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Abstract: We study three systems from the classification of cubic reversible systems given by Żoła̧dek
in 1994. Using affine transformations and elimination algorithms from these three families the
six components of the center variety are derived and limit-cycle bifurcations in neighborhoods of
the components are investigated. The invariance of the systems with respect to the generalized
involutions introduced by Bastos, Buzzi and Torregrosa in 2021 is discussed. Computations are
performed using the computer algebra systems MATHEMATICA and SINGULAR.
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1. Introduction

One of the long-standing problems in the theory of polynomial differential equations
is the Poincaré center problem, which involves finding for which values of parameters
αpq, βpq a given polynomial differential system of the form

ẋ =− y +
n

∑
p+q=2

αpqxpyq,

ẏ =x +
n

∑
p+q=2

βpqxpyq
(1)

has a center at the origin. A general approach to its study was proposed by Poincaré and
Lyapunov [1,2]; however, this relies on checking an infinite number of conditions, which is
difficult to verify in practice.

The problem has been studied for some fixed values of the degree n for more than a
century by many authors. The only family completely investigated is the quadratic one
(n = 2) [3–8]. Some partial results have been obtained for the cubic family (when in (1)
n = 3), see e.g., [9–16] and references given there; however, it appears that the center
problem for the cubic system is still far from resolved. Some partial classifications have also
been obtained for higher-degree families; in particular, for systems in the form of a linear
center perturbed by homogeneous polynomials of degree 4 and 5 [17,18].

By the Poincaré–Lyapunov theorem, the existence of a center at the origin of system
(1) is equivalent to the existence of an analytic first integral of the form

Φ(x, y) = x2 + y2 + ∑
j+k>2

φj−1,k−1xjyk (2)
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in a neighborhood of the origin. For system (1), one can always find a function of the
form (2) such that

Φ̇ =
∂Φ

∂x
ẋ +

∂Φ

∂y
ẏ = ∑

k≥1
vk (x2 + y2)k+1 (3)

where vk are polynomials in the coefficients αpq, βpq of polynomials P and Q, called the
focus quantities of the system (1). We denote the list of coefficients of the first equation of
(1) by α and the list of coefficients of the second equation by β, so the polynomials vk are
polynomials in the variables (α, β), vk = vk(α, β), in the polynomial ring R[α, β].

Clearly, system (1), with fixed coefficients (α∗, β∗), has a first integral (2) and, therefore,
a center at the origin if and only if

vk(α
∗, β∗) = 0 ∀ k ∈ N,

That is, (α∗, β∗) belongs to the variety V(V) of the ideal

V = 〈v1, v2, v3, . . .〉.

The variety V(V) is called the center variety of system (1).
In studying the center problem for a given polynomial family of the form (1), one

usually computes a few first focus quantities v1(α, β), . . . , vm(α, β) of the system, then
finds the irreducible decomposition of the variety V(Vm) of the ideal

Vm = 〈v1, v2, v3, . . . vm〉

and then for each component of the decomposition proves the existence of a local analytic
first integral. In some sense the center problem for system (1) will be solved if all possible
mechanisms of local integrability in systems (1) can be established, and algorithmic proce-
dures allowing the proving of integrability for systems corresponding to the components
of irreducible decomposition of the center variety would be proposed.

Up to now two main known mechanisms yielding integrability in polynomial sys-
tems are the Darboux integrability [19–24] and time reversibility [25–28]. In 1994, in the
renowned work [29], Żoła̧dek presented a classification of reversible centers of a cubic
system. He gave 17 families of systems that are time reversible with respect to some rational
transformations, and such that among systems of the families there are some that have a
center. The reversible families of [29] contain systems with a center and systems that do
not have a center, so the relation of the classification to the center variety is not discussed
in [29].

This relation was investigated in [30,31], where the authors were looking for an
affine transformation

ψ(x, y) =
(
−a0 + x

a1
,

b1(a0 − x) + a1(−b0 + y)
a1b2

)
(4)

whose inverse is
ψ(x, y)−1 = (a0 + a1x, b0 + b1x + b2y) (5)

which brings the systems from Żoła̧dek’s families to the canonical forms

ẋ =(1 + Gx)(y + Hx2 + Dxy + Ry2),

ẏ =− x + Ax2 + 3Bxy + Cy2 + Kx3 + 3Lx2y + Mxy2 + Ny3
(6)

and
ẋ =y(1 + Dx + Px2) + Hx2 + Qx3 + y2(G + Vx),

ẏ =− x + Ax2 + 3Bxy + Cy2 + Kx3 + 3Lx2y + Mxy2 + Ny3.
(7)
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However, for only 6 of 17 families of [29] has the study of [30,31] resulted in finding
center conditions in terms of polynomial equalities in the coefficients of (6) and (7); that is,
in finding components of the center variety (in this paper, speaking on the components of
the center variety, we do not mean the proper components; they can simply be algebraic sets
that are subsets of the center variety). For the other cases the conditions for the existence of
a center in (6) and (7) were given in terms of elimination ideals.

The authors of [30,31] also did not consider all systems from the classifications of [29]
that can be transformed to families (6) and (7). They only considered real systems trans-
formed to (6) and (7) by real transformations. However, we will see below that some
complex systems can be transformed to real systems (6) by complex affine transforma-
tions (4).

Recently, the following generalization of the notion of time reversibility has been
introduced in [32].

Definition 1. Let U ⊂ Rn be an open set, ϕ : U → U be an involution of class C1, X : U → Rn

be a vector field of class Cr and F : U → R be a continuous function. It is said that X is orbitally
ϕ-reversible if

Dϕ · X = FX◦ϕ.

The case F ≡ −1 corresponds to the classical notion of time reversibility.
The authors of [32] showed that all 17 families of [29] are orbitally ϕ-reversible and

found the corresponding involutions.
In this paper we consider the families of [29] that are related to system (6) with

R = N = 0; namely, the families denoted by CR8
5, CR9

7 and CR10
8 in [29]. That is,

Ẋ =X(l + p + mcX + (k + n)XY + mX2 + qTX),

Ẏ =− kXY2 − lY + mX2Y− (nXY + p + qTX)(2X + Y + c),
(8)

Ẋ =X(−(n + k) + (l −m)XY− (l + p)XT),

Ẏ =nX + kY + nT + (m− l)X2Y + pX2T + mXYT + pXT2 (9)

and
Ẋ =X(−k− 2nT + 2(l −m)XY− lXT),

Ẏ =2kY + nXT + nT2 + (m− l)X2Y + mXYT,
(10)

respectively (above T = x + y + c).
Using the tools of computational algebra and algorithms of the elimination theory,

we obtain from these three families six components of the center variety. For the obtained
components we discuss the existence of orbital ϕ-reversibility and study bifurcations of
small limit-cycles from the center at the origin.

Actually, from theoretical point of view, it is straightforward to find systems from
families (8)–(10) that correspond to systems with a center at the origin in family (6) in an
algorithmic way: in each of systems (8)–(10) one performs substitution (5), equates the
coefficients of the corresponding terms in the obtained system and in system (6), and then
eliminates from the obtained polynomial system the variables l, p, m, c, k, n, q, a0, a1, b0, b1, b2
using the elimination theorem [14,33]. However, the algorithm requires computation of
Groebner bases with respect to the lexicographic order and, therefore, it is extremely time-
and memory-consuming. For this reason, the direct application of this computational
approach is of limited use.

Our choice of the families mentioned above is due to the computational restrictions—the
study involves laborious computations, so we chose the cases that look simpler from the
computational point of view and where we were able to complete calculations using our
computational facilities. Some results of the performed computations are large polynomial
ideals that are not appropriate for the presentation in the paper due to their sizes, but we have
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made them available online at http://www.camtp.uni-mb.si/camtp/barbara/ (accessed on 6
March 2021).

2. Preliminaries

To study the center problem it is often computationally efficient to work, instead
of real system (1), with its complexification obtained as follows. Using the substitution
X = x + iy, we obtain from system (1) the complex differential equation

Ẋ = iX + R(X, X).

Then, we adjoin to this equation its complex conjugate and obtain the system

Ẋ = iX + R(X, X), Ẋ = −iX̄ + R̄(X, X).

Now we denote X as a new variable Y and R̄ as a new function obtaining the system
of two complex differential equations, which we can write in the form

Ẋ =i(X−
n−1

∑
p+q=1

apqXp+1Yq),

Ẏ =− i(Y−
n−1

∑
p+q=1

bqpXqYp+1),

(11)

where X, Y ∈ C, p ≥ −1, q > 0, and in the case when bqp = āpq the system has a real
preimage of the form (1).

