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Abstract: Observational errors of Particle Filtering are studied over the case of a state-space model
with a linear observation equation. In this study, the observational errors are estimated prior to
the upcoming observations. This action is added to the basic algorithm of the filter as a new step
for the acquisition of the state estimations. This intervention is useful in the presence of missing
data problems mainly, as well as sample tracking for impoverishment issues. It applies theory of
Homogeneous and Non-Homogeneous closed Markov Systems to the study of particle distribution
over the state domain and, thus, lays the foundations for the employment of stochastic control against
impoverishment. A simulating example is quoted to demonstrate the effectiveness of the proposed
method in comparison with existing ones, showing that the proposed method is able to combine
satisfactory precision of results with a low computational cost and provide an example to achieve
impoverishment prediction and tracking.

Keywords: particle filter; missing data; single imputation; impoverishment; Markov Systems

MSC: 60G35; 60G20; 60J05; 62M20

1. Introduction

Particle Filter (PF) methodology deals with the estimation of latent variables of
stochastic processes taking into consideration noisy observations generated by the la-
tent variables [1]. This technique mainly consists of Monte-Carlo (MC) simulation [2] of
the hidden variables and the weight assignment to the realizations of the random trials
during simulation, the particles. This procedure is repeated sequentially, at every time step
of a stochastic process. The involvement of sequential MC simulation in the method is
accompanied by a heavy computational cost. However, the nature of the MC simulation
makes the PF estimation methodology suitable for a wide variety of state-space models, in-
cluding non-linear models with non-Gaussian noise. The weights are defined according to
observations, which are received at every time step. The weight assignment step constitutes
an evaluation process of the existing particles, which are created at the simulation step.

As weight assignment according to an observation dataset is a substantial part of
PF, missing observations hinder the function of the filter. Wang et al. [3] wrote a review
concerning PF on target tracking, wherein they mentioned cases of missing data and
measurement uncertainties within multi-target tracking, as well as methods that deal
with this problem (see, e.g., [4]). Techniques that face the problem of missing data focus
mainly on substitution of the missing data. In recent decades, Expectation-Maximization
algorithm [5] and Markov-Chain Monte Carlo methods [6] became popular for handling
missing data problems. These algorithms have been constructed independently of PF.
Gopaluni [7] proposed a combination of Expectation-Maximization algorithm with PF for
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parameter estimation with missing data. Housfater et al. [8] devised Multiple Imputations
Particle Filter (MIPF), wherein missing data are substituted by multiple imputations from
a proposal distribution and these imputations are evaluated with an additional weight
assignment according to their proposal distribution. Xu et al. [9] involved uncertainty
on data availability in the observations with the form of additional random variables in
the subject state-space model. All the aforementioned approaches are powerful, although
computationally costly.

This paper focuses on state-space models with linear observation equations and pro-
vides an estimation of the errors of missing observations (in cases of missing data), aiming
at the approximation of weights, under a Missing At Random (MAR) assumption [10]. Lin-
earity in an observation equation permits sequential replacements of missing values with
equal quantities of known distributions. Although this method is applicable to a smaller
set of models than the former ones, it is much faster as it leads to a single imputation
process. A simulating example is provided for the comparison of the suggested method
with existing techniques for the advantages of the proposed algorithm to be highlighted.
The contribution of the a priori estimation step to the study of impoverishment phenomena
is also exhibited through Markov System (MS) framework (see, e.g., [11]). The substitution
of future weights renders the estimation of future distribution of particles in the state
domain feasible. The significance of this initiative lays on the possible estimation of the
sample condition concerning impoverishment, in future steps, based on the suggested
theory. Such a practice permits the coordinated application of stochastic control [12] instead
of the mostly empirical approaches that been proposed so far [13].

The present article is based on the work of Lykou and Tsaklidis [14]. Further mathemat-
ical propositions are formed by the sparse remarks exhibited in [14], and the incorporation
procedure of MS-theory in the study of particle distribution is explained in detail. The
presentation of the initial results of the simulation example is reformulated for the exam-
ple to be more easily understandable, as well as a new application of MS-theory for the
quantitative prior estimation of the particle distribution one time step forward is added to
the initial example. In Section 2, PF algorithm is presented analytically. In Section 3, the
new weight estimation step is introduced and its connection with the study of degeneracy
and impoverishment is explained. In Section 4, a simulating example is provided, where
the results of the current method are compared with those of MIPF and the results of the
basic PF algorithm in the case when all data are available. An example for the estimation of
the particle distribution one step ahead after the current is also presented in the direction
of impoverishment tracking and prediction. In Section 5, the discussion and concluding
remarks are quoted.

