a more comprehen-
sive spatial effect. The variable selection procedure is presented by using the so-called penalized
quasi-likelihood approach. Under suitable regular conditions, we obtain the rate of convergence
and the asymptotic normality of the estimators. The theoretical results ensure that the proposed
method can effectively identify spatial effects of dependent variables, find spatial heterogeneity
in error terms, reduce the dimension, and estimate unknown parameters simultaneously. Based
on step-by-step transformation, a feasible iterative algorithm is developed to realize spatial effect
identification, variable selection, and parameter estimation. In the setting of finite samples, Monte
Carlo studies and real data analysis demonstrate that the proposed penalized method performs well
and is consistent with the theoretical results.

Keywords: spatial; variable selection; SCAD; penalized method

1. Introduction

Spatial econometric models are mainly used to deal with spatial dependent data in
applications. Spatial dependence across sectional units may concern a spatial autocorrela-
tion in a dependent variable or disturbance term. The first form of dependence is usually
defined by a spatial autoregressive (SAR) model and another by a spatial error model
(SEM). In fact, both spatial dependencies may be reflected in a spatial autoregressive model
with autoregressive disturbances (SARAR). These models were first introduced by Cliff
and Ord [1], which have aroused wide concern, see, e.g., the research by Kelejian and
Prucha [2], Lee [3], Arraiz et al. [4], and the books by Anselin [5] and Cressie [6].

In practice, explanatory variables are needed to be chosen from a number of variables
during the initial data analysis. How to select significant variables to keep in the final model
becomes very important for further analysis. Therefore, variable selection has received
increasing attention in statistical modeling and inference. However, the study of variable
selection in spatial econometric models is not as sufficient as that in classical linear models
due to the complexity caused by spatial dependence. The main goal of our analysis is to fill
some gaps in this area to a certain degree. We mainly focus on a variable selection method
for the SARAR model based on a penalized quasi-likelihood method and investigate its
oracle property. Furthermore, a feasible algorithm is given for realizing these procedures.

The methods of variable selection for classical linear models have been developed
rapidly since the Akaike information criterion (AIC) was proposed by Akaike [7]. Then,
similar methods based on the information criterion have progressed remarkably, such as the
Bayesian information criterion (BIC) [8], risk inflation criterion (RIC) [9], etc. Using these
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criteria, the best subset selection became the standard method to select covariants for a long
time. Although they are practically useful, the common drawback is the lack of stability
and incorporating stochastic errors from each stage of variable selection as noted by Liang
and Li [10]. Moreover, it may require a comparison of all possible submodels. This is a
combinational problem with NP-complexity [11]. In order to overcome these drawbacks,
penalized methods of variable selection have been proposed in recent years, including
least absolute shrinkage and selection operator (LASSO) [12], smoothly clipped absolute
deviation (SCAD) penalty [13], elastic-net (ENet) [14], adaptive LASSO [15], minimax
concave penalty (MCP) [16], and so on. These methods can select significant variables
and estimate unknown parameters simultaneously. Fan and Li [13] established the oracle
property in the sense that the penalized estimator behaves the same as the ordinary least
squares estimator as we know the true linear model, which can be used to assess the
efficiency of the penalized estimator. In the Bayesian framework, some developments
include Mitchell and Beauchamp [17], Raftery et al. [18], Jiang [19], etc. Other related
methods can be found in Chen et al. [20] and Steel [21].

Along with the rapid development of the geographic information system (GIS), vari-
able selection for the spatial econometric models has become a new concern in the last
10 years or so. Based on the Bayesian idea, LeSage and Parent [22] developed the Bayesian
model averaging (BMA) technique for the SAR model and SEM. Some extension works
include LeSage and Fischer [23] and Cuaresma et al. [24,25]. In order to avoid the complex
calculation of marginal likelihoods in BMA, Piribauer [26] used stochastic search variable
selection (SSVS) prior to deal with the identification of the SAR model. Generally, it is
challenging to extend the penalized methods to data that are dependent either over time or
across space, as variable selection involves not only regression coefficients but also auto-
correlation coefficients [27]. In recent years, Liu et al. [28] gave an efficient variable selection
procedure for the SAR model and obtained the large sample properties by a penalized
quasi-likelihood method. Using SCAD penalty and instrumental variable, Xie et al. [29]
considered variable selection in the SAR model with a diverging number of parameters.
They showed that the SCAD penalty in the SAR model for variable selection also has a nice
oracle property as in the classical linear model.

High dimensional spatial data may lead to complex and multiple spatial dependencies.
However, the existing methods are constrained by dimension and spatial heterogeneity,
which brings great challenges to the application of traditional spatial econometric models.
Although the technology of dimension reduction by eliminating redundant information
through variable selection in classical linear models is being gradually developed and
the research on variable selection in spatial lag models has been completed, it is still
difficult to effectively solve the problem of variable selection with spatial heterogeneity in
error terms. The SARAR model has both a dependent variable spatial effect and spatial
error term, it can reflect spatial effect information and describe spatial heterogeneity
relatively comprehensively. Moreover, once the spatial effect of error is ignored, it will
lead to model recognition errors, reduce the estimation error and prediction accuracy,
and bring concerns to the application research. In light of the above considerations and the
excellent performance of penalized methods, we studied the variable selection of spatial
cross-section data based on the SARAR model. The main contributions are as follows:
(1) For high-dimensional spatial heterogeneous data, a penalty quasi-likelihood method
is proposed to solve the problem of dimensionality reduction of explanatory variables
and the identification of two kinds of spatial effects. (2) Using the idea of step-by-step
transformation, a new iterative numerical algorithm is proposed to avoid the influence of
spatial heterogeneity. (3) Simulation and case analysis will help practitioners in related
fields to use reasonably. (4) The proposed method can provide a useful reference for the
study of variable selection in semi-parametric and nonparametric spatial regression models.

The remainder of this paper is as follows. Section 2 presents a penalized quasi-
likelihood method in the SARAR model. Section 3 introduces a feasible algorithm to
complete a variable selection procedure. Section 4 provides a Monte Carlo study to
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investigate the finite sample performance. Section 5 illustrates the proposed method
through an application of the Boston housing data. Summary and discussion is stated in
Section 6. Appendixes A and B contain some assumptions and proofs of theorems.

2. Model and Variable Selection
2.1. The SARAR Model

The SARAR model can be specified as:

Yn = ρ1W1nYn + Xnβ + Un,

Un = ρ2W2nUn + En, (1)

where Yn denotes an n× 1 vector of observations on the dependent variable, Xn is an n× k
matrix of observations on k exogenous explanatory variables, W1n and W2n are known n× n
spatial weight matrices, β is a k-dimensional parameter vector of regression coefficients,
ρ1 and ρ2 are scalar spatial autoregressive coefficients with |ρ1| < 1 and |ρ2| < 1, Un is an
n× 1 vector of regression disturbances, both W1nYn and W2nUn are the spatial lag term
and spatial error lag term respectively, and En = (e1, · · · , en)

T is an n-dimensional vector
of i.i.d. innovations with zero mean and finite variance σ2. Note that this model is also
known as the Cliff–Ord model or the SARAR(1,1) model. The SAR model and SEM are
corresponding to ρ2 = 0 and ρ1 = 0, respectively.

Let θ0 =
(
σ2

0 , ρ10, ρ20, βT
0
)T

= (θ1,0, θ2,0, · · · , θk+3,0)
T be the true value of θ, and

θ =
(
σ2, ρ1, ρ2, βT)T

= (θ1, θ2, · · · , θk+3)
T. Denote S1n(ρ1) = In − ρ1W1n, S2n(ρ2) =

In − ρ2W2n, En(γ) = S2n(ρ2)(S1n(ρ1)Yn − Xnβ), where γ =
(
ρ1, ρ2, βT)T. According to

the idea of quasi-maximum likelihood estimation [3], we can write the log-quasi-likelihood
function of the model (1) as

ln Ln(θ) = −
n
2

ln(2π)− n
2

ln σ2 + ln|S1n(ρ1)|+ ln|S2n(ρ2)| −
1

2σ2 ET
n(γ)En(γ), (2)

where Ln(θ) is the quasi-likelihood function of the model (1).