For system (11) there is a function of the form

Ψ(X, Y) = XY− ∑
j+k>2

ψj−1,k−1X jYk, (12)

such that
Ψ̇ =

∂Ψ

∂X
Ẋ +

∂Ψ

∂Y
Ẏ = ∑

k∈N
gk,k(a, b)(XY)k+1,

where a and b are parameters of the first and second equations in (11), respectively, and
gkk(a, b) are polynomials of the ring Q[a, b], called the focus quantities of system (11). They
form the ideal B = 〈g11, g22, g33...〉, called the Bautin ideal of system (11). Its variety V(B)
consists of all systems (11) admitting a local analytical first integral in a neighborhood of the
origin. As is mentioned above by the Poincaré–Lyapunov theorem, the local integrability
yields the existence of the center, so systems from V(B) that have a real preimage, have a
center at the origin. For the cubic complex system (system (11) with n = 3) using the algo-
rithm of ([14], Section 3.4), we have computed the first eight focus quantities g11, . . . , g88
(available at http://www.camtp.uni-mb.si/camtp/barbara/FocusQuantitiesCubic8 (ac-
cessed on 6 March 2021)). Clearly, using these it is straightforward to obtain the focus
quantities vk of real systems (6) and (7).

We recall also a theorem related to parameterizations of affine varieties. Let f1, ..., fn, g1,
..., gn be polynomials of the ring k[t1, ..., tm], where k is an infinite field. Let W be the variety
of 〈g1, ..., gn〉, and let F : km \W −→ kn be the function defined by

F(t1, ..., tm) =

(
f1(t1, ..., tm)

g1(t1, ..., tm)
, ...,

fn(t1, ..., tm)

gn(t1, ..., tm)

)
.

The following statement is known as the rational implicitization theorem (see, for
instance, ref. [33] for a proof). It can be used to check if a polynomial parametrization
covers an affine variety.

 http://www.camtp.uni-mb.si/camtp/barbara/
http://www.camtp.uni-mb.si/camtp/barbara/FocusQuantitiesCubic8
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Theorem 1. Let k be an infinite field. Set g = g1 · · · gn and consider the ideal

J = 〈 f1 − g1x1, ..., fn − gnxn, 1− gy〉 ⊂ k[y, t1, ..., tm, x1, ..., xn]

and its m + 1st elimination ideal Jm+1 = J ∩ k[x1, ..., xn]. Then V(Jm+1) is the smallest variety in
kn containing F(km \W).

3. Some Center Conditions

In this section we look for components of the center variety of system (6) (the center
conditions) associated to systems (8)–(10) and obtain the following result.

Theorem 2. (1) System (6) with N = R = 0 has a center at the origin if its parameters belong to
one of varieties Vk = V(Ik) (k = 1, . . . , 5), where the ideals Ik are defined as follows:

I1 = 〈A, D− G, C + G, G2 + M, 3BC + 3L− CH〉,
I2 = 〈G2 + M, D− G, C + G, L2 + H2M, GL− HM, GH + L, 3B + 2H, 2A2 + 18H2 +
9K〉,
I3 = 〈H, CD+ D2−DG−M, 3AB+ 3BC+ 3L, A+C+ D, CK+ 3DK− 2GK+CM+
DM〉,
I4 = 〈L, H, B, 36DK− 45GK− 2AM− 16DM + 24GM, 3DG + 2M, 2C + 2D + G〉,
I5 = 〈2C + D + 2G, 3B + 2H, 9DL− 8HM, 4GH + 3L, 3DG + 2M〉,
or the variety V6, which is parametrized as follows:

M = f1, L =
f2

g2
, H =

f3

g2
, K =

f4

g4
, (13)

where
f1 =BG(4A + 2C− D + 2G)2A− D,

f2 =BG(4A + 2C− D + 2G),

f3 =− 3B(A + C + G),

f4 =− G(2A + C + G)(−108A2B2 + 12A3C− 162AB2C + 16A2C2 − 54B2C2

− 12A3D + 27AB2D− 36A2CD + 27B2CD− 16AC2D + 20A2D2 + 27ACD2

+ 4C2D2 − 11AD3 − 6CD3 + 2D4 + 12A3G− 162AB2G + 32A2CG− 108B2CG

− 36A2DG + 27B2DG− 32ACDG + 27AD2G + 8CD2G− 6D3G + 16A2G2

− 54B2G2 − 16ADG2 + 4D2G2),

g2 =2A− D,

g4 =(2A− D)2 g̃4,

g̃4 =2AC + C2 − 4AD− 4D2 − 4AG− 6CG + 4DG− 7G2

(14)

and all the above polynomials are defined on V(h), where h = −18AB2C + 4A2C2 −
9B2C2 + 36AB2D − 12A2CD + 27B2CD − 4AC2D + 8A2D2 − 18B2D2 + 12ACD2 +
C2D2− 8AD3− 3CD3 + 2D4− 72AB2G+ 8A2CG− 54B2CG− 12A2DG+ 45B2DG−
8ACDG + 12AD2G + 2CD2G− 3D3G + 4A2G2 − 45B2G2 − 4ADG2 + D2G2.

Moreover, systems CR(9)
7 correspond to systems from V(I1), systems CR(8)

5 correspond to

systems from V(I1) and V(I2), systems CR(10)
8 correspond to systems from V6, from V(I3) ∩

V(h1), V(I4) ∩V(h2) where

h1 = 9B2C2 + 4C4 + 36B2CD + 16C3D + 27B2D2 + 24C2D2 + 16CD3 + 4D4 − 9B2CG− 8C3G+

9B2DG− 24C2DG− 24CD2G− 8D3G− 18B2G2 − 3C2G2 − 6CDG2 − 3D2G2 + 5CG3 + 5DG3 + 2G4, (15)

h2 = −675G4K + 405G4M− 720G2KM + 360G2M2 − 192KM2 + 80M3 (16)

and points of the variety V(I5) for which
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K =
1

18(6G− 5D)
(20A2D + 60AD2 + 45D3 − 24A2G− 94ADG− 6D2G + 36AG2+

− 52DG2 + 24G3 + 180DH2 − 216GH2)

(17)

and

100A2D2 + 300AD3 + 225D4 − 160A2DG− 320AD2G− 120D3G + 64A2G2 − 16ADG2+

− 104D2G2 + 64AG3 + 32DG3 + 16G4 + 900D2H2 − 2160DGH2 + 1296G2H2 = 0. (18)

(2) Systems corresponding to generic points of varieties V(I1), . . . , V(I5) and V6 are Darboux
integrable.

Proof. (1) (a) Consider first system (8). We look for a transformation (5) that brings it to
the canonical form (6). That is, we perform the substitution

(X, Y) = (a0 + a1x, b0 + b1x + b2y) (19)

and then we equate the transformed system with (6) obtaining that

R = N = 0

and the other coefficients satisfy an algebraic system of 16 equations.
Solving the suitable equations for l, a1 and b1 we then obtain two cases:

(i) 2a0 + c = 0,

(ii) a0b0m− a0b0n− p− a2
0q− a0b0q− a0cq = 0.

Examining case (i), first we can express c and n, then eliminating with Eliminate of
MATHEMATICA from the remaining equations a0, b0, b2, k, m, p, q we obtain the ideal

U = 〈A, 3BC− CH + 3L,−D− 2C− G, 2CG + G2 + C2, (C + G)H, M + C2〉.

Computing with the routine radical of the compute algebra system SINGULAR [34]
the radical of U we obtain the ideal I1 given in the statement of the theorem.

Obviously (one also can use Theorem 1) a rational parametrization of V(I1) is given by

A = 0, C = −G, D = G, L =
3BG− GH

3
, M = −G2. (20)

Further computations show that for the coefficients of transformation (19) it holds:

a1 = a0G, b1 = −Gb0. (21)

In case (ii) we first solve two of the remaining equations for p and n. Similarly as
above, eliminating a0, b0, b2, c, k, m, q from the remaining equations we obtain the ideal

〈−2A2− 18H2− 9K, 3B+ 2H,−D− 2C−G, 2CG+G2 +C2, (C+G)H, L−CH, M+C2〉 (22)

whose radical is the prime ideal I2 given in the statement of the theorem. A rational
parametrization of V(I2) is given by

C = −G, D = G, H = −3
2

B, K = − 1
18

(4A2 + 81B2), M = −G2, L =
3
2

BG (23)
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and for this solution we find

a1 = a0G, b1 = −2Ab0G + 9Bb2

2(A + 3G)
, c = − a0(2A + 3G)

A
. (24)

(b) Consider now system (9). Applying transformation (19) and equating the obtained
system with (6) we can calculate k and then again we have two cases:

(i) 2a0 + c = 0,

(ii) a0b0l − a0b0m− n + a2
0 p− a0b0 p− a0cp = 0.