2. Particle Filter Algorithm

Let {xt}t∈N be a stochastic process described by m-dimensional latent vectors, xt ∈ Rm,
and {yt}t∈N be the k-dimensional process of noisy observations, yt ∈ Rk. The states and
observations are inter-related according to the state-space model,

xt = f (xt−1) + vt (1)

yt = c + Axt + ut ⇔ yt − c− Axt = ut. (2)

In the system of Equations (1) and (2), f is a known deterministic function of xt, vt
stands for the process noise, and ut symbolizes the observation noise. Each sequence
{vt}t∈N and {ut}t∈N consists of independent and identically distributed (iid) random
vectors, while c ∈ Rk is a constant vector and A ∈ Rk×m is a constant matrix.
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PF methodology employs Bayesian inference for state estimation. The Bayesian ap-
proach aims at the construction of the posterior probability distribution function p(xt|y1:t),
where y1:t = (y1, y2, ..., yt), resorting to the recursive equations,

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (prediction)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫

p(yt|x′t)p(x′t|y1:t−1)dx′t
(update).

These equations are analytically solvable in cases of linear state-space models with
Gaussian noises. However, for more general models, analytical solutions are usually
infeasible. For this reason, PF can be applied by utilizing MC simulation and integration
to represent the state posterior probability distribution function, p(xt|y1:t), with the help
of a set of N ∈ N particles xi

t, i = 1, 2, ..., N, with corresponding weights wi
t, i = 1, 2, ..., N.

Then, p(xt|y1:t) can be approximated by the discrete mass probability distribution of the
weighted particles {xi

t}N
i=1 as

p̂(xt|y1:t) ≈
N

∑
i=1

wi
tδ(xt − xi

t),

where δ is the Dirac delta function and weights are normalized, so that ∑i wi
k = 1. As

p(xt|y1:t) is usually unknown; this MC simulation is based on importance sampling, namely
a known probability (importance) density q(xt|y1:t) is chosen in order for the set of particles
to be produced. Then, the state posterior distribution is approximated by

p̂(xt|y1:t) ≈
N

∑
i=1

w̃i
tδ(xt − x̃i

t),

with x̃i
t ∼ q(xt|y1:t), while

w̃i
t ∝ w̃i

t−1
p(yt|x̃i

t)p(x̃i
t|x̃i

t−1)

q(x̃i
t|x̃i

t−1, yt)
(3)

are the normalized particle weights for i = 1, 2, ..., N.
As PF is applied successively for several time steps, it happens that increasing weights

are assigned to the most probable particles, while the weights of the other particles become
negligible progressively. Thus, only a very small proportion of particles is finally used for
the state estimation. This phenomenon is known as PF degeneracy. In order to face this
problem, a resampling with replacement step according to the calculated weights has been
incorporated into the initial algorithm, resulting in the Sampling Importance Resampling
(SIR) algorithm. Nevertheless, sequential resampling leads the particles to take values from
a very small domain and exclude many other less probable values. This problem is called
impoverishment. A criterion over the weight variability has been introduced for a decision
to be made at every time step, whether existing particles should be resampled or not, to
reach the middle ground between degeneracy and impoverishment. In this criterion, the
Effective Sample Size measure of degeneracy, defined as

Ne f f (t) =
N

1 + Varp(•|y1:t)
(w(xt))

,

is involved (see, e.g., [15], pp. 35–36). As this quantity cannot be calculated directly, it can
be estimated as

N̂e f f (t) =
1

∑N
i=1(w̃

i
t)

2
.
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The decision on resampling is positive whenever N̂e f f (t) < NT, where NT = c1N, c1 ∈ R
is a fixed threshold. A usually selected value for NT is 75%N. Establishing a criterion for
resampling slows down sample impoverishment of the sample but does not prevent it.

Algorithm 1 summarizes PF steps. The sampling part corresponds to the prior (pre-
diction) step of Bayesian inference, while weight assignment and possible resampling
constitute the posterior (update) step.