2.2. Penalized Method

The spatial econometric research has shown that it is inappropriate to use the the
ordinary least squares estimation (OLS) method directly for SAR models. In the case of the
SARAR model, the OLS estimators of the spatial autoregressive coefficients are biased and
inconsistent. Therefore, the penalized least squared method can not be directly used for
variable selection in this model. Considering a good performance of the quasi-maximum
likelihood estimation in the SARAR model, the penalized quasi-likelihood method deserves
priority. We start with a penalized quasi-likelihood function for the model (1) defined as:

J(θ) = −ln Ln(θ) + n
k+3

∑
j=2

pλj

(∣∣θj
∣∣), (3)

where pλ(·) is the SCAD penalty function defined by Fan and Li [13] as:

p′λ(ϑ) = λ

{
I(ϑ ≤ λ) +

(aλ− ϑ)+
(a− 1)λ

I(ϑ > λ)

}
for ϑ > 0 and some a > 2.

For comparison, we also introduce the following two popular penalty functions.

1. HARD thresholding penalty function:

pλ(|ϑ|) = λ2 − (|ϑ| − λ)2I(|ϑ| < λ).



Mathematics 2021, 9, 1448 4 of 20

2. L1 penalty function:
pλ(|ϑ|) = λ|ϑ|.

In fact, the L1 penalty function corresponds to the LASSO [12]. The AIC and BIC
correspond to the penalty functions pλ(ϑ) = n−1I(ϑ 6= 0) and pλ(ϑ) = n−1 log(n)I(ϑ 6= 0)
respectively because ∑

j
I(ϑj 6= 0) gives the size of the selected submodel.

In the classical linear models, Fan and Li [13] proposed that a perfect variable selection
method should possess the following three properties:

(1) Unbiasedness: The resulting estimator is nearly unbiased when the true unknown
parameter is large to avoid unnecessary modeling bias;

(2) Sparsity: The resulting estimator automatically sets small estimated coefficients to
zero to reduce model complexity;

(3) Continuity: The resulting estimator is continuous in data to avoid instability in the
model prediction.

Under some regular conditions, they showed that variable selection via the SCAD
penalty function possesses above properties, but the other penalty functions proposed
above may not satisfy the three properties simultaneously. Related references can be seen
in Fan and Li [13], and Wang and Zhu [30] for more information.

2.3. Main Results

Note that it may be chaotic in the arrangement of the original non-zero elements of
θ0. Re-labeling θ0 can put the non-zero elements in the front together and separate them
from the zero elements, which is convenient for the concise expression of the theorems and
proofs. Therefore, denote θ0 =

(
θT

10, θT
20
)T, where we assume that θ10 is a vector containing

s nonzero elements and θ20 = 0 is a (k + 3− s)-dimensional zero vector. θ̂ =
(
θ̂T

1 , θ̂T
2
)T

is the penalized quasi-likelihood estimator of θ. The theorems stated below give some
satisfactory properties of a large sample.

Theorem 1. Suppose that
√

nan = o(1), bn = o(1), and the assumptions in Appendix A hold.
Then there is a local minimizer θ̂ of J(θ) such that:∥∥θ̂− θ0

∥∥ = Op

(
n−1/2

)
,

where an = max2≤j≤s

{
p′λjn

(∣∣θj,0
∣∣)}, bn = max2≤j≤s

{∣∣∣p′′λjn

(∣∣θj,0
∣∣)∣∣∣}.

For the SCAD penalty function, the p′′λjn
(·) exists at any non-zero point by choosing

a proper λjn. Theorem 1 shows that there is a local minimizer of J(θ) which is a
√

n
consistent penalized quasi-likelihood estimator by choosing appropriate regularization
parameter λjn.

Theorem 2. Suppose that the assumptions in Appendix A hold, lim
n→∞

λjn = 0, lim
n→∞

√
nλjn = ∞,

pλjn(|δ|) satisfies lim inf
n→∞

lim inf
δ→0+

p′λjn
(δ)/λjn > 0. Then with probability approaching one, the

√
n

consistent local minimizer θ̂ =
(
θ̂T

1 , θ̂T
2
)T in Theorem 1 must satisfy:

(i) Sparsity: θ̂2 = 0;
(ii) Asymptotic normality:

√
n
{
(Σn1(θ10) + Λ)

(
θ̂1 − θ10

)
+ d

} d→ N{0, Σ1(θ10) + Ω1(θ10)},

where Σn1(θ10), Σ1(θ10), and Ω1(θ10) denote the first s upper-left submatrix of Σn(θ0),
Σ(θ0) = lim

n→∞
Σn(θ0), and Ω(θ0) = lim

n→∞
Ωn(θ0) respectively, and Σn(θ0), Ωn(θ0) are

denoted in notations.
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Theorem 2 shows that the proposed method can identify the SAR model (ρ1 6= 0, ρ2 = 0),
SEM (ρ1 = 0, ρ2 6= 0), SARAR model (ρ1 6= 0, ρ2 6= 0), select explanatory variables and
estimate unknown parameters simultaneously. Similar to the analysis of Fan and Li [13],
if λjn → 0 as n→ ∞, then an → 0 for both SCAD and HARD thresholding penalty functions.
Moreover, we obtain that Λ→ 0 and d→ 0 as n→ ∞. Thus, under regular conditions, the
responding oracle property of the penalized quasi-likelihood estimators can be obtained.
That is, the penalized quasi-likelihood estimators perform asymptotically as well as the
ordinary quasi-likelihood estimators for nonzero parameters when knowing the correct
submodel. However, for the LASSO penalty function, some conditions in Theorem 2 can
not be satisfied.

3. Algorithm Design and Implementation

In this section, we consider the implementation of the proposed procedures. Since the
penalized quasi-likelihood function J(θ) is nonconcave, it is challenging to get the global
optimum solution. The study by Liu et al. [28] proposed: The existing algorithms, such as
local quadratic approximation (LQA) algorithm [13] and local linear approximation (LLA)
algorithm [31], can not be used directly to the SAR model. Similarly, those algorithms also
do not give the correct minimizer of J(θ) for the SARAR model. Hence, we design the
following iterative algorithm.

Initialization:
θ(0) =

(
σ(0), ρ

(0)
1 , ρ

(0)
2 , β(0)

)
. (4)

Iteration:

Find β(p+1) by arg min
β∈Rk

{
l1(β) = J

(
σ(p), ρ

(p)
1 , ρ

(p)
2 , β

)}
, (5)

Find
(

ρ
(p+1)
1 , ρ

(p+1)
2

)
by arg min

ρ1,ρ2∈(−1,1)

{
l2(ρ1, ρ2) = J

(
σ(p), ρ1, ρ2, β(p+1)

)}
, (6)

Find σ(p+1) by arg min
σ∈(0,∞)

{
l3(σ) = J

(
σ, ρ

(p+1)
1 , ρ

(p+1)
2 , β(p+1)

)}
. (7)

Iterate (5) to (7) until the successive value satisfies ||θ̂(q+1) − θ̂(q)|| < ε, where

θ̂(q) =
(

σ̂(q), ρ̂
(q)
1 , ρ̂

(q)
2 , β̂(q)T

)T
and ε is a given tolerance value. In the following sim-

ulation, we let ε be 10−4. Denote the final estimate of
(
σ2, ρ1, ρ2, β

)
as
(

σ̂2, ρ̂1, ρ̂2, β̂
)

,

then θ̂ =
(

σ̂2, ρ̂1, ρ̂2, β̂T
)T

.
In (4), the initial value of θ is the quasi-maximum likelihood estimate based on the

log-quasi-likelihood function of the model (1). In (5), we note that if both autoregressive
coefficients ρ1 and ρ1 are known in the SARAR model (1), then we can transform it as the
following linear model Y∗n = X∗n β + En, where Y∗n = S2n(ρ2)S1n(ρ1)Yn, X∗n = S2n(ρ2)Xn.
Therefore, the LQA algorithm can be used to complete this step as in the classical linear
models. In (6), the optimization problem of bivariate functions can be solved by the
Nelder–Mead method [32]. In (7), by using the partial derivative, the unique minimum
point is:

σ(p+1) =
1
n

ET
n

(
γ(p+1)

)
En

(
γ(p+1)

)
,

where γ(p+1) =
(

ρ
(p+1)
1 , ρ

(p+1)
2 , β(p+1)T)T

. Figure 1 presents a flowchart of the
proposed algorithm.