For (i), straightforward calculations yield p, n and A = R = N = 0. Now, the
elimination of a0, a1, b0, b2, l, m, n gives an ideal having the same radical as I1. Using the
parametrization (20) we find that

a1 =a0G,

b0 =a0(2G2 − 2K− 3BGn + 2GHn− Gsn)/(2G2 + 3BH − 2H2 − 2K + Hs),

b1 =− Gb0,

b2 =− 4a0G2(H + Gn)/(2G2 + 3BH − 2H2 − 2K + Hs),

(25)

where s = (9B2 − 12BH + 4H2 + 8K)
1
2 .

For (ii)we calculate n, p, b1 and get R = N = 0. After the elimination of a0, a1, b0, b2, l, m, c
we obtain ideal (22). Using the parametrization (23) of the variety of I5 we find that

a1 =a0G,

b1 =iG(2iA2b0 − 9ABb0 + 27a0BG)/(A(2A + 9iB + 6G)),

b2 =6G2(Aa0 − Ab0 + 3a0G)/(A(2iA− 9B + 6iG)),

c =− a0(2A + 3G)/A

(26)

or
a1 =a0G,

b1 =− iG(−2iA2b0 − 9ABb0 + 27a0BG)/(A(2A− 9iB + 6G)),

b2 =6G2(Aa0 − Ab0 + 3a0G)/(A(−2iA− 9B− 6iG)),

c =− a0(2A + 3G)/A.

(27)

Thus, we see that in this case there is no real transformation of (9) to a system of the
form (6).

(c) Consider now system (10). In this case performing transformation (19) and equating
the corresponding terms we find k and l and then we have two possibilities:

(i) 2a0 − b0 + c = 0,

(ii) a1b0 + a2
0b0b2m− a2

0b2n + a0b0b2n− a0b2cn = 0.

Consider first case (i). Calculations give R = N = 0 and b1. From the remaining
equations we obtain the ideal V presented in Appendix A. For this case we were not able
to perform elimination with MATHEMATICA, so we used the computer algebra system
SINGULAR. Since it still was not possible to complete computations over the field of rational
numbers we carried them out in the ring

Z32,003[A, B, C, D, G, H, K, L, M, w, c, a0, a1, b2, n, m]

with the degree reverse lexicographic ordering. We first eliminated the variables a1, b2, a0, c,
n, m, w from the ideal 〈V, 1−wa1b2a0〉. Then with the routine minAssGTZ [35] of SINGULAR

we computed the decomposition of the obtained ideal and found two components (out-
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put provided by Singular is presented at http://www.camtp.uni-mb.si/camtp/barbara/
idealVed (accessed on 6 March 2021)). Performing the rational reconstruction of the first
component with the algorithm of [35] we obtained the ideal Î3 given in Appendix B.

Now taking from Î3 polynomials generating the ideal I3 from the statement of the
theorem, we observe that the first eight focus quantities of system (6) vanish on V(I3).
Simple computations show that

V( Î3) = V(I3) ∩V(h1)

where h1 is defined by (15). Thus, not all systems from V(I3) correspond to (10) but we
will see below that all systems from V(I3) have a center at the origin.

The second component of the decomposition after the rational reconstruction gives
a large ideal that we denote by I6 (ideal I6 is available at http://www.camtp.uni-mb.si/
camtp/barbara/ideal6 (accessed on 6 March 2021)). Using eliminate of SINGULAR we
computed the ideal

Ĩ6 = 〈1− wg2g4, h, f1 −M, f2 − Lg2, f3 − Hg2, f4 − Kg4〉 ∩Q[A, B, C, D, G, H, K, L] (28)

where h, g2, g4, f1, f2, f3, f4 are defined by (14) and then using the radical membership
test [14,33] checked that all polynomials from I6 vanish on the variety of Ĩ6 and all polyno-
mials from Ĩ6 vanish on V(I6). This means that

V(I6) = V( Ĩ6) = V6 (29)

and by Theorem 1 equality (28) means that (13) gives a rational parametrization of (29).
(ii) We solve suitable equations for c, b1 and a1. Then we observe that N = R = 0 and

the polynomial system is defined by the ideal W given in Appendix C. We compute the
center conditions with SINGULAR eliminating w, a0, a1, b2, n, m, b0 from the ideal

〈W, 1− wa0b2n(2a0m + 3n)〉

in the ring Q[A, B, C, D, G, H, K, L, M, w, a0, a1, b2, n, m, b0]. Then, computing the minimal
associate primes of the obtained ideal with the minAssGTZ we obtain the ideals Î4 and Î5
given in Appendix D.

We observe that if we take the first six polynomials from the generators of Î4 as the
generators of the ideal I4 from the statement of the theorem then the first 7 focus quantities
vi (defined by (3)) vanish on the variety V(I4). In fact,

V( Î4) = V(I4) ∩V(h2),

where h2 is defined by (16), but we will see below that all systems from V(I4) have a center
at the origin.

Similarly, we take certain polynomials from Î5 such that the first seven focus quantities
vanish on their variety and form the ideal I5 of the statement of the theorem. Using the
parametrization of V(I5) given as

C = −1
2
(D + 2G), B = −2

3
H, L = −4

3
GH, M = −3

2
DG (30)

we compute the coefficients of (4) and the parameters l, k, c of systems (10). Then using
the eliminate of SINGULAR we eliminate from the remaining polynomial the variables
m and n obtaining an ideal whose variety is defined by (17) and (18). This means that
systems from family (10) correspond to systems from V(I5) for which conditions (17) and
(18) are fulfilled.

http://www.camtp.uni-mb.si/camtp/barbara/idealVed
http://www.camtp.uni-mb.si/camtp/barbara/idealVed
http://www.camtp.uni-mb.si/camtp/barbara/ideal6
http://www.camtp.uni-mb.si/camtp/barbara/ideal6
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(2) We now show that all obtained systems are Darboux integrable. The following
systems (31)–(36) correspond to the six components, presented in the statement of the
theorem, respectively:

ẋ =(1 + Gx)(y + Hx2 + Gxy),

ẏ =− x + Kx3 + 3Bxy + G(3B− H)x2y− Gy2 − G2xy2; (31)

ẋ =(1 + Gx)(y− 3B
2

x2 + Gxy),

ẏ =− x + Ax2 − 1
18

(4A2 + 81B2)x3 + 3Bxy +
9BG

2
x2y− Gy2 − G2xy2; (32)

ẋ =(1 + Gx)(y + Dxy),

ẏ =− x− (C + D)x2 − (C + D)(CD + D2 − DG)

C + 3D− 2G
x3 + 3Bxy + 3BDx2y+

+ Cy2 + (CD + D2 − DG)xy2; (33)

ẋ =(1 + Gx)(y− 2M
3G

xy),

ẏ =− x +
−135G2K + 72G2 M− 72KM + 32M2

6GM
x2 + Kx3 +

4M− 3G2

6G
y2 + Mxy2; (34)

ẋ =(1 + Gx)(y + Hx2 + Dxy),

ẏ =− x + Ax2 + Kx3 − 2Hxy− 4GHx2y +
1
2
(−D− 2G)y2 − 3

2
DGxy2; (35)

ẋ =(1 + Gx)(− 3B(A + C + G)

2A− D
x2 + y + Dxy),

ẏ =− x + Ax2 + Kx3 + 3Bxy +
3BG(4A + 2C− D + 2G)

2A− D
x2y + Cy2 + G(C− D + G)xy2, (36)

where for (36)

K =− G(2A + C + G)(108A2B2 − 12A3C + 162AB2C− 16A2C2 + 54B2C2 + 12A3D+

− 27AB2D + 36A2CD− 27B2CD + 16AC2D− 20A2D2 − 27ACD2 − 4C2D2 + 11AD3+

+ 6CD3 − 2D4 − 12A3G + 162AB2G− 32A2CG + 108B2CG + 36A2DG− 27B2DG+

+ 32ACDG− 27AD2G− 8CD2G + 6D3G− 16A2G2 + 54B2G2 + 16ADG2 − 4D2G2)/

((2A− D)2(−2AC− C2 + 4AD + 4D2 + 4AG + 6CG− 4DG + 7G2))

and A, B, C, D, G satisfy the equation

− 18AB2C + 4A2C2 − 9B2C2 + 36AB2D− 12A2CD + 27B2CD− 4AC2D + 8A2D2 − 18B2D2+

+ 12ACD2 + C2D2 − 8AD3 − 3CD3 + 2D4 − 72AB2G + 8A2CG− 54B2CG− 12A2DG + 45B2DG+

− 8ACDG + 12AD2G + 2CD2G− 3D3G + 4A2G2 − 45B2G2 − 4ADG2 + D2G2 = 0. (37)

For each of these systems we have found a Darboux integral or an integrating factor
as presented below. All six systems have the invariant line 1 + Gx = 0 and consequently
the Darboux factor

L1 = 1 + Gx. (38)

Looking for other invariant curves we obtain the following.
System (31) has the Darboux integral

Ψ1 = L2Lα3
3 ,

where

L2 =1/2(2 + 3BHx2 − 2(H2 + K)x2 − Hγx2 − 2Hy− γy− 2GHxy− Gγxy− 3B(1 + Gx)y),

L3 =1/2(2 + 3BHx2 − 2(H2 + K)x2 + Hγx2 − 2Hy + γy− 2GHxy + Gγxy− 3B(1 + Gx)y),

α3 =
3B + 2H + γ

−3B− 2H + γ
, γ = ((3B− 2H)2 + 8K)

1
2 .
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System (32) is Hamiltonian with the Hamiltonian function

H2 =
1
2

x2 − A
3

x3 +
1

72
(4A2 + 81B2)x4 − 3B

2
x2y− 3BG

2
x3y +

1
2

y2 + Gxy2 +
1
2

G2x2y2.