Algorithm 1 SIR Particle Filter

Require: N, q, Ne f f , T
Initialize {xi

0, wi
0}

for t = 1, 2, ..., T do
1. Importance Sampling
Sample x̃i

t ∼ q(xt|xi
0:t−1, yt)

Set x̃i
0:t = (xi

1:t−1, x̃i
t),

Calculate importance weights

w̃i
t ∝ wi

t−1
p(yt |x̃i

t)p(x̃i
t |xi

t−1)

q(x̃i
t |xi

t−1,yt)
.

end for
for i = 1, 2, ..., N do

Normalize weights wi
t =

w̃i
t

∑N
i=1 w̃i

t
2. Resampling
if N̂e f f (t) ≥ NT then

for i = 1, 2, ..., N do
xi

0:t = x̃i
0:t

end for
else

for i = 1, 2, ..., N do
Sample with replacement index j(i) according to the discrete weight distribution
P(j(i) = d) = wd

t , d = 1, ..., N
Set xi

0:t = x̃j(i)
0:t and wi

t =
1
N

end for
end if

end for

3. The Missing Data Case—Estimation of Weights

We now proceed to the addition of a new step to Algorithm 1 for the case of missing
data. For that purpose, some new definitions need be quoted. As the missing data
mechanism is usually unknown, its possible dependence on the missing data themselves
could introduce bias to the statistical inference. For this reason, a Missing at Random
(MAR) assumption is adopted: let a random indicator variable Rt,j, j = 1, ..., k, indicate
whether the jth component of the tth observation is available or not. That is,

Rt,j =

{
0 the jth component is available at time t
1 otherwise

.

Additionally, sets Zt and Wt are defined as the collections of missing and available
components of observations yt, respectively, for every time step t ∈ N.

According to the MAR assumption, the missing data mechanism does not depend on
the missing observations, given the available ones:

P(Rt,j|Zt, Wt) = P(Rt,j|Wt), t ∈ N, j = 1, ..., k.

Proposition 1. Let {xi
t−1}N

i=1 be the set of particles produced for the posterior estimation of
latent vector xt−1, while whole observation yt is missing. In addition, let ui

t, i = 1 . . . N, be
the observational errors for corresponding candidate particles x̃i

t, so that ui
t = yt − c− Ax̃i

t−1,
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according to (2). Then, the conditional distribution of every observational error ui
t on the particle

set {xi
t−1}N

i=1 is approximated as

p(ui
t|{xi

t−1}N
i=1) ≈ p(A( f (x̂t−1)− f (xi

t−1)) + Avt − Avi
t + ut), (4)

where x̂t−1 is a point estimation of xt−1 and vi
t represents the process noise for the generation of xi

t.

Proof. Let xi
t−1 be a particle for the posterior estimation of the hidden state xt−1 of the

state-space model (1)–(2). Then, according to Algorithm 1 and Equation (1), the ith prior
estimation of the hidden state xt is produced by equation

x̃i
t = f (xi

t−1) + vi
t. (5)

According to Equation (2), the observational error of the particle is calculated as

ui
t = yt − c− Ax̃i

t. (6)

If the (whole) observation yt is unavailable, sequential replacements of ui
t and yt from

Equations (6) and (2), respectively, contribute to the creation of the formula,

ui
t = c + Axt + ut − c− Ax̃i

t

= A(xt − x̃i
t) + ut.

As observation yt is considered missing, particles x̃i
t cannot be evaluated. Thus, both

xt and x̃i
t are replaced according to Equations (1) and (5),

ui
t = A f (xt−1) + Avt − A f (xi

t−1)− Avi
t + ut

= A( f (xt−1)− f (xi
t−1)) + Avt − Avi

t + ut.

The hidden state xt−1 is unknown, but its posterior distribution is available, so that a
point estimation of it, x̂t−1, can be calculated. Then,

ui
t ≈ A( f (x̂t−1)− f (xi

t−1)) + Avt − Avi
t + ut. (7)

Therefore, since the quantity A( f (x̂t−1)− f (xi
t−1)) is a constant at time t, the distribu-

tion of ui
t can be approximated as

p(ui
t|{xi

t−1}N
i=1) ≈ p(A( f (x̂t−1)− f (xi

t−1)) + Avt − Avi
t + ut). (8)

Remark 1. Given that the distributions of the random vectors vt, vi
t, and ut are known, the

distribution of Avt − Avi
t + ut is also known, as it is the convolution of linear functions of the

initial components vt, vi
t, and ut. Calculation of such convolutions is not always an easy task, as

analytical solutions may not be feasible, leading to numerical approximation options ([16]). However,
given that each noise process consists of iid vectors and matrix A is constant, the distribution of this
sum needs to be calculated only once.

