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Abstract: In this article, we investigate a two-dimensional generalized shallow water wave equation.
Lie symmetries of the equation are computed first and then used to perform symmetry reductions.
By utilizing the three translation symmetries of the equation, a fourth-order ordinary differential
equation is obtained and solved in terms of an incomplete elliptic integral. Moreover, with the aid of
Kudryashov’s approach, more closed-form solutions are constructed. In addition, energy and linear
momentum conservation laws for the underlying equation are computed by engaging the multiplier
approach as well as Noether’s theorem.

Keywords: two-dimensional generalized shallow water wave equation; Lie point symmetries;
Kudryashov’s method; conservation laws; Noether’s theorem

1. Introduction

It is widely known that most physical phenomena of the natural world are governed by
nonlinear partial differential equations (NPDEs). Such equations arise in several physical
and other problems such as in the study of electromagnetism, electrodynamics, fluid
flow, elasticity, propagation of heat or sound, quantum mechanics, meteorology, and
oceanography, just to mention a few. Some of these models include the modified Zakharov-
Kuznetsov model [1] that recounts the ion-acoustic drift solitary waves existing in a
magnetoplasma with electron—positron ions, which are found in a primordial universe.
A generalized system of three-dimensional modified Kadomtsev—Petviashvili-Burgers-
type equation, which describes ion-acoustic and dust-magneto-acoustic waves in one of
cosmic or laboratory dusty plasmas, was studied in [2]. Moreover, in [3], the vector bright
solitons of the Fokas—Lenells system, which models the femtosecond pulses in an optical
fibre, was investigated. In addition, the Boussinesq—Burgers-type system of equations,
which delineates shallow water waves appearing close to lakes or ocean beaches, was
studied in [4]. The list continues; see also [5-15].

To obtain a good understanding of physical phenomena that are governed by NPDEs,
it is imperative to look for their closed-form solutions. However, this is an arduous exercise,
and for several years, researchers and scientists have been working on developing methods
for finding closed-form solutions.

A good number of methods for obtaining closed-form solutions of NPDEs have
been proposed. We have, amongst others, the following various special methods for
finding closed-form solutions of NPDEs: the inverse scattering transform technique [16],
the bifurcation method [17], the simplest equation technique [18], the extended simplest
equation technique [19], Kudryashov’s technique [20], Hirota’s technique [21], Backlund
transformation [22], Darboux transformation [23], the homogeneous balance method [24],
(G’ / G)—expansion technique [25], Lie symmetry method [26-28], etc.
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It was during the halfway point of the nineteenth century that Sophus Lie, a Norwe-
gian mathematician, endowed the study of continuous transformation groups, presently
called Lie groups. These groups have had an intense impact on pure and applied mathemat-
ics in addition to engineering, physics, and other applied sciences. It provides the most effec-
tive and powerful techniques for obtaining closed-form solutions to NPDEs. For example,
see [26-33]. It is worth noting here that the notion of a Galois group had influenced Lie’s
work on differential equations (DEs).

In the study of DEs, conservation laws play a crucial part. Conservation laws can be
used to check whether a given differential equation is integrable. The accuracy of numerical
solution methods can be checked by invoking conservation laws. They can be utilized
in constructing solutions of partial differential equations (PDEs) by reducing their order.
Conservation laws refer to certain physical properties that do not change subsequently
within an isolated physical system. For example, conservation of energy, linear momentum,
angular momentum, and electric charge. Recently, exact solutions were obtained for some
PDEs using conservation laws. For differential equations that arise from the variational
principle, there exists a connection between the symmetries of differential equations and
conservation laws. This fact was established by Emmy Noether, a German mathematician,
in 1918 and is stated in Noether’s theorem. For more details, see for example [34-45] and
the references therein.

In this work, we study the generalized two-dimensional generalized shallow water
wave equation, given by [46]

Uty + QllyUxy + 20UxUyy + Pllyy + Vilxxxry = 0, €))

where «, B, and v are nonzero constants. Here, ¢, x, and y represent, respectively, time and
two scaled space coordinates whereas u(t, x, i) represents the height of the Riemann wave.