System (33) has the Darboux integral

Ψ3 = L1Lα4
4 Lα5

5 ,

where

L4 =2Cδ + 6Dδ− 4δG + 2C2δx + 8CDδx + 6D2δx− 4CδGx− 4DδGx + 2C2Dδx2 + 4CD2δx2+

+ 2D3δx2 − 2CDδGx2 − 2D2δGx2 − 3BCδy− 9BDδy + 6BδGy + Cεy + 3Dεy− 2Gεy+

− 3BCDδxy− 9BD2δxy + 6BDδGxy + CDεxy + 3D2εxy− 2DGεxy,

L5 =2Cδ + 6Dδ− 4δG + 2C2δx + 8CDδx + 6D2δx− 4CδGx− 4DδGx + 2C2Dδx2 + 4CD2δx2+

+ 2D3δx2 − 2CDδGx2 − 2D2δGx2 − 3BCδy− 9BDδy + 6BδGy− Cεy− 3Dεy + 2Gεy+

− 3BCDδxy− 9BD2δxy + 6BDδGxy− CDεxy− 3D2εxy + 2DGεxy,

α4 =− (ζ + 3Bδ)G
2(C + D)ζ

, α5 = − (ζ − 3Bδ)G
2(C + D)ζ

, δ = (C + 3D− 2G)
1
2 ,

ε =(9B2C + 4C3 + 27B2D + 12C2D + 12CD2 + 4D3 − 18B2G+

− 12C2G− 24CDG− 12D2G + 8CG2 + 8DG2)
1
2 ,

ζ =(9B2(C + 3D− 2G) + 4(C + D)(C + D− 2G)(C + D− G))
1
2 .

System (34) has the Darboux integral

Ψ4 =
(

1− 2M
3G

x
)

L
1
2
6 ,

where

L6 =1 + (4M)/(3G)x + (4M2(9G2(9K− 5M) + 5(9K− 4M)M))/(9G2(3G2(9K− 5M)+

+ 5(3K−M)M))x2 + (4KM3x3)/(3Gη) + (20M4y2)/(9G2η) + (20M4xy2)/(9Gη),

η =− 27G2K + 15G2 M− 15KM + 5M2.

System (35) has the Darboux integral

Ψ5 = L1L
1
2
7 ,

where

L7 =
1

3K− 5AG− 10G2 (−5AG− 10G2 + 3K + 10AG2x + 20G3x− 6GKx− 15AG3x2+

+ 9G2Kx2 − 12G3Kx3 + 60G4Hx2y + 30G4y2 + 30DG4xy2).

It is not easy to find a Darboux integral or an integrating factor for system (36) since
we were not able to find a rational parametrization of the variety V6. Solving Equation (37)
for C one can obtain a parametrization of V6 involving radicals of polynomial functions.
However, computer algebra systems do not work efficiently with complicated expressions
involving radicals, so we were not able to solve arising systems and find invariant curves
with MATHEMATICA in this way. Instead, we use another approach. We first look for a
curve on V6 admitting a rational parametrization. As is well known, an algebraic curve
admits a rational parameterization if and only if it is of genus zero (see e.g., [36]). Using the
routine genus of the library normal.lib [34] of the computer algebra system SINGULAR

we found that for
G = 9, D = 3, C = 5
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the polynomial (37) defines a curve of genus zero. Then, with the routine paraPlaneCurve
of the library paraplanecurves.lib [37] we obtained that the curve on the variety V6 is
defined parametrically in the following way

G = 9,

D = 3,

C = 5,

M = 99,

A =
44− 240, 223, 725s6

31, 255, 875s6 ,

B =
574, 215, 075s6 − 88

99, 225s3 ,

H =
44 + 197, 358, 525s6

33, 075s3 ,

K =
4(11 + 5, 060, 475s6)(11− 5, 358, 150s6)

40, 516, 875s6 ,

L =
179, 498, 025s6 − 176

11, 025s3 .
(39)

In this, case except for the Darboux factor (38), the system has the Darboux factor

` = 5 + 70x + 297x2 + 136, 632, 825s6x2 − 66, 150s3y− 595, 350s3xy,

with the cofactor
κ̃ = 13, 230s3x + 119, 070s3x2 + 14y + 126xy (40)

yielding the integrating factor
µ = L1`

−31/14.

By analogy with (40) we look for a quadratic Darboux factor

L8 = ∑
j+k≤2

cjkxjyk

with a cofactor of the form κ = κ1x + κ2y + κ3x2 + κ4xy. Equating the coefficients of similar
monomials on both sides of

X L8 = κ L8

we obtain an algebraic system. We look for a solution of the obtained system following the
pattern arising for the system with parameters (39) and find the coefficients

κ1 = − 1
(A + C)(2A− D)

(3ABC + 3BC2 + 3ABG + 6BCG + 3BG2 + 2Aκ3 − Dκ3),

κ2 = C + G,

κ4 = CG + G2

and cjk. It is not possible to find κ3 from the remaining equations. However, from the equation

m1X (L1)/L1 + m2κ + div(ẋ, ẏ) = 0

where div(ẋ, ẏ) is the divergence of the vector field (36), we find that

m1 = 1, m2 = −2− D
C + G

, κ3 = 3BG
C + G

D− 2A
.

This means that system (36) has the cofactor

κ =
3B(C + G)

D− 2A
x + (C + G)y + 3BG

C + G
D− 2A

x2 + (CG + G2)xy

and the integrating factor

µ6 = L1L
−2− D

C+G
8 ,
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where

L8 =
1

2(D− 2A)2 (−D3(C + G)x2 − 9B2(C + G)2x2 + D2(2 + 2Gx + C2x2 + G2x2+

+ 2Cx(1 + Gx)) + 4A2(2 + C2x2 + G2x2 + Gx(2− Dx) + Cx(2− Dx + 2Gx))+

+ 3BD(C + G)(3Bx2 − 2(y + Gxy)) + 2A(2D2(C + G)x2 − 2D(2 + 2Gx + C2x2+

+ G2x2 + 2Cx(1 + Gx)) + 3B(C + G)(−3Bx2 + 2(y + Gxy))))

with A, B, C, D, G satisfying Equation (37). Therefore, system (36) is Darboux integrable
and, hence, has a center at the origin.

Remark 1. The ideal I1 was also found in [30]. The variety V6 is the same as the variety of the
ideal obtained after the elimination of t from the ideal J2 in [30].

J2 = 〈3AB + 3BC + 3BG + 2AH − DH, 2A3C + 5A2C2 + 4AC3 + C4 − 2A3D− 5A2CD− 4AC2D− C3D+

2A3G + 10A2CG + 12AC2G + 4C3G− 5A2DG− 8ACDG− 3C2DG + 5A2G2 + 12ACG2 + 6C2G2−
4ADG2 − 3CDG2 + 4AG3 + 4CG3 − DG3 + G4 − 4A2 H2 − 4ACH2 − C2 H2 + 2ADH2 + CDH2−
4AGH2 − 2CGH2 + DGH2 − G2 H2 − 2A2K− 4ACK− 2C2K− 4AGK− 4CGK− 2G2K,

4AGH + 2CGH − DGH + 2G2 H + 3AL + 3CL + 3GL, CG− DG + G2 −M,

A2C2 + 2AC3 + C4 − 3A2CD− 6AC2D− 3C3D + 2A2D2 + 4ACD2 + 2C2D2 + 2A2CG+

6AC2G + 4C3G− 3A2DG− 12ACDG− 9C2DG + 4AD2G + 4CD2G + A2G2 + 6ACG2 + 6C2G2−
6ADG2 − 9CDG2 + 2D2G2 + 2AG3 + 4CG3 − 3DG3 + G4 − 2ACH2 − C2 H2 + 4ADH2 + 3CDH2−
2D2 H2 − 8AGH2 − 6CGH2 + 5DGH2 − 5G2 H2, 1− At− Ct− Gt〉.