To implement the above algorithm, the tuning parameters need to be chosen. For the
SCAD penalty function, we set a = 3.7 as recommended by Fan and Li [13]. Moreover,
it is desirable to select a proper data-driven method to estimate all tuning parameters
λ2, · · · , λk+3. Wang et al. [33] proved that the optimal tuning parameter in the SCAD
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penalty can be determined by BIC for the linear regression models. Thus, we can select
λ = (λ2, · · · , λk+3)

T by the following Bayesian information criterion:

BIC(λ) = −2ln Ln
(
θ̂
)
+ α(λ) log n,

where α(λ) =
k+3
∑

j=1
I
(
θ̂j 6= 0

)
. Then λ is set to be λ̂ = arg minλ{BIC(λ)}.

In fact, minimizing the BIC over a k + 2-dimensional space is an unduly onerous task
for a large k. To save computation time, one may use the same tuning parameter for all
penalty functions. However, the experiments, though not given for saving space, show
that the spatial regression coefficient ρ2 is easy to compress to 0 even if the sample size
is medium. Intuitively, we should use different tuning parameters for spatial regression
coefficients ρj (j = 1, 2) and regression coefficients β j (j = 1, · · · , k) because the range of ρj
(j = 1, 2) are known before estimation, but the range of β j (j = 1, · · · , k) are not. Thus, we
set λ2 = λ3, and λ4 = · · · = λk+3 to optimize the results. It should be pointed out that we
can prove the consistency of the BIC criterion under more stringent conditions, such as the
bounded derivative of the quasi-likelihood function and α(λ). However, it is very difficult
to prove the consistency under some mild conditions and will be left for further study.

Figure 1. The algorithm flowchart.

4. Numerical Simulation

In this section, we conduct some Monte Carlo experiments to evaluate the finite
sample performance of the proposed variable selection method in the SARAR model
using R codes.
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4.1. Simulation Sampling

The sample data is generated by model (1). We consider eight explanatory vari-
ables following an 8-dimensional normal distribution with zero mean and covariance
matrix

(
σij
)
, where σij = 0.5|i−j|. The spatial autoregressive coefficients are set to be

(ρ1, ρ2) = (0.7, 0.7), (0.7, 0.3), (0.7, 0), (0, 0.7), and (0, 0). For simplicity, let
W1n = W2n = IR ⊗ Bm, where Bm = (1/(m− 1))

(
lmlT

m − Im
)
, ⊗ is the Kronecker prod-

uct, and lm is an m-dimensional column vector of ones [3,34], which is called the Case
spatial weight matrix. To observe the influence of different spatial weight matrices, the Rook
spatial weight matrix is introduced, in which wij is set to be 1 when the regions share a
common boundary and set to be 0 for other cases. For the Case spatial weight matrix, we take
m = 3 and different values of R, where R = 10, 20, 60, then corresponding sample sizes are
n = 30, 60, 180. For the Rook spatial weight matrix, we use the grid square area to generate it
according to whether the edges are adjacent. To ensure that the region is square, the value of n
is the square of the integer value and n = 36, 64, 196. The regression coefficients are assumed
to be β = (3, 2, 0, 0, 1, 0, 0, 0)T. The innovation ei follows a normal distribution with mean 0
and variance σ2 = 1, 1.5.

4.2. Simulation Results

For each case, we do 100 repetitions. The average number of zero coefficients which
are correctly identified is denoted as “C”. The label “I” indicates the average number of
non-zero coefficients incorrectly shrunk to zero. To measure the estimation accuracy of θ,
we compare the estimation accuracy using the medians of squared error (SE) as in Liang
and Li [10], which is defined as:

SE =
∥∥θ̂n − θ0

∥∥2
=

k+3

∑
i=1

(
θ̂i − θi,0

)2
,

where θ̂n =
(
θ̂1, θ̂2, · · · , θ̂k+3

)T
is the estimate of θ0. In Tables 1–3, Oracle implies the

results of variable selection knowing zero parameters. Moreover, other penalty functions,
such as HARD and LASSO, are introduced in the penalized quasi-likelihood function
for comparison.

Tables 1–3 clearly show that there are similar performances for variable selection
under both different spatial weight matrices. In other words, the proposed method is not
sensitive to the change of the spatial weight matrix. As we expected, all penalty functions
can reduce their mSE (the median of SE) and give close results of Oracle with the increase of
sample size. In most cases, the SCAD penalty produces the lowest mSE, the HARD penalty
has a little bigger than the SCAD penalty, and the LASSO penalty produces the largest
mSE. Moreover, if there are spatial effects for both the spatial lag term and the spatial error
lag term (ρ1 6= 0 and ρ2 6= 0), the mSE is often relatively large; if only one of the spatial
lag term and the spatial error lag term is related to the spatial effect (ρ1 6= 0, ρ2 = 0, and
ρ1 = 0, ρ2 6= 0), the value of the mSE is usually smaller, especially when there is no spatial
effect (ρ1 = 0 and ρ2 = 0). However, like most of the existing results of variable selection,
the mSE will be less accurate in all cases if the variance σ2 of the innovation becomes
large. In terms of C and I, we can see that the average number of correctly identifying
zero-valued coefficients approaches the true value and the average number of incorrectly
identifying zero-valued coefficients approaches 0 as the sample size n increases. These
simulation results accord with the theoretical analysis. The SCAD and HARD penalties
have good performance about C, there is little difference between them in most cases.
They can converge rapidly to the real number of 0 except a LASSO penalty with a low
convergence rate, which may imply that both SCAD and HARD tend to give smaller
models than LASSO. In the case of small samples, the LASSO penalty has the lowest value
of the I in most cases. However, their differences quickly disappear in large samples for all
penalties. These results are similar to those obtained by Fan and Li [13]. It is worth noting
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that when ρ2 is small, it is easy to compress to 0, and then produce a larger error rate I in
the setting of small samples.

Table 1. Simulation results of variable selection with Case spatial weight matrix.