In [46], the authors presented painlévé analysis, nonlocal symmetries, and exact
solutions of a variable coefficients form of (1), whereas in [47], the binary Bell polynomials
technique was employed to a variable coefficient form of Equation (1). We note that, in the
study of fluids, this equation decomposes to well-known equations when taking special
cases of constants «, 8, and v. For example, when « = —2, f =0, and v = —1, it becomes a
(2 + 1)-dimensional breaking soliton [48]:

Uty — 2Uylyy — AUxUyy — Uxxxy = 0, 2)

which is one of the models used in describing the two-dimensional interplay of a Riemann
wave distributed along the y-axis with a long wave generated along the x-axis. Wazwaz [49]
obtained solutions of this equation using the modified form of Hirota’s bilinear method.
The authors in [48] presented solutions of Equation (2) using the symmetry method. In
the case where « = 2, § = 0, and v = 1, Equation (1) transforms to a (2 + 1)-dimensional
Calogero—-Bogoyavlenskii-Schiff [50]

Upy + 2uyuxx + 4”x”xy + Uxxxy = 0, 3)

which describes the exchange of a long generating wave in the x direction with a Riemann
generating wave in the y direction. Moreover, the researcher indicated that Equation (3)
possesses soliton as well as N-soliton solutions, which are smooth in one coordinate. In [51],
Wazwaz invoked Hirota’s bilinear approach to secure solutions of (3) and further utilized
the tanh-coth method to gain its travelling wave solutions in [52]. The authors in [53]
derived a Backlund transformation alongside a Lax pair of the form in the Calogero—
Bogoyavlenskii-Schiff Equation (3) via singular manifold method. Furthermore, in [54], the
authors invoked a tanh function as well as improved the (G’ /G)—expansion methods to
construct travelling wave solutions of (3). It was also revealed that some analytic solutions
secured via these methods are analogous. However, a generalized version of (3), namely

Uty + AlxUyy + buyuxx + Uxxxy = 0, 4)
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has been studied by many researchers by simply replacing 4 by a and 2 by b in (3). For
instance, the (G'/G)—expansion technique was invoked to achieve some travelling wave
solutions of (4) in [55]. Moreover, in [56], the authors obtained breather-type and analytic
soliton solutions of (4) by utilizing Hirota’s bilinear method and the extended homoclinic
test technique. Using the idea of a tanh-coth approach, some closed-form solutions of (4)
were obtained in [57]. Furthermore, sine-cosine and complex techniques were engaged to
secure, respectively, analytic and meromorphic exact solutions of (4) in [58,59].

The formation of this paper is as follows: In Section 2, first, we employ Lie’s theory
to reduce (1) to an ordinary differential equation (ODE). Closed-form solutions are then
derived by an integration of the ODE and by invoking Kudryashov’s method. Thereafter,
in Section 3, we construct conserved densities and spatial fluxes for (1) by invoking the
multiplier method and Noether’s theorem. Finally, we present concluding remarks in
Section 4.

2. Exact Solutions

In this section, we derive exact solutions of the two-dimensional generalized shallow
water wave Equation (1). We begin by deriving symmetries of (1) and thereafter use
them to obtain an ODE. We then employ the direct integration procedure together with
Kudryashov’s method to construct closed-form solutions of (1).

2.1. Symmetries and Symmetry Reductions
Consider the symmetry group of (1) brought about by

3 L9 .9 0
U=Tg+ X5+ Y5 +15.

where all T, X, Y, and 7 are functions of variables ¢, x, y, and u. Using the fourth prolon-
gation pr® U in (1) and with the help of Maple, we obtain an overdetermined system of
linear homogeneous PDEs:

TMIOITXIOITy:OIXyIO/YMIOIYXZOIYﬁ:O/Tttt:O/Xu:O/Yyy:O/
217u—|—Tt—Yy:0,2aﬂx+‘BTt—lBYy—Yt:O,Déﬂy-i-Xt:O,ZYty—Ttt:0,
2X, — Ty + Y, = 0.