To check this with eliminate of SINGULAR we eliminated t from J2 and then used the
radical membership test [14,33].

Remark 2. From the proof of the theorem we see that systems from family (8) (that is, CR8
5) are

transformed to systems (31) or to systems (32) by a real transformation (4) (with the coefficients
defined by (21) and (24), respectively). Systems (31) also emerge from (9) (CR9

7) via a real trans-
formation (4) (defined by (25)), whereas systems (32) are obtained from systems (9) with complex
parameters using complex transformation (4) (defined by (26)). In the case of system (10) (CR10

8 )
transformations to systems (33) and (36) are real, whereas systems (34) and (35) emerge from
systems (10) with complex coefficients via complex transformations.

Remark 3. For systems (8) and (9) similar calculations as above were performed in [30]; however,
the authors of [30] limited their consideration to the case 2a0 + c = 0.

4. Orbital Reversibility in Subfamilies of (6)

The following theorem is proved in [32].

Theorem 3. Consider an involution ϕ defined on an open set U ⊂ R2 and denote the fixed points
of involution ϕ by Fix ϕ. Let X be an orbitally ϕ-reversible vector field such that Fix ϕ ∩ U is a
smooth manifold of dimension 1 and p ∈ Fix ϕ ∩ U is an equilibrium point. The next properties
hold:

(1) If F(p) = −1 and det(DX (p)) > 0, then p is a center of X .
(2) If F(p) = −1 and det(DX (p)) < 0, then p is a saddle of X .
(3) If F(p) = 1, then Fix ϕ ∩U is invariant under the flow of X .

In [32] the following statement is also proved.

Lemma 1. Let X be an orbitally ϕ-reversible vector field. If ψ is a change of coordinates, then
the transformed vector field X̃ = Dψ · X ◦ψ−1 is an orbitally ϕ̃-reversible vector field, with
ϕ̃ = ψ◦ϕ◦ψ−1 and F̃ = F◦ψ−1 being the respective transformed involution and factor.
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We now discuss the orbital ϕ-reversibility of the obtained families.

Proposition 1. Systems (31), (32) and (36) are orbitally ϕ-reversible. For systems (31) and (36) the
curve Fix ϕ passes through the center at the origin. For systems (32) the curve Fix ϕ passes through a
saddle point and the systems have two centers.

Proof. To prove the proposition we use the results of [32] where involutions for reversible
systems of [29] were found. In particular, it was shown in [32] that both systems (8) and (9)
have the involution

ϕ(x, y) =
(
−x− c,− xy

x + c

)
.

To all studied systems (6) we apply the change of coordinates (5).
Consider first system (31) (corresponding to V(I1)). In this case c = −2a0. For

parametrization (20) of the variety V(I1) the values of transformation (5) are given by (21).
After straightforward computations we find that

ϕ̃ = ψ ◦ ϕ ◦ ψ−1 =

(
−x,−y(Gx + 1)

Gx− 1

)
. (41)

Then by Lemma 1 ϕ̃ defined above there is an involution of system (31) with the
corresponding factor

F̃1 =
Gx + 1
Gx− 1

(it can be also checked by direct computations that (41) is indeed a ϕ-involution of sys-
tem (31)). From (41) we see that Fix ϕ̃ is the line x = 0.

Consider now system (32) (corresponding to V(I2)). Using (24) we find that the
systems from V(I2) are orbitally ϕ̃2-reversible with

F̃2(x, y) =
A(1 + Gx)

−A− 3G + AGx

and

ϕ̃2(x, y) =
(

3− Ax
A

,
9B(2Ax− 3)− 2A2y(Gx + 1)

2A(A(Gx− 1)− 3G)

)
. (42)

In this case Fix ϕ̃ is the line x = 3
2A , which goes through the saddle point(

3
2A , 27B

4A(2A+3G)

)
. Since the line of symmetry does not pass through the center O at the

origin, the singular point symmetric to O with respect to the line is also a center.
It was found in [32] that system (10) is orbitally ϕ-reversible with respect to

the involution

ϕ =

(
α(x, y),

x(α(x, y) + c + x)
α(x, y)

)
(43)

where α(x, y) is defined implicitly by the equation

α(x, y)2 + (x + c)α(x, y)− xy = 0.

Therefore, according to Lemma 1, systems (36) are ϕ̃-reversible with respect to the
involution

ϕ̃ = ψ ◦ ϕ ◦ ψ−1. (44)

For involution (43) the fixed points are on the line y = x + c. The computations show
that this line is mapped by (5) to a line passing through the origin.

Remark 4. Not all systems (33) correspond to systems (10), but only those whose coefficients
satisfy the condition h1 = 0, where h1 is the polynomial defined by (15). Therefore, by Lemma 1,
systems (33) whose coefficients satisfy the condition h1 = 0 are ϕ̃-reversible with respect to (44).
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For systems (34) and (35) the situation is similar. However systems (34) and (35) correspond to
complex systems from family (10), so in this case involution (44) is complex.

5. Bifurcations of Limit Cycles

In this section we study limit cycles that bifurcate from the origin under small pertur-
bation of the centers of families given in Theorem 2.

Let V = V(I) be the variety of the ideal I = 〈 f1, ..., fm〉 ⊂ k[x1, ..., xn] and let p be a
point from V. By Tp = p + {v | Jp(I)v = 0}, where Jp(I) is the Jacobian of polynomials
f1, ..., fm, calculated at p, we denote the tangent space to V at p. Then dim(Tp) = n −
rank(Jp(I)). By definition p is a smooth point of V if dim(Tp) = dim(Vp).

Methods to obtain lower bounds for cyclicity using linear parts of focus quantities
were proposed in [38,39]. In order to obtain the precise bound for cyclicity in some cases,
they were further developed in [40].

As is mentioned in Section 2, the real polynomial system (1) is written in the complex
form as

Ẋ = i

(
X−

n−1

∑
p+q=1

apqXp+1X̄q

)
, (45)

where apq are complex parameters. Let gkk be the focus quantities of system (11). Denote
by gRkk the polynomials obtained after replacing bqp with āpq in gkk. Then the center variety
of real system (45) is the variety VR of the ideal BR = 〈gR11, gR22, . . .〉. Let BRk be the ideal
〈gR11, . . . , gRkk〉. The following statement is a slightly reformulated Theorem 2.1 of [40].

Theorem 4. Assume that for system (45) p ∈ VR and rank Jp(BRk ) = k. Then p lies on a
component of VR of codimension at least k and there are bifurcations of (45) that produce k− 1
limit cycles locally from the center corresponding to the parameter value p.

If, furthermore, p lies on a component C of VR of codimension k, then p is a smooth point of
the center variety, and the cyclicity of p at generic points of C is exactly k− 1.

Thus, in some cases, the cyclicity of a generic point of a proper component of the
center variety can be estimated if we know its dimension.

Proposition 2. Dimensions of varieties Vi, i = 1, 2, . . . , 6 given in the statement of Theorem 2 are
4, 4, 4, 2, 5 and 4, respectively.

Proof. Consider the variety V5. Using Theorem 1 we first check that (30), or more precisely,

D = t1 = p1(t1),

G = t2 = p2(t2),

H = t3 = p3(t3),

A = t4 = p4(t4),

K = t5 = p5(t5),

B = −2
3

t3 = p6(t3),

C = − t1

2
− t2 = p7(t1, t2),

L = −4
3

t2t3 = p8(t2, t3),

M = −3
2

t1t2 = p9(t1, t2)

(46)

is a parametrization of V(I5). Indeed, computing the fifth elimination ideal of the ideal

〈D− t1, G− t2, H − t3, A− t4, K− t5, B +
2
3

t3, C +
t1

2
+ t2, L +

4
3

t2t3, M +
3
2

t1t2〉

in the ring
Q[t1, t2, t3, t4, t5, A, B, C, D, G, H, K, L, M]

we obtain the ideal I5. Computing now the rank of the matrix

∂(p1, p2, . . . , p9)

∂(t1, . . . , t5)
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at randomly taken points t1 = 2, t2 = 1, t3 = 3, t4 = 4, t5 = 12 we see that it is equal to five.
Therefore the dimension of the component is five.

The dimensions of the other components are computed similarly.