Remark 2. The replacement of x̃i
t can be avoided, if MC simulation has been implemented at this

time point.

The weight assigned to x̃i
t depends on ui

t, according to Equations (3) and (6), because

p(yt|x̃i
t) = p(ui

t).
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Then, as the two variables (w̃i
t and ui

t) are closely associated, knowledge of the dis-
tribution of ui

t leads to the derivation of the distribution of w̃i
t. Even if the distribution

of w̃i
t may not be exactly calculated, in cases where w̃i

t are complicated functions of ui
t,

knowledge on the distribution of ui
t will suffice to provide information on the weight

distribution. Thereby, calculation of p(ui
t ∈ D), D ⊂ Rk, as it is suggested in Remark 1, is

of interest for the concomitant estimation of weights.

Proposition 2. If the conditions of Proposition 1 hold, while yt is partially observed, the conditional
distribution of every observational error ui

t on particle set {xi
t−1}N

i=1 and collection Wt of available
components of yt is approximated as

p(ui
t|{xi

t−1}N
i=1, Wt) ≈ p(A( f (x̂t−1)− f (xi

t−1)) + Avt − Avi
t + ut|Wt).

Proof. Estimation of ui
t implies the estimation of yt, according to Equation (6). If obser-

vation yt is partially available, its available components, say Wt collection, can be placed
into the above equations. Thus, some components of the observational error will also be
available, while the rest of the components, say Zt collection, possibly dependent on the
available ones, is estimated in the same rationale. In this case, (4) takes the form

p(ui
t|{xi

t−1}N
i=1, Wt) ≈ p(A( f (x̂t−1)− f (xi

t−1)) + Avt − Avi
t + ut|Wt).

In any case, missing (parts of) observational errors ui
t along with their weights can

be substituted by single values, as expected values or modes. Consequently, the initial PF
algorithm undergoes a slight change, as presented in Algorithm 2. Further to Remark 2,
the substitution of observational errors ui

t is implemented after the Importance Sampling
step in Algorithm 2 for the sake of simplicity.

3.1. Connection to Markov Systems and Contribution to the Study over Impoverishment

Impoverishment over the particle samples can be studied in connection with certain
Markov models, the Homogeneous or Non-homogeneous Markov Systems (denoted as
HMSs or NHMSs, respectively) , which have their roots in [17]. With the consideration
of a grid of d ∈ N cells over the state domain, problems of impoverishment reduce to
a problem concerning the derivation of the distribution of the particle population over
the grid cells. Term “grid” denotes here a single partition over the whole state domain.
The cells of this grid represent the states of the MS. At every time step, a particle moves
from cell i (i = 1, . . . , d) to cell j (j = 1, . . . , d) with (time-dependent) transition probability
pij,h(t), (h = 1, . . . , N) in the general case. However, MS consideration is based on the
hypothesis that population members which are situated in the same state move to any cell
at the next time step according to a joint transition probability. Thus, for the introduction
of MS-theory in the study of particle distribution over the grid, probabilities pij,h(t) are
approximated by single quantities pij(t) for all particles in cell i at time point t. The fact
that PF is applied to dynamical systems entails that different areas of the state domain
become of particular interest at different time steps. Therefore, it is preferable for the grid
lines not to remain constant over time. A simple time-varying grid is constructed within
the simulating example in Section 4, while a more complex structure is provided in [18].
In the simple case that the PF algorithm comprises constant parameters and excludes the
resampling step, the corresponding MS can be considered homogeneous, as the particles
only move according to a state equation with constant approximating transition probability
values. Resampling causes the redistribution of particles over the grid. The probability
vectors for this redistribution are defined by the observational errors at every time step.
Thus, steps of changing probability vectors are introduced in the MS rendering this MS
non-homogeneous. Moreover, the results over the grid of both production of weighted
particles on the basis of system (1)–(2) and resampling, at the end of every time step, derive
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the results of sums of multinomial trials with varying probability vectors (see also [19],
p. 28); this procedure corresponds to the transitions of population members between the
state of a MS. In general, the sums of multinomial trials can be considered to follow
generalized multinomial distribution [20] or, more generally, Poisson Binomial distribution
(which has its roots in [21], §14 ). As the number of particles remains constant, according
to Algorithm 1, the MS is considered to be closed. The difficulty in making predictions
on the MS lies in the fact that observational errors are not a priori acquired during the
filtering procedure.