The above linear PDEs may be easily solved and yield the following eight Lie point
symmetries:

d 0 d d
ul - E’ UZ - al U3 - @/ u4 - @/
d d d d d
US —let@"'?(fa, U6—206t§+lXX£—(ﬁx+lxu)£,

®)
d d d
U7 - lxx$ - 20(]/@ - (D&u + 'Bx)al

0 d 0 d
2 _ _ _
Ug = 2at o Tatxa o+ thtyay (Btx — xy + atu) 5

Consider the symmetry U = Uj + all; + bU3, where a and b are constants. Using
this symmetry U, we reduce (1) to a PDE with one less independent variable, that is,
two independent variables. The symmetry U gives three invariants:

f:x—at,g:y—bt,@zu. (6)
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Using these invariants, Equation (1) reduces to
VOsfre + POfg + abgOrp + 2007070 — bOge — abpr =0, @)

which has

0 ] 0 0
Ry = R3:0¢H(8)*+ﬂH(3)@r

Z Ry, = —
) f/ 2 ag/ ag

0 0 ]

R4—“fﬁ—“8%+(bf—5f_“9)@

as its symmetries. The symmetry R = R; + cRp, with ¢ a constant, provides two invariants

q =g —cf and U = 6. These invariants transform (7) into a nonlinear ordinary differential
equation (NLODE)

™ (q) = ko U'(q) U" (q) + ks U"(q) = 0, ®)
where k; = b —ac? — B,k = —3ac, k3 = —vc* and g = (ac — b)t —cx +y.

2.2. Solution Using Direct Integration

In this subsection, we derive a solution of the two-dimensional generalized shallow
water Equation (1) by direct integration of the ODE (8). Taking U (q) = V(q), Equation (8) becomes

k1 A ko V V4 ks V' =0. 9)

Twice integration of (9) with respect to q gives
1 1 1
#ﬂﬂ—ng+§hW+nv+m:0 (10)

with r and rp constants. Equation (10) can be rewritten as

k k 2r 2r
n_ K2y K3ip 2y, 2
Ve = —3k1V klv —kl 1% —kl . (11)

Assume that 11, n,, and n3 are roots of

—&VZ—@V—@—O

V3 =
ka ka ka

with ny > ny > n3. Equation (11) now becomes

V/Z_kiz

= 3 (V=m)(V—m)(V =3

and its solution could be written in terms of the Jacobi elliptic function [60-62]

ko(nq — n3) n—n
_ _ 2 2(11 — N3 2 2_ M — M
V(q) = np + (np — np)en { T q,R }, R praS— (12)

where cn is the elliptic cosine function. Integrating Equation (12) with respect to g and
returning to the original variables, we accomplish the solution of (1) as
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12k (1 — mp)? ka(nmi—n3) o\ 2
u(t,x,y) = —kz(n1 Y EllipticE |sn BT T q9,R"|,R

1-R*
+{ﬂ2(1’117’l2)R4}q+K, (13)

with ¢ = (ac — b)t — cx + y, K being a constant, and EllipticE[g, k] being the incomplete
elliptic integral given as [60]

1— k252
EllipticE| 14
ipticE[g, k| / = 52 (14)
The wave profile of the periodic solution (13) for parametric values k; = 70,

ky =10,a = —4,b = 02,c = 0.6, K = 1,n; = 100, n, = 50.05, and n3 = —60 at
t = —14, can be seen in Figure 1.

%

o i
-0 10

Figure 1. The 3D and 2D solution profiles of (13).