In the next theorem we obtain estimations for the number of limit cycles bifurcating
from the center at the origin for the components Vi, i = 1, . . . , 6. Of course the number
depends on the perturbed family. We consider the perturbations inside family (6) with
R = N = 0, which we denote as A, the whole family (6) is denoted by B, and the complete
family of cubic systems with a center at the origin; that is, the family

Ẋ = i(X−
2

∑
p+q=1

apqXp+1X̄q), (47)

where apq are complex parameters. We denote this family by C.

Theorem 5. (1) The lower bounds for the number of limit cycles for systems corresponding to the
generic points of the components Vi (i = 1, . . . , 5) of the center variety under small perturbations
in families A,B and C are given in the following table:

V1 V2 V3 V4 V5
A 3 2 4 2 2
B 4 3 5 3 3
C 6 3 6 3 5

(2) There are systems from the component V6 for which perturbations in families A, B and C
yield 4, 5 and 6 limit cycles, respectively.

Proof. (1) Consider the component V5. By Proposition 2 its dimension is 5. To treat
the bifurcations inside the family A we substitute in the focus quantities vi of system (6)
R = N = 0. We first compute the Jacobian matrix of the polynomials v1, v2, v3 with respect
to the variables A, B, C, D, G, H, K, L, M and then with the routine MatrixRank of MATH-
EMATICA we find that its rank on generic points of the surface (46) is 3. Computing the
Jacobian matrix of the polynomials v1, . . . , v7 we observe that its rank is also equal to 3.
By Theorem 4 this means that two limit cycles can bifurcate from the origin after small
perturbations in family A.

When we do not impose in system (6) the condition N = R = 0 and compute the
Jacobian matrices with respect to the variables A, B, C, D, G, H, K, L, M, N, R, we obtain that
the rank of the Jacobian matrix of v1, . . . , v4 on the generic points of V5 is 4 (and it remains
4 if we use more polynomials vi); that is, 3 limit cycles can bifurcate from the origin in the
case of perturbations inside family B.

To treat the family C we substitute in the focus quantities gkk a10 = A10 + iB10, b01 =
A10 − iB10, a01 = A01 + iB01, b10 = A01 − iB01, . . . . Then we find that rankJ(BR5 ) = · · · =
rankJ(BR8 ) = 6 at generic points of V5. By Theorem 4 this means that five limit cycles can
bifurcate from the origin under small perturbations in the family C.

Since in all three cases the codimension of the component is greater than the rank of
the Jacobians, we cannot get a sharp bound for cyclicity using Theorem 4.

The number of limit-cycles bifurcating from the origin for the other components Vi
(i = 1, . . . , 4) is determined similarly.

(2) For the component V6 the calculations become too difficult since we do not have a
rational parametrization of the component. For this reason, for the component V6, we were
not able to compute the rank at generic points; however, we checked the rank on some
randomly chosen points of the component obtaining the estimations given in the statement
of the theorem.
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6. Conclusions

Using three families of reversible systems of [29] we have found six components of
the center variety. We do not know if they are proper components of the variety, but it was
shown that all six families are Darboux integrable.

From the study we see that there is no one-to-one correspondence between the families
of [29] and the components of the center variety. In fact, systems of the same family of [29]
can correspond to different components of the center variety. Moreover, they not necessary
correspond to whole components, but in three cases of the obtained six, they correspond to
subcomponents of the Darboux integrable systems. In [29] only real systems were treated.
However, if we consider them as complex systems, then some of the systems correspond to
real systems (6) having a center via complex affine transformations. This indicates that to
better understand the phenomenon of time reversibility and its relation to integrability, it
is worthwhile to study it in a complex setting.

Checking the independence of focus quantities at the points of the obtained com-
ponents of the center variety, we gave some estimations for the number of limit-cycles
bifurcating from the center at the origin.

We also discussed the orbital ϕ-reversibility of the obtained families. For systems CR8
5

and CR9
7 it was shown in [32] that there are some systems in the families that are orbitally

ϕ-reversible and have a center. Theorem 2 and Proposition 1 determine all systems in the
families CR8

5 and CR9
7 with such properties. The existence of centers in the family CR8

10
was not discussed in [32].
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Appendix A