Algorithm 2 SIR Particle Filter for missing data with observational error estimation

Require: N, q, Ne f f , T
Initialize {xi

0, wi
0}

for t = 1, 2, ..., T do
1. Importance Sampling
Sample x̃i

t ∼ q(xt|xi
0:t−1, Wt)

Set x̃i
0:t = (xi

1:t−1, x̃i
t),

Produce observational error estimations ûi
t for the missing components Zt and calculate

importance weights

w̃i
t ∝ wi

t−1
p(yt |x̃i

t)p(x̃i
t |xi

t−1)

q(x̃i
t |xi

t−1,yt)
.

end for
for i = 1, 2, ..., N do

Normalize weights wi
t =

w̃i
t

∑N
i=1 w̃i

t
2. Resampling
if N̂e f f (t) ≥ NT then

for i = 1, 2, ..., N do
xi

0:t = x̃i
0:t

end for
else

for i = 1, 2, ..., N do
Sample with replacement index j(i) according to the discrete weight distribution
P(j(i) = d) = wd

t , d = 1, ..., N
Set xi

0:t = x̃j(i)
0:t and wi

t =
1
N

end for
end if

end for

In this study, observational errors are substituted by single values for one time step, so
that weights can be estimated one step ahead. The set of weights configures the probability
vectors of the resampling step. Thus, the distribution of particles over the grid cells can
be approximated during the upcoming step of resampling and new Importance Sampling.
Thus, the distribution of the particle population can be estimated for the next step on the
basis of the estimated weights for the dispersion of the future particles over the grid to
be assessed and impoverishment phenomena to be predicted. Such a practice paves the
way to the involvement of stochastic control theory [12] (leading to control of asymptotic
variability [22]) into the matter of the avoidance of impoverishment.

4. Simulating Example
4.1. Contribution to the Missing Data Case

A simulation example is presented in this section to emphasize the benefits of the
proposed algorithm. The proposed method is compared with the typical PF algorithm,
when the complete dataset is available, and the multiple imputation particle filter (MIPF)
for n = 5 imputations [8]. The reduction step proposed in [23] is incorporated in the initial
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MIPF algorithm for the best possible results to be achieved. The data simulation is based
on the state-space model of Equations (1) and (2), with two-dimensional vectors

xt =

[
x1,t
x2,t

]
=

[
cos(x1,t−1 − x1,t−1/x2,t−1)
cos(x2,t−1 − x2,t−1/x1,t−1)

]
+

[
v1,t
v2,t

]
(9)

yt = xt + ut,

where vt =

[
v1,t
v2,t

]
∼ N(µ, S1), µ =

[
0
0

]
, S1 =

(
0.05 0

0 0.05

)
, ut ∼ N(µ, S2),

S2 =

(
0.03 0

0 0.03

)
and N symbolizes Gaussian distribution. Let x0 =

[
1

0.5

]
be

considered known. Next, concerning missing data, we let Rt,j ∼ Bernoulli(0.15), j = 1, 2,
that is the data are missing completely at random. N = 100 particles have been used
for every filter. The distributions of noises are also considered known. The weighted
mean is used as a point estimator of a hidden state and missing observational errors are
substituted by their expected values. All the filters have been repeated for 100 times and
their performance concerning their precision and consumed time has been recorded. (The
code was written in R project [24]. Packages mvnorm [25], with its corresponding reference
book [26], ggplot [27], and ggforce [28] were also used. Simulations were performed on an
AMD A8-7600 3.10 GHz processor with 8 GB of RAM.)

The results of the three methods are shown in Table 1. In the first two columns,
the means over the simulations of Root-Mean-Square Errors (RMSE) of the estimators
(weighted means) for each component of the hidden states are presented. The mean of
the two aforementioned columns is also calculated, as well as the mean time consumed
in each approach. In the table, it is shown that the weight estimation with the suggested
method outperforms MIPF concerning both precision and time elapsed. The precision of the
suggested method supersedes that of MIPF slightly, while the mean required computational
time is about 50% less than the corresponding mean time required for MIPF. The proposed
method is also compared with the results of the standard PF algorithm, for which all
observations are available, and it seems that, even if the precision is inevitably reduced
in the case of missing data, the computational time remains nearly the same. The small
differentiation in the mean elapsed time is probably connected with the resampling decision.
That is, in this example, the precision of the suggested method slightly supersedes its
competitor, while its computational cost is much lower than the cost of its competitor,
reaching the levels of the basic filter (which is practically infeasible in the missing data
case). In Figures 1 and 2, the performances of the proposed method and MIPF are depicted
for the two components of the state process, respectively, for one iteration of each filter.
The estimators (weighted means) of the two approaches are close to each other, tracking
the hidden vector satisfactorily. Therefore, in this example, the suggested method appears
to provide the best option between the available ones in the missing data case.