2.3. Solution via Kudryashov’s Method

In this subsection, we present the solution of (1), which is obtained by employing
Kudryashov’s method [20]. This method is one of the most popular approaches for de-
termining closed-form solutions of NPDEs. The first step is to reduce the NPDE (1) to
a nonlinear ODE, which we already performed using the Lie symmetries in the previ-
ous section. Thus, we work with the ODE (8). We suppose that a solution of (8) can be
expressed as

N
Uq) = ZOA"Y”(q)’ (15)

where Y (g) satisfies the first-order nonlinear ODE

Y'(q) = Y*(q) — Y(q). (16)

We note that the solution of (16) is

Y(q) = ——. (17)
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For Equation (8), the balancing procedure yields N = 1. Thus, from (15), we have
U(q) = Ao+ Ar1Y(q). (18)
Now substituting (18) into (8) and using (16), we obtain

2b A1cY®(q) — 2a A1c®Y3(q) + 3a A1c2Y?(q) — 3b ArcY?(q)
— A1?Y(q)a+bA1cY(q) + 6a A12PY>(q) — 150 A12c*Y4(q)
+12a A12*Y3(q) — 3a Ay 2c®Y?(q) — 2B A1cY3(q) +3 B A1cY?(q)
— BAcY(q) —24v A1PY>(q) + 60v A1cPY(q) — 50V A1 Y3 (g)
+15v A1c®Y2(q) —v A1PY(q) = 0.
Separating on the powers of Y(g) gives the algebraic equations for the coefficients Ay
and A; as

o Alzc2 — 41/Alc3 =0,

bcAy —v Aic® —ac*A; — BAic=0,

BAic—a A2 +5v A1 + ac* A — beA =0,

6a Ay2c> —25v A1c® — ac® A + bcAy — BAc=0.

The solution of these equations is

4vc b—B—c%v
Ap = Ay, A1:7,a:ﬁf.

Thus, the solution of (1) reads

4vc

(1+€Xp{(—‘3_c2v)t_cx+y})' (19)

u(t,x,y) = Ao+ "

The wave profile of the solution (19) for parametric values A9 =0, « =1, f = 0.05,
c=0.01, v =1, t = 0 is presented in Figure 2.

004

Figure 2. The 3D and 2D solution profile of (19).

Invariant solution using Us

The Lie point symmetry Us produces the invariants Iy = ¢, I, = x, and Iz = u —
xy/(2at). The use of these invariants furnishes us with the group invariant solution of (1)
given by
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_w B, C
u(t,x,y) = YRR P +h(t), (20)
where C is a constant and / is a function of ¢.

Invariant solution using Ug

The point symmetry Uy of (1) yields the group invariant solution:

u@Lw=\2QL@§}af=jyg=y (21)

The substitution of this expression for u into (1) gives the PDE
ZVfofg + 40€Gfog + 21)chfo — fof — ZGf =0, (22)

for which the symmetries are

0 0 8 0 ’ ) 0

= G af

(23)

The symmetry I'; gives the invariant solution G(f,g) = U(z) + fg/(2a), where
z = g. This expression for G satisfies the Equation (22) for arbitrary function U. Thus, the
group-invariant solution under Us of (1) is

xy B Uy
u(t,xy) =55 “wt T (24)

where U(y) is an arbitrary function of y.

Invariant solution using Uy

Here, we use the symmetry operator Uy to obtain the invariant solution associated
with this symmetry. The usual procedure gives

u(txy) = U@ - L g =y 25)

Substituting this expression of u into Equation (1) gives the nonlinear ODE
al? + 6afU'U" — 2aUU” + 3vU” + 4v@2U" + 120v¢U" = 0. (26)
Invariant solution using Ug

Finally, the use of symmetry Ug gives the invariant solution

1
u(txy) = —0(f,8) + 5%~ b @)

with f = x/t'/2 and g = y/t, which when substituted in (1) gives the reduced PDE

tXCfoCDg + ZDCCDfCng +VPrrre = 0. (28)
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The above PDE (28) has three Lie symmetries

0 0 0 0 %) %)

0
I = ﬁ+F1(g)%r Iy = Fz(g)%%—ﬁ, I's :fﬁ +F3(8)% — P55 (29)

Now utilizing T'; with F;(g) = 1, we perform a reduction of Equation (28). We obtain
the invariant solution ®(f,g) = U(z), where z = ¢ — f. This reduces Equation (28) to
an ODE

vu"”" —3aU'u” =0, (30)

for which the solution is

28/31/ 0(2/3 25/2
U(Z) = - 064/3 g 24/31/2_" CO; 51,82 ¢, 51 = TD(CO’ Sy = 2C1r

N

where Cy, C; are arbitrary constants and { is the Weierstrass zeta function [60]. Thus, the
solution of (1) is