V = 〈2a1 − a0D− a0G + 2a0b2n, a2
1 − a2

0DG + 2a0a1b2n,−a2
1 − a0b2H + 2a2

0a1b2m + 2a0a1b2cm+

8a3
0b2

2mn + 4a2
0b2

2cmn + 4a2
0b2

2n2,−a3
1 − a2

0b2GH + 2a2
0a2

1b2m + 2a0a2
1b2cm + 8a3

0a1b2
2mn+

4a2
0a1b2

2cmn + 4a2
0a1b2

2n2, 2a1b2m−M,−C + 2a0b2m + 2b2n,−8a0a2
1 + a0b2

2 − 4a2
1c + 8a3

0a1b2m+

12a2
0a1b2cm + 4a0a1b2c2m + 16a5

0b2
2m2 + 16a4

0b2
2cm2 + 4a3

0b2
2c2m2 + 4a2

0a1b2n+
4a0a1b2cn + 16a4

0b2
2mn + 8a3

0b2
2cmn + 4a3

0b2
2n2,−4a2

1 − 3a0Bb2 + 2a0a1b2cm+

16a4
0b2

2m2 + 8a3
0b2

2cm2 − 6a0a1b2n + 16a3
0b2

2mn + 4a2
0b2

2cmn + 4a2
0b2

2n2,−2a3
1−

3a2
0b2L− 4a2

0a2
1b2m− 2a0a2

1b2cm + 16a4
0a1b2

2m2 + 8a3
0a1b2

2cm2 − 6a0a2
1b2n−

4a2
0a1b2

2cmn− 4a2
0a1b2

2n2,−4a0a3
1 − Aa2

0b2
2 − 2a3

1c− 12a3
0a2

1b2m− 6a2
0a2

1b2cm +

24a5
0a1b2

2m2 + 28a4
0a1b2

2cm2 + 8a3
0a1b2

2c2m2 + 32a7
0b3

2m3 + 32a6
0b3

2cm3+

8a5
0b3

2c2m3 − 10a2
0a2

1b2n− 4a0a2
1b2cn + 4a4

0a1b2
2mn + 4a3

0a1b2
2cmn + 32a6

0b3
2m2n+

16a5
0b3

2cm2n− 4a3
0a1b2

2n2 + 8a5
0b3

2mn2,−a0b2K− 4a0a3
1m−

2a3
1cm− 8a3

0a2
1b2m2 − 12a2

0a2
1b2cm2 − 4a0a2

1b2c2m2 + 32a5
0a1b2

2m3+

32a4
0a1b2

2cm3 + 8a3
0a1b2

2c2m3 − 2a3
1n− 20a2

0a2
1b2mn− 12a0a2

1b2cmn− 16a3
0a1b2

2cm2n−
8a2

0a1b2
2c2m2n− 8a0a2

1b2n2 − 24a3
0a1b2

2mn2 − 16a2
0a1b2

2cmn2 − 8a2
0a1b2

2n3〉
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Appendix B

Î3 = 〈KD2 − GKD
2 + GMD

2 + M2

2 + KM
2 , CK + 3DK− 2GK + CM + DM, D2 + CD− GD−M,

25KG6

27 − MG6

27 −
50
27 DKG5 − 16

27 CMG5 − 32
27 DMG5 + 25K2G4

27 − 16M2G4

27 + B2KG4 + 1
3 B2 MG4 − 8

27 C2 MG4+
8
27 D2 MG4 + 20

27 KMG4 + 4
27 DK2G3 − 20

27 CM2G3 − 44
27 DM2G3 − 64

27 DKMG3 − 8M3G2

9 +
1
3 B2 M2G2 − 4

9 C2 M2G2 + 4
9 D2 M2G2 − 16

27 KM2G2 + 31
27 K2 MG2 + 4

3 B2KMG2 − 4
27 CM3G− 4

9 DM3G−
16
27 DKM2G− 8M4

27 −
4C2 M3

27 + 4D2 M3

27 − 8KM3

27 + 8K2 M2

27 + 1
3 B2KM2,− 25

36 K2G5 + M2G5

36 +
10
9 KMG5 + 25

18 DK2G4 − 4
9 CM2G4 − 4

9 DM2G4 − 5
6 DKMG4 − 25K3G3

36 − 3
4 B2K2G3 − 1

4 B2 M2G3+
13
4 KM2G3 − 35

18 K2 MG3 − B2KMG3 − 1
9 DK3G2 − 14

9 CM3G2 − 2DM3G2 − 32
9 DKM2G2+

55
18 DK2 MG2 − 4M4G

9 − 1
4 B2 M3G− 2

9 C2 M3G + 2
9 D2 M3G− 8

9 KM3G + 10
9 K2 M2G− 3

2 B2KM2G−
14
9 K3 MG− 7

4 B2K2 MG + 2CM4

9 + 2DM4

9 + 4
9 DKM3 − 4

9 DK2 M2 + 1
2 B2DKM2 + 8

9 DK3 M + B2DK2 M,

− 25KG4

36 + MG4

36 + 25
18 DKG3 + 4

9 CMG3 + 8
9 DMG3 − 25K2G2

36 + 4M2G2

9 − 3
4 B2KG2 − 1

4 B2 MG2 + 2
9 C2 MG2−

2
9 D2 MG2 + 55

36 KMG2 + 8
9 DK2G− 4

9 CM2G− 4
9 DM2G + B2DKG + 1

2 B2DMG− 8
9 DKMG + B2 M2

4 +
2K2 M

9 + 1
4 B2KM, 25KG5

18 − MG5

18 −
25
9 DKG4 − 8

9 CMG4 − 16
9 DMG4 + 25K2G3

18 − 8M2G3

9 + 3
2 B2KG3+

1
2 B2 MG3 − 4

9 C2 MG3 + 4
9 D2 MG3 + 5

2 KMG3 + 2
9 DK2G2 − 16

9 CM2G2 − 32
9 DM2G2 + B2DMG2−

16
3 DKMG2 − 16M3G

9 + 3
2 B2 M2G− 8

9 C2 M2G + 8
9 D2 M2G− 32

9 KM2G + 28
9 K2 MG + 7

2 B2KMG+
8CM3

9 + 8DM3

9 + 16
9 DKM2 − 16

9 DK2 M− 2B2DKM, MG4

18 + B2DG3 + DKG3 + 2
9 CMG3 + 2

3 DMG3+
4M2G2

9 + 1
2 B2 MG2 + 2

9 C2 MG2 − 2
9 D2 MG2 + 7

18 KMG2 + 2
9 CM2G + 2

3 DM2G + B2DMG + 8
9 DKMG+

4M3

9 + B2 M2

2 + 2C2 M2

9 − 2D2 M2

9 + 4KM2

9 ,−MG3

18 − B2DG2 − 1
2 DKG2 − 2

9 CMG2 − 2
3 DMG2 + B2D2G−

4M2G
9 − 1

2 B2 MG− 2
9 C2 MG + 2

9 D2 MG− 8KMG
9 + 2CM2

9 + 2DM2

9 + 1
2 B2DM + 4DKM

9 , 4MC3

9 +
4
9 GMC2 + 4M2C

9 + B2 MC + 1
9 G2 MC + 2B2DG2 − 8DM2

9 + 20GM2

9 + 2DG2K + 4D3 M
9 + 7

3 DG2 M+

B2DM + 2B2GM− 16
9 D2GM− 16DKM

9 + 32GKM
9 ,− G4

9 −
CG3

3 + DG3 + B2G2 − 4D2G2

3 + 25KG2

9 + 4MG2

3 +
4C3G

9 + 4D3G
9 + B2CG− B2DG− 32DKG

9 − 20DMG
9 − 8M2

9 − B2 M− 4C2 M
9 + 4D2 M

9 − 8KM
9 , 4C4

9 −
4GC3

9 +

B2C2 − G2C2

3 + 4MC2

3 + 2G3C
9 − 8GMC

9 − 4D4

9 + G4

9 − B2D2 − B2G2 − D2G2 + 4D3G
3 + 4B2DG + 25G2K

9 −
32DGK

9 + 3B2 M + 4D2 M
9 − 2G2 M

9 − 20DGM
9 − 8KM

9 , AB + CB + 2AH
3 − DH

3 + 2GH
3 + L, H, A + C + D〉

Appendix C

W = 〈−3D− 3G− 8a0b2m− 6b2n, 8a3
0b0b2m3 − 27Hn− 24a2

0b0b2m2n− 36a2
0b2mn2,−9DG + 16a2

0b2
2m2+

24a0b2
2mn,−32a4

0b0b2
2m4 − 81GHn + 48a3

0b0b2
2m3n + 144a3

0b2
2m2n2 + 144a2

0b0b2
2m2n2 + 216a2

0b2
2mn3, 4a4

0b2
0m4−

24a4
0b0m3n + 48a3

0b2
0m3n + 81n2 + 36a4

0m2n2 − 144a3
0b0m2n2 + 144a2

0b2
0m2n2,−C + 2a0b2m + 2b2n,

−16a3
0b0b2m3 − 81Bn + 48a2

0b0b2m2n + 72a2
0b2mn2,−8a2

0b2
2m2 − 3M− 12a0b2

2mn,−8a5
0b2

0b2m5+

192a5
0b0b2m4n− 243An2 − 504a5

0b2m3n2 + 1224a4
0b0b2m3n2 + 216a3

0b2
0b2m3n2 − 1080a4

0b2m2n3+

2376a3
0b0b2m2n3 − 432a2

0b2
0b2m2n3, 128a4

0b0b2
2m4 − 243Ln− 192a3

0b0b2
2m3n− 576a3

0b2
2m2n2 − 576a2

0b0b2
2m2n2−

864a2
0b2

2mn3,−160a6
0b2

0b2
2m6 + 720a5

0b2
0b2

2m5n− 729KKn2 + 1440a6
0b2

2m4n2 + 1440a5
0b0b2

2m4n2 + 6480a5
0b2

2m3n3−
2160a4

0b0b2
2m3n3 − 2160a3

0b2
0b2

2m3n3 + 6480a4
0b2

2m2n4 − 6480a3
0b0b2

2m2n4〉.

Appendix D

Î4 = 〈L, H, 2C + 2D + G, B, 36DK− 45GK− 2AM− 16DM + 24GM, 3DG + 2M, 24AD + 12D2 − 30AG

−45G2 − 8M, 48A2 − 12D2 + 6AG− 99G2 + 216K− 56M, 135G2K + 6AGM− 72G2 M + 72KM− 32M2,

30AG2 + 45G3 + 16AM + 8DM + 8GM〉

Î5 = 〈2C + D + 2G, 3B + 2H, 9DL− 8HM, 4GH + 3L, 3DG + 2M, 60A2D + 180AD2 + 135D3 − 72A2G

+108AG2 + 72G3 + 540DH2 + 270DK− 324GK + 486HL + 188AM + 12DM + 104GM, 20A3 − 135AD2

−135D3 + 66A2G− 84AG2 − 56G3 + 180AH2 − 540DH2 + 90AK + 288GK− 918HL− 144AM− 36DM

−72GM, 486A2 L2 − 729AGL2 − 486G2 L2 + 4374H2 L2 − 240A2KM− 24AGKM + 48G2KM− 2160H2KM

+432AHLM + 224A2 M2 + 24ADM2 − 144D2 M2 − 16AGM2 − 64G2 M2 − 288H2 M2 + 2187KL2

−1080K2 M− 2592L2 M + 1008KM2 − 128M3, 108A2GL− 162AG2 L− 108G3 L− 80A2 HM− 240ADHM

−180D2 HM− 720H3 M + 486GKL− 729HL2 − 360HKM− 282ALM− 156GLM− 16HM2, 12, 150D2K2

+7776G2K2 − 6075AGL2 + 24, 300G2 L2 + 240A2KM + 1080ADKM− 12, 960D2KM− 840AGKM

−6960G2KM− 10, 800H2KM + 5400AHLM− 200A2 M2 − 600ADM2 + 3600D2 M2 + 400AGM2 + 1600G2 M2

+28, 800H2 M2 − 10, 935KL2 + 14, 040K2 M + 40, 500L2 M− 13, 680KM2 + 3200M3, 4050D2 HK + 1080AG2 L

+540G3 L + 80A2 HM + 1860ADHM + 180D2 HM− 3600H3 M− 1944GKL− 3645HL2 + 4680HKM + 2010ALM

+1020GLM− 560HM2, 240A2GK + 24AG2K− 48G3K− 360A2 HL− 3240H3 L− 224A2GM + 16AG2 M
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+64G3 M− 960AH2 M− 720DH2 M + 1080GK2 − 3240HKL− 945AL2 + 1890GL2 − 1008GKM− 288HLM + 16AM2