σ2 = 1 n = 30 n = 60 n = 180

Method C I mSE C I mSE C I mSE

ρ1 = 0.7
ρ2 = 0.7
SCAD 3.8300 0.1100 0.4329 4.6000 0.0100 0.0941 5.0000 0.0000 0.0272
Hard 4.2900 0.1100 0.4961 4.6200 0.0100 0.1048 4.9700 0.0000 0.0276

LASSO 2.7300 0.1600 0.7452 3.0400 0.0600 0.2209 3.4800 0.0000 0.0635
Oracle 5.0000 0.0000 0.0909 5.0000 0.0000 0.0300 5.0000 0.0000 0.0090

ρ1 = 0.7
ρ2 = 0.3
SCAD 3.8900 0.2500 0.4627 4.7300 0.0500 0.1218 5.0000 0.0000 0.0284
Hard 4.2800 0.2900 0.4861 4.6800 0.0700 0.1208 4.9100 0.0000 0.0332

LASSO 2.7800 0.3200 0.5947 3.3700 0.0600 0.1729 3.7800 0.0000 0.0546
Oracle 5.0000 0.0000 0.1111 5.0000 0.0000 0.0348 5.0000 0.0000 0.0100

ρ1 = 0.7
ρ2 = 0.0
SCAD 5.1500 0.0200 0.3423 5.7000 0.0000 0.0983 5.9600 0.0000 0.0273
Hard 5.4000 0.0200 0.4259 5.5700 0.0000 0.1088 5.9400 0.0000 0.0276

LASSO 4.1900 0.0100 0.4503 4.3800 0.0000 0.1585 4.6000 0.0000 0.0598
Oracle 6.0000 0.0000 0.0461 6.0000 0.0000 0.0175 6.0000 0.0000 0.0045

ρ1 = 0.0
ρ2 = 0.7
SCAD 5.1000 0.1600 0.4964 5.6800 0.0200 0.1268 5.9100 0.0000 0.0206
Hard 5.1500 0.1700 0.4975 5.7000 0.0300 0.1288 5.9300 0.0000 0.0271

LASSO 4.0000 0.1000 0.5633 4.1600 0.0100 0.1472 4.7300 0.0000 0.0487
Oracle 6.0000 0.0000 0.0761 6.0000 0.0000 0.0260 6.0000 0.0000 0.0071

ρ1 = 0.0
ρ2 = 0.0
SCAD 5.9800 0.0200 0.3283 6.4600 0.0000 0.0951 6.9200 0.0000 0.0264
Hard 6.3700 0.0200 0.3164 6.6300 0.0000 0.1010 6.9400 0.0000 0.0265

LASSO 4.8200 0.0000 0.4337 4.9600 0.0000 0.1572 5.2500 0.0000 0.0561
Oracle 7.0000 0.0000 0.0340 7.0000 0.0000 0.0163 7.0000 0.0000 0.0040

Table 4 shows the results of ignoring spatial effects by the LQA algorithm [13] under
the same context as in Table 1. In terms of I, when there are two spatial effects (ρ1 6= 0 and
ρ2 6= 0), the number of incorrect zero in Table 1 is much lower than those in Table 4. When
only one spatial effect exists (ρ1 6= 0, ρ2 = 0, or ρ1 = 0, ρ2 6= 0), the number of incorrect
zero in Table 4 decreases slightly compared to the first case and is also larger than that in
Table 1. When there is no spatial effect (ρ1 = 0 and ρ2 = 0), the results of our algorithm are
close to that of the LQA algorithm. Meanwhile, turning attention to the C, our algorithm
can identify more true zeros than the LQA algorithm as long as the spatial effect exists
(ρ1 6= 0). Although we are surprised to find that the value of C and I under the LQA
algorithm seem to be getting close to the correct values with slow speed as the sample size
increases for the SCAD and HARD penalties, the mSE reflected the estimation errors of
their parameters are large and outrageous. This is in line with our intuition: Ignoring both
spatial effects, the LQA algorithm is implemented on the wrong model and easily leads to a
large estimated deviation. Moreover, the LQA algorithm is affected by the initial estimation.
In simulation, the initial estimation is the quasi-maximum likelihood estimation, which is
equal to the least square estimation (including the observation value of dependent variable
Yn). If the strong spatial effect about ρ1 is ignored, the observation value of the dependent
variable will deviate from the requirement of unbiased estimation seriously, which will lead
to a great deviation of the initial estimation. With the influence of iteration, the accumulated
error of final estimation will be extraordinary. However, when the spatial effects disappear,
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we can see that both algorithms have similar good performances, which indicates that
no matter whether there are spatial effects, the proposed algorithm still has a satisfactory
performance in a finite sample.

Table 2. Simulation results of variable selection with the Case spatial weight matrix.

σ2 = 1.5 n = 30 n = 60 n = 180

Method C I mSE C I mSE C I mSE

ρ1 = 0.7
ρ2 = 0.7
SCAD 3.9500 0.1300 0.8425 4.7100 0.0200 0.1536 5.0000 0.0000 0.0461
HARD 4.3100 0.1300 0.8495 4.6200 0.0200 0.1666 4.9600 0.0000 0.0471
LASSO 2.9100 0.3400 1.6368 2.9900 0.1400 0.4662 3.5100 0.0000 0.1328
Oracle 5.0000 0.0000 0.1838 5.0000 0.0000 0.0548 5.0000 0.0000 0.0168

ρ1 = 0.7
ρ2 = 0.3
SCAD 4.0800 0.4000 0.8675 4.7300 0.0400 0.1829 5.0000 0.0000 0.0462
HARD 4.2200 0.3800 0.8529 4.7100 0.0800 0.1902 4.9000 0.0000 0.0536
LASSO 2.6700 0.2700 0.9862 3.2100 0.0700 0.2822 3.9700 0.0000 0.0987
Oracle 5.0000 0.0000 0.1709 5.0000 0.0000 0.0666 5.0000 0.0000 0.0188

ρ1 = 0.7
ρ2 = 0.0
SCAD 5.1700 0.0700 0.7204 5.6700 0.0200 0.1654 5.9700 0.0000 0.0462
HARD 5.2900 0.0900 0.8144 5.6000 0.0300 0.1816 5.9300 0.0000 0.0491
LASSO 4.1300 0.0200 0.7540 4.2700 0.0000 0.2520 4.7800 0.0000 0.1036
Oracle 6.0000 0.0000 0.1110 6.0000 0.0000 0.0394 6.0000 0.0000 0.0103

ρ1 = 0.0
ρ2 = 0.7
SCAD 4.9600 0.2000 0.7713 5.6900 0.0300 0.1865 5.9000 0.0000 0.0408
HARD 4.9900 0.2100 0.8786 5.6800 0.0400 0.1888 5.9200 0.0000 0.0460
LASSO 3.5500 0.0900 0.8639 4.1300 0.0100 0.2551 4.9900 0.0000 0.0862
Oracle 6.0000 0.0000 0.1497 6.0000 0.0000 0.0541 6.0000 0.0000 0.0140

ρ1 = 0.0
ρ2 = 0.0
SCAD 5.9700 0.0700 0.6812 6.5000 0.0200 0.1697 6.9100 0.0000 0.0446
HARD 6.3000 0.0700 0.6552 6.6100 0.0000 0.1714 6.9300 0.0000 0.0449
LASSO 4.8200 0.0200 0.6933 4.9200 0.0000 0.2337 5.5200 0.0000 0.1020
Oracle 7.0000 0.0000 0.0765 7.0000 0.0000 0.0367 7.0000 0.0000 0.0100

Considering the complexity of the asymptotic covariance matrix of θ, we use the
traditional bootstrap method in which the sample size of the resampled observations is
100 to obtain the standard deviations of parameter estimates. The parameter vector θ is
estimated by our algorithm. SD indicates the median absolute deviation of 100 estimated
coefficients in the 100 simulations, which can be regarded as an estimate of the true
standard deviation of θ. Using the bootstrap, we calculate a median of estimated standard
deviations, denoted as SDm, and estimate its standard deviation by median absolute
deviation, denoted as SDmad.

Table 5 provides the numerical simulation results of nonzero coefficients under
ρ1 = 0.7, ρ2 = 0.3, σ2 = 1, n = 30, and n = 60 with the Case spatial weight matrix.
The simulation results show that the bootstrap estimated standard deviation becomes
increasingly accurate when sample size n increases. In most cases, the SD, SDm, and
SDmad obtained by the SCAD and HARD penalties are smaller than that obtained by the
LASSO penalty, which shows that the LASSO penalty does not appear to be as stable as
the SCAD and HARD penalties. Furthermore, when the σ2 increases and is away from 1,
the estimation of the standard deviation will be less accurate although the results are not
presented. In one world, the LASSO penalty generally lags behind the SCAD and HARD
penalties concerning the accuracy of estimates. For saving space, the other cases, such as
ρ1 = 0.7, ρ2 = 0.7, or σ2 = 1.5, have similar results and are omitted.
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Table 3. Simulation results of variable selection with the Rook spatial weight matrix.