28/3y w23y x xy  Px
u(trx/y) = \/a4/3t€ \/24/3]/ <t\ﬁ> +C0,51,52 +ﬁ*ﬂ (31)

For the operator I', with F,(g) = 1, we obtain the invariant solution ®(f,g) =
U(f) + g, which reduces (28) to the ODE Uy = 0, for which the solutionis U = C; f + Cy,
where Cp, C; are constants. Reverting to the original variables, we attain the solution of (1)
given by

u(t,x,y):—+—t+—+———. (32)

The dynamic behaviour of the solution (32), for parametric values « = 10, = 5,
C1 =03, C; =0.01, and x = 0.5, is sketched in Figure 3.

{a}

1
;
/ . . . \ , 1 Loy
-15 -10 -5 5 10 15
2
: 0

70 -15 -1 3 o 5 10 15 5L

Figure 3. The 3D and 2D solution profiles of (32).

3. Conservation Laws

We now construct conservation laws for the two-dimensional generalized constant-
coefficient shallow water Equation (1). To achieve this task, we utilize two methods; the
first one is the multiplier method, and the second is classical Noether’s theorem.
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3.1. Conservation Laws Utilizing the Multiplier Method

We determine the conserved vectors of Equation (1) by employing the multiplier
method [26]. Here, we seek first-order multipliers Q = Q(t,x, vy, u, ug, ux, uy), which are
established from

)
5 [Q (utx + attytiny + 2011y + Pllxy + Vizxxy)| =0, (33)

where 6 /6u is the Euler operator [37]

- 5
E_ﬁ—'—g( 1)°Dy, ---D

sy
5= aul] sl
and for our purpose

)

E:%7m%f@%+mm%ﬁ0@mummw+w@%w (34)

with Dy, Dy, and Dy being the total derivative operators given by

Dy = 0t + utdy + updy, + Upx0y, + utyauy +ee
D}C = ax + uxau + utxaut + uxxaux + uxyauy + e, (35)
Dy g ay + uyau + utyaut + uxyaux + uyyauy + ttt .

Expanding (33) and separating on the appropriate derivatives of u, we obtain twenty-
six multiplier-determining equations:

Otr +auy Quy + fQry =0, Qp +aQxy =0, Qny, +4Q, =0, Quy, =0, Quy =0,
qux - 9,=0, Qtux - 2“quu + aQy =0, Qtuy — 2001, Qy + 20 Qy — Z,BQu =0,
Quxr =0, Quxr =0, ny =0, Quy =0, Qyut =0, Qyux =0, Qyuy -20Q, =0,
Quu =0, Quur =0, Quux =0, Quuy =0, Qutuf =0, Qutux =0, Qutuy =0,
quux = O/ quuy = 0/ Quyuy = 0/ quy = 0/
for which the solution is
Q =yF/(t) + G(t) — auyF(t) — 2Ksat?u; — Ksatxuy — 2Ksatyuy
— Ksatu + 2KgBtuy — 2Kyatuy — KsBtx + 4Kgtur + Kexuy
+ 2K6y1/ly + K5xy + Keu + Kouy + Kzuy + K4My + Kqx,
where F and G are arbitrary functions of t and K;, where i = 1,...,6, are constants of

integration. The conserved quantities of Equation (1) are constructed using the diver-
gence identity

DiT' + DyT* + Dy TY = Q(upx + ttytixy + 20t xtixy + Biixy + Vilxxry ), (36)

where T' represents the conserved density and T* and TV are spatial fluxes. Thus, af-
ter some reckoning, we obtain low-order conservation laws corresponding to the eight
multipliers and these are given below.
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Case 1. For Q1 = x — 2atu,, we have the conserved vector