Table 1. Comparison of the results over three methods: the basic PF algorithm, when all observations
are available; the weight estimation method, which is proposed in this study; and MIPF for n = 5
imputations. The methods are compared through the mean of RMSE and the time consumed over
the 100 repeated implementations.

Method Mean RMSE for
(x1,t)

Mean RMSE for
(x2,t)

Overall Mean
Precision

Mean Time
Elapsed (s)

Basic PF 0.1610253 0.1566881 0.1588567 2.5570

Weight est. 0.2065578 0.2102287 0.2083933 2.5491

MIPF 0.2267527 0.2173670 0.2220598 4.9137
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Figure 1. Time-series of the hidden values, the observations, and the corresponding point estimations
of the proposed method and MIPF imputations for the first component x1,t of the state process.

Figure 2. Time-series of the hidden values, the observations, and the corresponding point estimations
of the proposed method and MIPF imputations for the second component x2,t of the state process.

4.2. Contribution to Impoverishment Prediction

As far as estimation of particle distribution one step ahead is concerned, an application
for the transition of the particles from time point t = 9 to t = 10 is presented during one
implementation of the suggested PF with single imputation for missing values on the
available dataset. In the time interval (0,10], only the first component of observation
y6 is unavailable. In the end of time step t = 9, resampling is implemented and the
histograms of the particle sets are exhibited in Figure 3. The sample mean of the particles
is m = [m1 = 0.947 m2 = 1.07]T and the standard deviations of the corresponding
components are s1 = 0.126 and s2 = 0.127. According to Equation (4) and the given
parameters of the problem, the random factor needed to be estimated for every particle at
the next time step is

zi
t = Avt+1 − Avi

t+1 + ut+1 ∼ N(0, Sz), Sz = 2S1 + S2 =

(
σ2

z 0
0 σ2

z

)
,
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where σz = 0.36. Thus, in both dimensions, the following partitions are considered,

Πj = {(−∞, mj − σz/2), [mj − σz/2, mj + σz/2), [mj + σz/2,+∞)}, j = 1, 2,

so that a grid of nine cells is configured over the two dimensions. The frequency table
(Table 2) exhibits the particle distribution over the grid.

(a) Histogram of the particle sample (i =
1, . . . , N) for the posterior estimation of
first component x1,9.

(b) Histogram of the particle sample
(i = 1, . . . , N) for the posterior estima-
tion of second component x2,9.

(c) Joint histogram of the particle sample (i = 1, . . . , N) for the posterior estima-
tion of both components of the whole hidden vector x9. Red lines delimit the
suggested grid cells.The red diamond stands for the hidden state.

Figure 3. Histograms of particle samples for the posterior estimation of hidden variable x9.

The selected time period was chosen because there is a considerable number of
preceding steps that permits a relatively good adaptation of the particle samples over the
hidden states and the samples have not yet collapsed to a tiny neighborhood around a
single point (utter impoverishment). This argument is evinced in Figure 3c and Table 2,
where the distribution of the particles is presented in connection with the hidden state and
the suggested grid. The produced particles are both close to the hidden state, as most of
them are less than one standard deviation σz from it, and sparse enough for the existence
of particles outside the central cell of the grid. Thus, the condition of the sample during
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these time points configures a typical example of filter implementation before its collapse.
Such time points may be suitable starting points for the introduction of control (which
exceeds the limits of this study) as the subject sample is in a good condition concerning
both impoverishment and accuracy over hidden variable estimation.

Table 2. Frequency table of the particle distribution over the suggested grid at the end of t = 9.