σ2 = 1 n = 36 n = 64 n = 196

Method C I mSE C I mSE C I mSE

ρ1 = 0.7
ρ2 = 0.7
SCAD 4.4300 0.1000 0.2802 4.6200 0.0000 0.1142 4.9900 0.0000 0.0290
HARD 4.5600 0.1200 0.2998 4.6200 0.0200 0.1316 4.9600 0.0000 0.0343
LASSO 3.2300 0.1000 0.4090 3.3500 0.0100 0.1982 3.8400 0.0000 0.0573
Oracle 5.0000 0.0000 0.2415 5.0000 0.0000 0.1121 5.0000 0.0000 0.0206

ρ1 = 0.7
ρ2 = 0.3
SCAD 4.3400 0.2400 0.2987 4.5500 0.1100 0.1290 4.9800 0.0000 0.0370
HARD 4.3900 0.2800 0.3229 4.5900 0.1500 0.1495 4.9600 0.0000 0.0375
LASSO 3.2800 0.2700 0.3923 3.2900 0.1200 0.1935 3.8600 0.0000 0.0591
Oracle 5.0000 0.0000 0.2584 5.0000 0.0000 0.1254 5.0000 0.0000 0.0368

ρ1 = 0.7
ρ2 = 0.0
SCAD 5.5100 0.0000 0.2082 5.6800 0.0000 0.0939 5.9800 0.0000 0.0264
HARD 5.5900 0.0000 0.2430 5.6700 0.0000 0.0959 5.9600 0.0000 0.0264
LASSO 4.3200 0.0000 0.3124 4.3500 0.0000 0.1748 4.8500 0.0000 0.0489
Oracle 6.0000 0.0000 0.0293 6.0000 0.0000 0.0173 6.0000 0.0000 0.0053

ρ1 = 0.0
ρ2 = 0.7
SCAD 5.1200 0.1100 0.3238 5.5200 0.0000 0.1168 5.9000 0.0000 0.0300
HARD 5.2000 0.1600 0.3712 5.5300 0.0100 0.1240 5.9200 0.0000 0.0307
LASSO 4.0100 0.1700 0.4305 4.3500 0.0200 0.1922 4.7100 0.0000 0.0717
Oracle 6.0000 0.0000 0.0616 6.0000 0.0000 0.0396 6.0000 0.0000 0.0121

ρ1 = 0.0
ρ2 = 0.0
SCAD 6.1900 0.0000 0.1688 6.5600 0.0000 0.0955 6.9300 0.0000 0.0242
HARD 6.5300 0.0100 0.1852 6.5600 0.0000 0.1106 6.8800 0.0000 0.0259
LASSO 5.0700 0.0000 0.3146 5.2900 0.0000 0.1681 5.7100 0.0000 0.0435
Oracle 7.0000 0.0000 0.0226 7.0000 0.0000 0.0140 7.0000 0.0000 0.0044

Table 4. Simulation results of variable selection when we ignore spatial effects.

σ2 = 1 n = 30 n = 60 n = 180

Method C I mSE C I mSE C I mSE

ρ1 = 0.7
ρ2 = 0.7
SCAD 4.1500 1.1900 2894.0 4.5000 0.9900 4159.8 4.7800 0.4500 5025.6
HARD 1.9300 0.3700 2153.9 2.7700 0.4200 3697.3 4.1700 0.2300 4870.4
LASSO 0.2500 0.1500 2110.4 0.0000 0.0000 3449.5 0.0000 0.0000 4762.6
ρ1 = 0.7
ρ2 = 0.3
SCAD 4.2300 0.5700 73.698 4.4700 0.3400 105.62 4.7800 0.0400 122.92
HARD 3.9200 0.4300 70.815 4.3700 0.3400 101.09 4.7400 0.0500 122.92
LASSO 1.7600 0.2100 79.049 0.4900 0.1100 99.844 0.0000 0.0000 117.50
ρ1 = 0.7
ρ2 = 0.0
SCAD 4.2600 0.4400 39.324 4.5500 0.1900 51.2130 4.7700 0.0100 52.666
HARD 4.0500 0.4100 37.080 4.5400 0.2000 50.641 4.8600 0.0100 52.667
LASSO 1.9700 0.1900 40.984 1.1200 0.0600 48.713 0.0000 0.0000 49.750
ρ1 = 0.0
ρ2 = 0.7
SCAD 3.9200 0.1000 0.7908 4.6600 0.0000 0.5977 4.8600 0.0000 0.5517
HARD 4.3100 0.0700 0.8395 4.7200 0.0000 0.6243 4.8900 0.0000 0.5618
LASSO 2.4900 0.0200 0.7809 2.8300 0.0000 0.7512 3.1800 0.0000 0.6659
ρ1 = 0.0
ρ2 = 0.0
SCAD 3.5500 0.0200 0.3353 4.6600 0.0000 0.1115 4.9900 0.0000 0.0260
HARD 4.1400 0.0200 0.4382 4.6600 0.0000 0.1125 4.9000 0.0000 0.0276
LASSO 2.4900 0.0000 0.4980 2.8600 0.0000 0.1672 3.3100 0.0000 0.0533



Mathematics 2021, 9, 1448 11 of 20

Table 5. Standard deviations of estimates of the nonzero regression coefficients.

Method
n = 30 n = 60

SD SDm SDmad SD SDm SDmad

SCAD
σ2 0.2006 0.1634 0.0325 0.1091 0.1282 0.0154
ρ1 0.0226 0.0227 0.0032 0.0169 0.0131 0.0012
ρ2 0.1106 0.1851 0.0236 0.0565 0.0895 0.0078
β1 0.1225 0.1299 0.0152 0.1110 0.0886 0.0079
β2 0.1495 0.1374 0.0172 0.1161 0.0890 0.0085
β5 0.2074 0.1466 0.0205 0.1111 0.0871 0.0092

HARD
σ2 0.1788 0.1498 0.0325 0.1022 0.1251 0.0157
ρ1 0.0222 0.0233 0.0031 0.0165 0.0130 0.0012
ρ2 0.0850 0.1156 0.0134 0.0542 0.0684 0.0062
β1 0.1287 0.1297 0.0172 0.1105 0.0874 0.0097
β2 0.1816 0.1342 0.0170 0.1157 0.0877 0.0081
β5 0.1930 0.1340 0.0207 0.1114 0.0867 0.0084

LASSO
σ2 0.2104 0.1609 0.0350 0.1236 0.1354 0.0173
ρ1 0.0257 0.0252 0.0027 0.0190 0.0137 0.0013
ρ2 0.1242 0.1782 0.0227 0.0686 0.0895 0.0063
β1 0.1830 0.1532 0.0246 0.0974 0.0994 0.0108
β2 0.1954 0.1570 0.0264 0.1135 0.0961 0.0094
β5 0.1921 0.1485 0.0265 0.1161 0.0943 0.0107

5. Data Example

Now, we consider a real example for the application and performance of the proposed
variable selection method in the SARAR model.

5.1. The Sample Data

We consider the Boston housing data set which was originally given by Harrison and
Rubinfeld [35] and has been used by many authors, for example, Pace and Gilley [36,37],
and so on. The data set contains 506 census tracts with 14 nonconstant independent
variables. It can be found in the spdep library of R. Similar to the analysis of Harrison
and Rubinfeld [35], the dependent variable is set to be log(MEDV) and the explanatory
variables are assumed as RM2, AGE, log(DIS), log(RAD), TAX, PTRATIO, (B − 0.63)2,
log(LSTAT), CRIM, ZN, INDUS, CHAS, and NOX2. Table 6 gives the interpretation of all
abbreviated variables. For subsequent analysis, the data are centralized and standardized.
The spatial weight matrix is constructed with rook contiguity: The weight is 1 if two
different areas share a common boundary, and 0 otherwise. Then the matrix is row-
normalized as is usually carried out in practice.