−96DM2 + 128GM2 , 675D3K + 270AD2 M + 16A2GM + 136AG2 M + 64G3 M− 720DH2 M + 720DKM

−216GKM− 648HLM + 256AM2 − 96DM2 + 128GM2 , 450AD2K + 288AG2K + 144G3K− 540AD2 M

−405D3 M− 8A2GM− 308AG2 M− 152G3 M− 480AH2 M− 1620DH2 M− 405AL2 + 1620GL2 + 480AKM

−330DKM + 348GKM− 2466HLM− 548AM2 − 132DM2 − 184GM2 , 240A2 H2 + 720ADH2 + 540D2 H2

+2160H4 + 120A2K + 12AGK− 24G2K + 2160H2K + 630AHL− 112A2 M− 12ADM + 72D2 M

+8AGM + 32G2 M + 192H2 M + 540K2 + 945L2 − 504KM + 64M2 , 1440AG3 + 720G4 − 4050D2K− 2592G2K

−80A2 M− 1860ADM− 180D2 M + 2680AGM + 1360G2 M + 3600H2 M + 3645L2 − 4680KM + 560M2 , 2880A2G2

−720G4 − 12, 150D2K + 5184G2K + 1360A2 M− 780ADM + 3060D2 M + 520AGM− 80G2 M + 25, 200H2 M

+25, 515L2 − 6840KM + 2000M2 , 3240AG2 L2 + 1620G3 L2 + 10, 800DH2KM + 240A2 HLM− 10, 800H3 LM

+4960AH2 M2 + 480DH2 M2 − 5832GKL2 − 10, 935HL3 + 14, 040HKLM + 6030AL2 M + 3060GL2 M

−1680HLM2 , 23, 328G2K2 L− 18, 225AGL3 + 72, 900G2 L3 + 32, 400DHK2 M + 720A2KLM− 2520AGKLM

−20, 880G2KLM− 32, 400H2KLM + 16, 200AHL2 M + 2880AHKM2 − 34, 560DHKM2 − 600A2 LM2 + 1200AGLM2

+4800G2 LM2 + 86, 400H2 LM2 − 1600AHM3 + 9600DHM3 − 32, 805KL3 + 42, 120K2 LM + 121, 500L3 M− 41, 040KLM2

+9600LM3 , 7776AG2KL + 3888G3KL + 10, 800ADHKM− 8640AG2 LM− 4320G3 LM− 12, 960AH2 LM− 160A2 HM2

−13, 440ADHM2 − 10, 080D2 HM2 − 40, 320H3 M2 − 10, 935AL3 + 43, 740GL3 + 12, 960AKLM + 10, 368GKLM

−68, 040HL2 M− 8640HKM2 − 15, 360ALM2 − 5280GLM2 − 3200HM3 , 20, 736G3K2 + 72, 900G3 L2 − 2304AG2KM

−18, 432G3KM + 54, 000DH2KM + 2160A2 HLM− 45, 360H3 LM + 64A2GM2 + 1024AG2 M2 + 4096G3 M2

+27, 360AH2 M2 + 43, 20DH2 M2 − 58, 320GKL2 − 54, 675HL3 − 21, 600DK2 M + 34, 560GK2 M + 10, 0440HKLM

+21, 870AL2 M + 118, 260GL2 M− 1920AKM2 + 23, 040DKM2 − 33, 792GKM2 − 65, 232HLM2 + 1024AM3 − 6144DM3

+8192GM3 , 129, 600DH2K2 M + 2880A2 HKLM− 129, 600H3KLM + 64, 800AH2 L2 M + 11, 520AH2KM2

−138, 240DH2KM2 − 2400A2 HLM2 + 345, 600H3 LM2 − 6400AH2 M3 + 38, 400DH2 M3 − 69, 984GK2 L2

−131, 220HKL3 + 54, 675AL4 − 218, 700GL4 + 168, 480HK2 LM + 7560AKL2 M + 62, 640GKL2 M + 48, 6000HL3 M

−164, 160HKLM2 − 3600AL2 M2 − 14, 400GL2 M2 + 38, 400HLM3 , 32, 400DH3KM− 38, 880H4 LM + 12, 960AH3 M2

−7290AGL3 − 3645G2 L3 − 32, 805H2 L3 − 360A2KLM− 36AGKLM + 72G2KLM + 35, 640H2KLM + 16, 200AHL2 M

+336A2 LM2 − 24AGLM2 − 96G2 LM2 − 5616H2 LM2 + 32AHM3 − 192DHM3 + 13, 122KL3 − 1620K2 LM

−9720L3 M + 1512KLM2 − 192LM3 , 32, 400ADH2KM− 38, 880AH3 LM− 38, 880ADH2 M2 − 29, 160D2 H2 M2

−116, 640H4 M2 − 17, 496AGKL2 − 8748G2KL2 − 32, 805AHL3 + 38, 880AHKLM + 19, 440AGL2 M + 9720G2 L2 M

−204, 120H2 L2 M + 240A2KM2 + 24AGKM2 − 48G2KM2 − 21, 600H2KM2 − 44, 820AHLM2 − 224A2 M3 − 24ADM3

+144D2 M3 + 16AGM3 + 64G2 M3 − 9216H2 M3 − 98, 415L4 − 23, 328KL2 M + 1080K2 M2 + 13, 770L2 M2 − 1008KM3

+128M4 , 188, 956, 800H3KL2 M− 78, 732, 000AH2 L3 M− 1, 728, 000A2 HK2 M2 − 155, 520, 000H3K2 M2 − 10, 886, 400AH2KLM2

−446, 148, 000H3 L2 M2 + 3, 052, 800A2 HKM3 + 172, 800ADHKM3 + 160, 185, 600H3KM3 + 276, 480AG2 LM3

+138, 240G3 LM3 + 5, 184, 000AH2 LM3 − 1, 323, 520A2 HM4 + 332, 160ADHM4 + 910, 080D2 HM4 − 40, 665, 600H3 M4

+85, 030, 560GK2 L3 + 159, 432, 300HKL4 − 66, 430, 125AL5 + 265, 720, 500GL5 − 188, 956, 800HK2 L2 M− 5, 248, 800AKL3 M

−7, 3483, 200GKL3 M− 590, 490, 000HL4 M− 7, 776, 000HK3 M2 + 129, 600AK2 LM2 − 259, 200GK2 LM2 + 16, 7670, 000HKL2 M2

+1, 093, 500AL3 M2 + 15, 309, 000GL3 M2 + 13, 737, 600HK2 M3 − 21, 600AKLM3 + 63, 936GKLM3 − 3, 203, 7120HL2 M3

−5, 771, 520HKM4 + 442, 560ALM4 − 26, 880GLM4 + 624, 640HM5 , 3, 149, 280H4 L2 M− 2, 332, 800H4KM2 − 1, 049, 760AH3 LM2

+590, 490AGL4 + 295, 245G2 L4 + 2, 657, 205H2 L4 + 46, 656AGKL2 M + 23, 328G2KL2 M− 314, 9280H2KL2 M

−1, 312, 200AHL3 M + 14, 400A2K2 M2 + 1440AGK2 M2 − 2880G2K2 M2 + 129, 600H2K2 M2 − 25, 920AHKLM2

−38, 880AGL2 M2 − 19, 440G2 L2 M2 + 69, 9840H2 L2 M2 − 26, 880A2KM3 − 1440ADKM3 + 8640D2KM3

−384AGKM3 + 6528G2KM3 − 103, 680H2KM3 + 21, 600AHLM3 + 12, 544A2 M4 + 1344ADM4 − 8064D2 M4

−896AGM4 − 3584G2 M4 − 2304H2 M4 − 1, 062, 882KL4 + 787, 320L4 M + 64, 800K3 M2 + 155, 520KL2 M2

−120, 960K2 M3 − 129, 600L2 M3 + 64, 128KM4 − 7168M5 , 116, 640AH3 L2 M− 86, 400AH3KM2 + 349, 920H4 LM2 + 103, 680AH3 M3

+77, 760DH3 M3 + 52, 488AGKL3 + 26, 244G2KL3 + 98, 415AHL4 − 116, 640AHKL2 M

−58, 320AGL3 M− 29, 160G2 L3 M + 612, 360H2 L3 M− 720A2KLM2 − 72AGKLM2+

144G2KLM2 + 64, 800H2KLM2 + 134, 460AHL2 M2 + 672A2 LM3 − 48AGLM3

−192G2 LM3 + 27, 648H2 LM3 + 64AHM4 − 384DHM4 + 295, 245L5 + 69, 984KL3 M

−3240K2 LM2 − 41, 310L3 M2 + 3024KLM3 − 384LM4〉
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9. Bondar, Y.L.; Sadovskiĭ, A.P. Solution of the center and focus problem for a cubic system that reduces to the Liénard system. Differ.

Uravn. 2006, 42, 11–22.
10. Chavarriga, J.; Giné, J. Integrability of cubic systems with degenerate infinity. In Proceedings of the XIV CEDYA/IV Congress of

Applied Mathematics (Spanish), Barcelona, Spain, 15–19 June 1995; p. 12.
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