1st
Component

2nd Component
(−∞, 0.89) [0.89, 1.25) [1.25,+∞)

(−∞, 0.767) 2 6 3

[0.767, 1.13) 5 77 1

[1.13,+∞) 1 4 1

For the next time step, a prior estimation for hidden vector x10 is implemented. For the
formation of the new grid, the existing particles are moved according to the deterministic
part of Equation (9), resulting in x10(−) = [0.993 0.984]T , the mean of the new particle
set. This quantity constitutes a prior point estimator of the hidden state. Thus, the grid of
t = 9 is shifted by x10(−)−m to a new grid, as shown it Table 3, the central cell of which is

[x10(−)[1]− 0.18, x10(−)[1] + 0, 18)× [x10(−)[2]− 0.18, x10(−)[2] + 0, 18) =

[0.813, 1.17)× [0.804, 1.16).

The movement of all the particles according to the deterministic part of Equation (9)
results in the frequency table in Table 3, where it is shown that all the new particles belong
to the central cell. Even though the particles are identically distributed, with the addition
of the process noise to the particles, the probabilities for particles to move from the central
cell to random ones defer from particle to particle, as the particles have different distances
form the grid lines initially. This fact is in contrast to the theoretical background of MS,
according to which population members have a common transition probability matrix P
to move during a time step. For this reason, the probabilities of particles to move to a cell
with the addition of the random noise are approximated by the probabilities of the point
estimation x10(−) to move to a random cell with the addition of noise. These probabilities
(rounded values) are provided in Table 4. Thus, the expected numbers of particles over the
grid cells are

N ∗ P = 100 ∗

0.044 0.122 0.044
0.122 0.335 0.122
0.044 0.122 0.044


and the expected distribution of the particles over the grid is presented in Table 5. Concern-
ing the expected posterior distribution of the particles, the expected observational errors
are zero, so that particle weights are expected to remain the same. Thus, no further change
is expected in their distribution in cells even if resampling is decided to take place, as all
weights are equal after resampling in the previous time step.

Remark 3. The expected values of observational errors are zero. Nevertheless, the prior estimation
of their distribution according to relation (4) and model parameters, where the variances of the errors
are presented, evinces the increased uncertainty for them, as σ2

u = 0.03 while σ2
z = 0.13.
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Table 3. Frequency table of the particle distribution over the suggested grid at t = 10 when the
particles xi

9, i = 1, . . . , 100, move only according to the deterministic part of Equation (9).

1st
Component

2nd Component
(−∞, 0.804) [0.804, 1.16) [1.16,+∞)

(−∞, 0.813) 0 0 0

[0.813, 1.17) 0 100 0

[1.17,+∞) 0 0 0

Table 4. Transition probability table for x10(−) to move with the addition of process noise v10 .

1st
Component

2nd Component
(−∞, 0.804) [0.804, 1.16) [1.16,+∞)

(−∞, 0.813) 0.044 0.122 0.044

[0.813, 1.17) 0.122 0.335 0.122

[1.17,+∞) 0.044 0.122 0.044

Table 5. Frequency table for the expected numbers of the particles over the grid cells after the
addition of process noise realizations at t = 10.

1st
Component

2nd Component
(−∞, 0.804) [0.804, 1.16) [1.16,+∞)

(−∞, 0.813) 4.4 12.2 4.4

[0.813, 1.17) 12.2 33.5 12.2

[1.17,+∞) 4.4 12.2 4.4

The results of the implementation of PF at time step t = 10 are also exhibited. Resam-
pling has taken place at this time step as well. The joint histogram of the posterior sample
over both dimensions (Figure 4) indicates that the majority of the particles do not belong to
the central cell. This fact is reasonable, as the length of the sides of the central cell equals
only one standard deviation σz, so that prior probabilities for the particles to be placed
outside of the central cell at this time point are considerably big according to the Empirical
Rule (68-95-99.7) for normal distribution. For the consolidation of these results towards
this rule, the orange squares are drawn in Figure 4 for the corresponding areas of the rule
to be defined for each separate dimension, while the orange circles are the corresponding
standard deviation circles (and not ellipses, generally, as the two components have the
same variance σ2

z = 0.13) of the whole vector. Thus, questions on the suitability of the
proposed grid structure are raised for future study. Nevertheless, it should be mentioned
that a grid with a central cell of double side length would have classified all particles to
the central cell during time step t = 9, rendering further study on the issue meaningless.
Additionally, a new grid of nine cells is also constructed around the mean of this posterior
particle set, the central cell of which also has length σz. The distribution of the particles in
the new grid is quoted in Table 6. In comparison with Table 2, it seems that the number of
particles in the central cell is increased in Table 6.
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Table 6. Frequency table of the particle distribution over the grid around the mean of the sample in
the end of t = 10.