Table 6. Variables used in the analysis.

Variable Description

MEDV The median value of owner-occupied homes. Source: 1970 U.S. Census.
CRIM Crime rate by town. Source: FBI (1970).

ZN Proportion of a town’s residential land zoned for lots greater than 25,000 square feet. Source: Metropolitan Area
Planning Commission (1972).

INDUS Proportion nonretail business acres per town. Source: Harrison and Rubinfeld (1978).
CHAS Charles River dummy: =1 if tract bounds the Charles River; =0 if otherwise. Source: 1970 U.S. Census.
NOX Nitrogen oxide concentrations in pphm (annual average concentration in parts per hundred million). Source: TASSIM.
RM Average number of rooms in owner units. Source: 1970 U.S. Census.
AGE Proportion of owner units built prior to 1940. Source: 1970 U.S. Census.
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Table 6. Cont.

Variable Description

DIS Weighted distances to five employment centres in the Boston region. Source: Harrison and Rubinfeld (1978).
RAD Index of accessibility to radial highways. It was calculated on a town basis. Source: MIT Boston Project.
TAX Full value property tax rate ($/$10,000). Source: Massachusetts Taxpayers Foundation (1970).

PTRATIO The number of students divided by the number of teachers in town school district. Source: Massachusetts Dept. of
Education (1971–1972).

B Black proportion of population. Source: 1970 U.S. Census.

PART Proportion of population that is lower status = 1
2 (proportion of adults without some high school education and

proportion of male workers classified as laborers). Source: 1970 U.S. Census.

5.2. Spatial Dependence Test

In spatial data analysis, the Moran’s I statistic (Moran I) is usually used to test spatial
dependence. Table 7 shows the value of the Moran’s I in the Boston housing data. It
is 0.7644 with a p-value 2.2× 10−16, which implies that the MEDV has a strong spatial
correlation. It is well known that the Moran’s I reflects the degree of spatial autocorrelation
and can not effectively identify specific spatial autoregressive models due to the existence
of different spatial correlations. Fortunately, the popular Lagrange multiplier diagnostics
can help us to complete this specification for several different spatial autoregressive models.
This test method avoids the optimization of the nonlinear function and is easy to implement.
Using the spdep package in R, we can obtain the desired results for identification. From
Table 7, it is obvious to see that the p-value in each case is very small, which implies
that the Boston housing data can be modeled by spatial models. However, the values
of test statistics and p-values suggest that the SARAR model is the best choice among
these spatial models to fit the Boston housing data. Moreover, previous studies have used
multiple hypothesis tests to judge spatial effects and select explanatory variables, and then
determine the model. It is difficult to prove the relevant theoretical properties. Based on
the proposed variable selection method, the SARAR model can not only be used to identify
different spatial effects and select explanatory variables simultaneously, but also has a good
theoretical guarantee. Therefore, we will use the SARAR model for variable selection in
this data.

Table 7. Moran’s I test and Lagrange multiplier diagnostics for spatial dependence.

Terms Values of Test Statistics p-Values

Moran I 0.7644 <2.2e−16
LMerr 186.57 <2.2e−16
LMlag 190.71 <2.2e−16

SARMA 228.32 <2.2e−16
Note: LMerr represents the test results of the SEM; LMlag represents the test results of the SAR model; and
SARMA represents the test results of the SARAR model.

5.3. Model Selection and Estimation

Under a SARAR model, the results are reported in Table 8, where the quasi-maximum
likelihood estimate (QMLE) and penalized quasi-likelihood estimate (PQLE) via the SCAD,
HARD, and LASSO penalties are listed to assess the performance of variable selection.

The QMLE demonstrates that there are four variables that show a relatively small
impact on the MEDV, including ZN, INDUS, CHAS, and AGE. These variables in other
studies also show a small effect on the MEDV, such as Harrison and Rubinfeld [35], Pace and
Gilley [36], and so on. Moreover, variables with positive effects include ZN, INDUS, RM2,
log(RAD), (B− 0.63)2, while others have negative effects. As we expected, the parameter
estimates obtained by the penalized method are close to the QMLE, and both nonzero
estimates keep the same sign. Moreover, the four insignificant variables (ZN, INDUS,
CHAS, and AGE) are penalized to zero under different penalty functions. Therefore, these
penalties produce the same selection results in this setting. However, BIC in Table 8 shows
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that the SCAD and HARD penalties are preferable to the LASSO penalty. Interestingly,
although the spatial correlation coefficients ρ1 and ρ2 are also penalized by different penalty
functions, they do not shrink to zero and have similar results with the QMLE. From the
perspective of model specification, we can say that the penalty method recognizes the
spatial autoregressive relationship.

For comparison, the Boston housing data is also fitted by a classical linear regression
model and the related results are presented in Table 9. The QMLE shows that there are three
unimportant variables, including ZN, INDUS, and AGE. Moreover, variables with positive
effects include ZN, INDUS, CHAS, RM2, AGE, log(RAD), (B− 0.63)2, while others have
negative effects. In addition, all penalties also produce the same selection results in this
model. According to the QMLE, these penalties can also select important variables and
shrink unimportant variables to zero. Based on the BIC, the SCAD and HARD penalties
also outperform the LASSO penalty in this setting.

Although both models have similar selection results, the differences between them are
quite obvious. For the QMLE, the estimated coefficient of AGE is negative in the SARAR
model, a plausible result, but it is positive in the linear model, which seems implausible.
For the PQLE, it is easy to see that the CHAS disappears in the SARAR model while it
is relatively important in the linear model. Furthermore, the meaning of the parameter
estimation in these two models is also distinctly different. The interpretation of parameter
estimates in the SARAR model will become richer and more complicated than that in the
linear model because of the spatial autocorrelation [38]. As we expected, the BIC for the
SARAR model is far less than that for the classical linear model, which indicates that the
SARAR model has a better fitting effect than the classical linear model in such data.

Table 8. Parameter estimates using quasi-maximum likelihood and penalized estimates via SCAD,
HARD, and LASSO under a SARAR model.

Terms QMLE SCAD HARD LASSO

CRIM −0.1405 −0.1240 −0.1410 −0.1346
ZN 0.0221 − − −

INDUS 0.0280 − − −
CHAS −0.0058 − − −
NOX2 −0.1037 −0.0223 −0.1046 −0.0560
RM2 0.1721 0.1657 0.1643 0.1624
AGE −0.0372 − − −

log(DIS) −0.2082 −0.1127 −0.1851 −0.1415
log(RAD) 0.1750 0.1124 0.1680 0.1039

TAX −0.1958 −0.1583 −0.1757 −0.1137
PTRATIO −0.1030 −0.0816 −0.1071 −0.0830
(B−0.63)2 0.0865 0.0713 0.0827 0.0652

log(LSTAT) −0.3998 −0.4317 −0.4167 −0.3900
ρ1 0.2805 0.2695 0.2776 0.3691
ρ2 0.4145 0.4444 0.4107 0.2430
σ2 0.1182 0.1197 0.1190 0.1230

BIC 489.81 474.18 467.36 477.00
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Table 9. Parameter estimates using quasi-maximum likelihood and penalized estimates via SCAD,
HARD, and LASSO under a classical linear model.

Terms QMLE SCAD HARD LASSO

CRIM −0.2537 −0.2541 −0.2539 −0.2420
ZN 0.0047 − − −

INDUS 0.0051 − − −
CHAS 0.0573 0.0565 0.0578 0.0554
NOX2 −0.2178 −0.2157 −0.2158 −0.1852
RM2 0.1367 0.1383 0.1383 0.1418
AGE 0.0085 − − −

log(DIS) −0.2529 −0.2570 −0.2567 −0.2211
log(RAD) 0.2035 0.2013 0.2011 0.1569

TAX −0.1744 −0.1708 −0.1704 −0.1373
PTRATIO −0.1663 −0.1667 −0.1666 −0.1575
(B−0.63)2 0.0692 0.0689 0.0693 0.0665

log(LSTAT) −0.5496 −0.5467 −0.5464 −0.5440
σ2 0.1951 0.1952 0.1952 0.1961

BIC 696.27 677.68 677.67 680.24

6. Summary and Discussion

In theory, the proposed penalized quasi-likelihood method can identify two kinds of
spatial effects, select significant explanatory variables, and estimate unknown parameters
simultaneously. The penalized estimators has consistency, sparsity, and normality, which
show that the penalty estimation of the coefficient of the significant variable with an
unknown zero coefficient is as good as that of the significant variable with a known zero
coefficient. In application, the proposed method is consistent with the theoretical results,
which can effectively penalize the coefficients of insignificant variables to zero, identify the
appropriate spatial regression model, and improve the interpretability of the results due to
the decrease of the variable dimension.

From the analysis results of theory and application, it can be seen that the proposed
method can effectively achieve a variable selection and identify spatial effects. At the same
time, due to the complexity and time consumption of high-dimensional matrix inverse
operation, we also find that the optimization efficiency of the penalty quasi- likelihood
function still has room for further improvement. Therefore, this method is suitable for
the case of a medium sample size and variable dimension not exceeding the sample size.
When the sample size is large enough, the penalty GMM method can be considered to
improve the operation speed. Once the dimension of the variable exceeds the sample size,
our proposed method will not be applicable. Even so, the proposed method can also be
used as a basis for future research, such as a new feature selection in spatial data.

In conclusion, it is significant to extend this model to other high dimensional parameter
regression models, such as spatial Durbin models, dynamic panel data models, or super
high dimensional nonparametric spatial regression models or semi-parametric spatial
regression models, such as varying-coefficient spatial regression models, single index
spatial regression models, additive spatial regression models, etc. These contents are
optional for further research.
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Appendix A. Assumptions

The following regular conditions are needed for the large sample properties of the
penalized quasi-likelihood estimator.

Assumption A1. The {ei}, i = 1, · · · , n, are independent identically distributed with E(ei) = 0
and var(ei) = σ2. The moment E

(
|e1|4+v

)
exists for a v > 0.

Assumption A2. The elements w1n,ij = O(1/hn), w1n,ii = 0 in W1n, w2n,ij = O(1/hn), w2n,ii
= 0 in W2n, where i, j = 1, 2, · · · , n, and hn/n→ 0 as n→ ∞.

Assumption A3. The matrix S1n and S2n are nonsingular.

Assumption A4. The sequences of matrices {W1n}, {W2n},
{

S−1
1n

}
, and

{
S−1

2n

}
are uniformly

bounded in both row and column sums [39].

Assumption A5. The lim
n→∞

n−1XT
n Xn exists and is nonsingular. The elements of Xn are uniformly

bounded constants for all n.

Assumption A6. The row and column sums of
{

S−1
in (ρi)

}
are uniformly bounded, uniformly in

ρi in a closed subset Λ of (−1, 1) and the true ρi0 is an interior point of Λ, i = 1, 2.

Assumption A7. As n→ ∞, n−1(Xn, G1nXnβ0)
T(Xn, G1nXnβ0) and n−1(Xn, G2nXnβ0)

T

(Xn, G2nXnβ0) exist and are nonsingular.

Assumption A8. The lim
n→∞

Σn(θ0) and lim
n→∞

Ωn(θ0) exist.

Assumption A9. The third derivatives
(
∂3Ln(θ)

)
/
(
∂θj∂θl∂θm

)
exist for all θ in an open set

Θ that contains the true parameter point θ0. Furthermore, there are functions Mjlm such that∣∣n−1(∂3 ln Ln(θ)
)
/
(
∂θj∂θl∂θm

)∣∣ ≤ Mjlm for all θ ∈ Θ, where E
(

Mjlm

)
< ∞ for j, l, m.

Assumption A1 provides an essential condition for the use of the central limit theorem
in Kelejian and Prucha [40]. Assumption A2 describes the dynamic relation between the
spatial weight matrix and sample size n. If {hn} is a bounded sequence, Assumption A2
is easily satisfied. In the Case model [34] where hn may diverge to infinity also satisfies
Assumption A2. Assumption A3 can guarantee the existence of mean and variance of
independent variable. Assumption A4 implies that the variance of Yn is bounded as n goes
to infinity. Similar conditions have been adopted in Kelejian and Prucha [40] and Lee [3].
Assumption A5 can exclude the multicollinearity of the regressors Xn. Assuming that the
regressors are uniformly bounded is convenient for analysis. If not, it can be replaced by
stochastic regressors with certain finite moment conditions [3]. Assumption A6 is deals well
with the nonlinearity of ln |S1n(ρ1)| and ln |S2n(ρ2)|in the log-quasi-likelihood function.
Assumption A7 means that GknXnβ0 and Xn are not asymptotically multicollinear with
k = 1, 2. It is an identification condition of θ0. Assumptions A8 and A9 are applied
for Taylor expansion of the log-quasi-likelihood function and asymptotic normality of
the estimator.
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Appendix B. Proofs of Theorems 1 and 2

The following Lemmas are used for proofs of Theorems 1 and 2.

Lemma A1. Under Assumptions A1–A7, we have:

1√
n

∂ ln Ln(θ0)

∂θ
= Op(1).

Lemma A2. Under Assumptions A1–A8, we have:

1
n

∂2ln Ln(θ0)

∂θ∂θT = E
(

1
n

∂2ln Ln(θ0)

∂θ∂θT

)
+ op(1).

Lemma A3. Suppose that lim inf
n→∞

lim inf
δ→0+

p′λn
(δ)/λn > 0, lim

n→∞
λn = 0, lim

n→∞

√
nλn = ∞, and

Assumptions 1–9 hold. Then with probability approaching one,

J
{(

θ1
0

)}
= min
‖θ2‖≤Cn−1/2

J
{(

θ1
θ2

)}
,

where θ1 satisfies ‖θ1 − θ10‖ = OP

(
n−1/2

)
and C is a constant.

Proof of Lemma A1. It follows from a straightforward calculation that:

∂ ln Ln(θ0)

∂θ
=



1
2σ4

0

(
ET

n En − nσ2
0
)

1
σ2

0
ET

nS2nW1nYn − tr(G1n)

1
σ2

0

(
ET

n G2nEn − σ2
0 tr(G2n)

)
1
σ2

0
(S2nXn)

TEn


. (A1)

By (A1) and some operational properties of related matrices in [3], we have:

1√
n

∂ ln Ln(β0)

∂β
=

1√
nσ2

0
(S2nXn)

TEn = Op(1).

Note that:

var
(

1√
n

∂ln Ln(θ0)

∂σ2

)
=

1
4nσ8

0
var
(

ET
n En

)
= O(1),

var
(

1√
n

∂ln Ln(θ0)

∂ρ1

)
≤ 2

nσ2
0
(S2nG1nXnβ0)

T(S2nG1nXnβ0)

+
2

nσ4
0

var
(

ET
nS2nG1nS−1

2n En

)
= O(1),

var
(

1√
n

∂ln Ln(θ0)

∂ρ2

)
=

1
nσ4

0
var
(

ET
n G2nEn

)
= O(1).