1st
Component

2nd Component
(−∞, 1.01) [1.01, 1.37) [1.37,+∞)

(−∞, 1.06) 1 3 0

[1.06, 1.42) 6 90 0

[1.42,+∞) 0 0 0

Figure 4. Joint histogram of the particle sample (i = 1, . . . , N) for the posterior estimation of both
components of the whole hidden vector x10. Red lines delimit the suggested grid cells of Table 3. The
red diamond stands for the hidden state. The red star stands for the observation at this time point.
The sides of the two squares are correspondingly one and two standard deviations σz from the center
of the diagram. The circles are inscribed in the corresponding squares.

Remark 4. In the present example, the transitions of the particles according to the deterministic
function led all particles to a single cell (Table 3), so that the result of the addition of process noise
was handled as a result of a multinomial trial. In the case that the deterministic function leads the
particles to more than one cell, then it is suggested that different means be found for each cell as well
as corresponding transition probabilities, so that the final result can be considered the sum of results
of multinomial trials for the transitions to every cell.

5. Discussion and Conclusions

In this study, single substitution (in contrast to MIPF) of observational errors is pro-
posed for missing data cases, when PF is implemented and MAR assumption is adopted.
This method is a single imputation procedure. Acuña et al. [23] argued against single im-
putation, as it is rather simplistic and it cannot attribute to a single value the distributional
characteristics that can be approached and described by a sample of multiple imputation.
Nevertheless, the primary target of the proposed technique is the minimization of the
computational cost that is added to the initial PF algorithm, in the case of missing data.
For this purpose, interventions in the PF algorithm are slight. Moreover, in the provided
simulation, the suggested method outperforms the multiple imputation approach even for
a considerable number of imputations, whereas Acuña et al. [23] noticed that MIPF with
n = 3, 4, 5 imputations produces very satisfactory results, according to the approximation
of multiple imputation estimator of efficiency provided by Rubin [29]. As a result, in
this example, estimation of observational errors performs better with respect to both the
computational time it requires and the precision it achieves. Besides, knowledge on the
distribution of the observational errors contributes to the quantification possibility of the
uncertainty over the point estimations. Thus, the suggested method takes advantage of the
low computational cost of the single imputation option, while the study of more general
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distributional characteristics of the observational noise can also be taken into account at
the same time (see Remark 3).

The contribution of such a method in order to cope with impoverishment problems is
also worth mentioning. This method permits the estimation of observational errors and
their corresponding weights one time step forward. The evolution of weight distribution
has not been a priori estimated for multiple time steps yet, to the best of the authors’
knowledge, but this is feasible at least for one step ahead. As the weights of the next step
can be estimated, the probabilities that a particle will be chosen at the resampling step
can also be estimated. As explained in Section 3.1, the assessment of weight distribution
for the forthcoming time steps could be very interesting, as far as it is connected with
impoverishment issues. Concerning future perspectives over this issue, the study of
impoverishment problems can be implemented with the use of input control [12], in order
for the impoverishment to be controlled; laws of large numbers [30], as MC approximation
employs large samples; state capacity restrictions [31]; for the existence of a population
limit at every grid cell; literature on the evolution of attainable structures [32]; the evolution
of the distribution of particles [33] or of the corresponding moments [34] in the direction
of HMSs and NHMSs; and for the estimation of the future behaviour of the sample,
possibly reaching continuous-time models [35]. Research on automatic optimal control [36]
could be combined with the suggested methodology, possibly leading to interesting joint
applications of PF [37] along with artificial intelligence [38]. The performance of the
method could also be tested when data are missing for longer time periods [39], while
more sophisticated grid structures could also be examined [18]. Correspondingly, in a
broader sense, the main idea of the proposed method could be implemented in the errors-
in-variables signal processing for missing data cases [40], or it could be involved in more
complex models that require MC simulation for the prior estimation of variables [41].
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The following abbreviations are used in this manuscript:

PF Particle Filter
MC Monte Carlo
MIPF Multiple Imputation Particle Filter
MAR Missing At Random
MS Markov System
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iid independent and identically distributed
SIR Sampling Importance Resampling
HMSs Homogeneous Markov Systems
NHMSs Non-homogeneous Markov Systems
RMSE Root Mean Square Error
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