By the Chebyshev inequality, we obtain:

1√
n

∂ ln Ln(θ0)

∂σ2 = Op(1),
1√
n

∂ ln Ln(θ0)

∂ρ1
= Op(1),

1√
n

∂ ln Ln(θ0)

∂ρ2
= Op(1).
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Proof of Lemma A2. Note that:

1
n

∂2ln Ln(θ0)

∂2σ2 =
1

2σ4
0
− 1

nσ6
0

ET
n En,

1
n

∂2ln Ln(θ0)

∂β∂βT =− 1
nσ2

0
(S2nXn)

TS2nXn,

1
n

∂2ln Ln(θ0)

∂ρ2
1

=− 1
nσ2

0

(
σ2

0 tr
(

G2
1n

)
+ (S2nW1nYn)

TS2nW1nYn

)
,

1
n

∂2ln Ln(θ0)

∂ρ2
2

=− 1
nσ2

0

(
σ2

0 tr
(

G2
2n

)
+ (G2nEn)

TG2nEn

)
,

1
n

∂2ln Ln(θ0)

∂β∂ρ1
=− 1

nσ2
0
(S2nXn)

TS2nW1nYn,

1
n

∂2ln Ln(θ0)

∂β∂ρ2
=− 1

nσ2
0

(
(S2nXn)

TG2n + (W2nXn)
T
)

En,

1
n

∂2ln Ln(θ0)

∂β∂σ2 =− 1
nσ4

0
(S2nXn)

TEn,

1
n

∂2ln Ln(θ0)

∂ρ1∂ρ2
=− 1

nσ2
0

((
S−1

2n En

)T(
ST

2nW2n + S2nWT
2n

)
W1nYn

)
,

1
n

∂2ln Ln(θ0)

∂ρ1∂σ2 =− 1
2nσ4

0

(
(S2nW1nYn)

TEn + ET
nS2nW1nYn

)
,

1
n

∂2ln Ln(θ0)

∂ρ2∂σ2 =− 1
2nσ4

0
ET

nGs
2nEn.

Then, similar to the proof of Theorem 3.2 in [3], we can obtain Lemma 2.

Proof of Theorem 1. Let zn = n−1/2 + an. As demonstrated by Fan and Li [13], it suffices
to prove that for any given η > 0, there is a positive constant C such that:

P
{

inf
‖u‖=C

J(θ0 + znu) > J(θ0)

}
≥ 1− η. (A2)

(A2) shows that there is a local minimizer in a bounded closed domain {θ0 + znu : ||u|| ≤ C}
for continuous function J(θ) with probability at least 1− η. Consequently, there exists a
local minimizer θ̂0 such that ||θ̂0 − θ0|| = Op(zn).

By pλn(0) = 0, zn = o(1) and the Taylor expansion, we have:

J(θ0 + znu)− J(θ0)

n
≥− n−1zn

(
∂ ln Ln(θ0)

∂θ

)T
u +

1
2

uTΣn(θ0)uz2
n
{

1 + op(1)
}

+
s

∑
j=1

[
zndjuj + z2

nvju2
j {1 + o(1)}

]
=J1 + J2 + J3,

where,

J1 = −n−1zn

(
∂ ln Ln(θ0)

∂θ

)T
u,

J2 =
1
2

uTΣn(θ0)uz2
n
{

1 + op(1)
}

,

J3 =
s

∑
j=1

[
zndjuj + z2

nvju2
j {1 + o(1)}

]
.
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From Lemma 1, bn = o(1), and Op(n−1/2zn) = Op(z2
n), it follows that J1 = ‖u‖ ·Op

(
z2

n
)
,

J2 = ‖u‖2 ·Op
(
z2

n
)
, and J3 is bounded by ‖u‖ ·Op

(
z2

n
)
+ ‖u‖2 · op

(
z2

n
)
. Thus, J1 and J3 can

be dominated by J2 uniformly with a sufficiently large ‖u‖ = C when n→ ∞. Hence, (A2)
holds. Note that zn = o(n−1/2). This completes the proof of Theorem 1.

Proof of Lemma A3. It suffices to prove that, for any θ1 satisfying ||θ1−θ10|| = Op

(
n−1/2

)
and ||θ2|| ≤ Cn−1/2, and j = s + 1, · · · , k + 3, with probability tending to 1 as n → ∞,
∂J(θ)/∂θj and θj have the same signs for θj ∈ (−Cn−1/2, Cn−1/2).

For θj 6= 0 and j = s + 1, · · · , k + 3,

∂J(θ)
∂θj

= −∂ln Ln(θ)

∂θj
+ np′λjn

(∣∣θj
∣∣)sgn

(
θj
)
.

By the Taylor expansion, we have:

∂ln Ln(θ)

∂θj
=

∂ ln Ln(θ0)

∂θj
+

k+3

∑
l=1

∂2ln Ln(θ0)

∂θj∂θl
(θl − θl,0)

+
k+3

∑
l=1

k+3

∑
m=1

∂3ln Ln(θ∗)

∂θj∂θl∂θm
(θl − θl,0)(θm − θm,0),

where θ∗ lies between θ and θ0. Under ||θ1 − θ10|| = Op

(
n−1/2

)
, ||θ2|| ≤ Cn−1/2 and

Assumption A9, we can obtain by Lemmas 1 and 2 that n−1∂ln Ln(θ)/∂θj is of order
Op(n−1/2). Thus,

∂J(θ)
∂θj

= nλjn

{
λ−1

jn p′λjn

(∣∣θj
∣∣)sgn

(
θj
)
+ OP

(
n−1/2λ−1

jn

)}
.

Note that lim inf
n→∞

lim inf
δ→0+

λ−1
jn p′λjn

(δ) > 0 and lim
n→∞

n−1/2λ−1
jn = 0. The sign of the derivative

is the same as that of θj for a sufficiently large n. This shows that the minimizer attains at
θ2 = 0. Lemma 3 is proven.

Proof of Theorem 2. Lemma 3 shows that part (i) holds. Next, we give the proof of part
(ii). By Theorem 1, there is a

√
n consistent local minimizer of J{

(
θT

1 , 0T)T} denoted as θ̂1,
which satisfies:

∂J(θ)
∂θj

∣∣∣∣θ=(θ̂T
1 , 0T)

T = 0 for j = 1, · · · , s. (A3)

Note that θ1 = σ2. By the Taylor expansion, we have:

∂J(θ)
∂θj

=
∂ln Ln(θ)

∂θj
− np′λjn

(∣∣θj
∣∣)sgn

(
θj
)
I(j 6= 1)

=
∂ln Ln(θ0)

∂θj
+

s

∑
l=1

{
∂2ln Ln(θ0)

∂θj∂θl
+ op(1)

}
(θl − θl,0)

− n
[

p′λjn

(∣∣θj,0
∣∣)sgn

(
θj,0
)
+
{

p′′λjn

(∣∣θj,0
∣∣)+ op(1)

}(
θj − θj,0

)]
I(j 6= 1), (A4)

where I(j 6= 1) is an indicator function.
Moreover, it follows from (A3) and (A4) that:

∂ ln Ln(θ0)

∂θj
= −

s

∑
l=1

{
∂2 ln Ln(θ0)

∂θj∂θl

}(
θ̂l − θl,0

)
+ nvj

(
θ̂j − θj,0

)
+ ndj + op

(√
n
)
. (A5)

Note that (A1) can be written as:
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0

1
σ2

0
(S2nG1nXnβ0)

TEn

0
1

σ2
0
(S2nXn)

TEn

+


1

2σ4
0

(
ET

n En − nσ2
0
)

1
σ2

0

(
ET

nS2nG1nS−1
2n En − σ2

0 tr(G1n)
)

1
σ2

0

(
ET

nG2nEn − σ2
0 tr(G2n)

)
0

.

Then, by (A5), Slutsky’s theorem and the central limit theorem of the linear-quadratic
form [40], we can obtain:

√
n
[
(Σn1(θ10) + Λ)

(
θ̂1 − θ10

)
+ d

] d→ N(0, Σ1(θ10) + Ω1(θ10)).

This completes the proof.
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