¢ 1 1 1
T = E(xtuuxy - sztuxuy + S Xtx = Sl
2 2 4 3 1 1
T = §ocztuuxuyy + gtxztuuxyuy - gvcztuxuyz + thvtuuxxyy + Etxﬁtuuw - Eavtuxuxyy
1 1 1 1 1
+ thtuxxuyy — QVEUyxyly + szvtuxy2 - szﬁtuyz + Etxtuuty - sztutuy + aXuixiy
1 3 1 1
+ E,Bxuy + VX txy = 5 Vikxy + 5 XUt
2 2 2 3 1 1
le = - focztuuxuxy - gtxztuuxxuy — g(xztuxzuy — Zlm/tuuxxxy - szﬁtuuxy - Zocvtuxuxxy
1 1 1
— foc,Btuxuy + Vi Uyy — —QVEUxxx Uy — KFUU + faxuxz — —ouly + = Bxuy
2 4 4 2 2 2

1 1 1
— E,Bu + vauxxx — Zvuxx;

Case 2. For Q> = u;, we have the conserved vector

;2 1 1 1 1
Ty = S autixUyy + - QUUxy Uy + S VUlyyyy + Eﬁuuxy + —utpy + Zutux,

3 3 2 4
3 3 1
T, = — gvuutxxy + gvutuxxy — ivutxuxy + gvutxxuy + Zvutxyux - gvutyuxx - gauutxuy
1 1 1 2 1 1,
- gauutyux - Z,Buuty - Zuutt + gzxutuyux + Z,Butuy + Zut ,
1 1 1
T = *“utuxz — SOUUp Uy + *,Butux + SVUpx Uy — SVUUpxxx + SVUUxxx — 5 VUixUxy
23 3 4 8 8 8 8
1
- Zﬁuutx;
Case 3. For Q3 = u,, we have the conserved vector
1 1
T3t = Zuxz = Wt
Tx—gocuzu +1auuu +§vuu + —Buyu +1uu +1vuu — —VlUy U
3 T3ty T3 xlbry T gVlatloxy 7T 7 Pty 4tx 8 xxxy — gVhaxbay
1 1 1
+ gvuxxxuy + Zﬁuuxy + 71t
Ty—lzxu 3+1,Bu Z—Eocuu u +1vu Uyxy — =VUU — —Bullyy — svU 2,
3 3 X 4 X 3 xHxx 4 XHXxXx 8 XXXX 4 XX 8 XX 7
Case 4. For Q4 = uy, we have the conserved vector
1
Ti = 7ttty — ity
2 s 1.5 1 1 1 3 1
1= gzxuxuy + 1f5uy — gauuxyuy + Evuxxyuy + Zutuy — gvuuxxyy + Zvuxuxyy
1 5 1 1
— gvuxxuyy — ZLW"V — gauuxuyy — 1[5uuw — Zuuty,
g 1 1 3 1 1 1,
T4 = gauuxuxy + gzxuuxxuy + gvuuxxxy + Zﬁuuxy + iuutx + gtxux Uy + gvuxuxxy

+1uu—1vu u —|—1vu Uy;
4,Bxy 8 xx4xy 8 xxx 4y,
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Case 5. For Qs = —2at?uy — atxiy — 2atyu, — atu — Btx + xy, we have the conserved
vector
4 2 1 1
Té = — gzxthuuxuxy — ézxztzuuyuxx — aﬁtzuuxy — txvtzuuxxxy — Eatzuutx — sztzutux

Y
T5

1 1 1 5 1 1 1 1
+ Eatxuuxx + Eoctyuuxy — lextxux — Eoctyuxuy + thtuux — Eﬁtxux + E[Stu

1 1
+ Exyux — Euy,

1 1 1 1 1 3
2 atzuutt — Eﬁ%xuy + atuuy — E/thut + Eﬁvtuxy — szxuux + vayuxxy

1 1, 2, 2, 1
+ Eﬁxyuy — gzx EXULUyy + gzx tyun iy + gzx FyuLdyylly — gm/txuuxxxy

3 1 1 5 1
+ E“Vty””xxyy — Eocﬁtxuuxy + Eocﬁtyuuyy — gowtxuxuxxy — szvtyuxuxyy
5 3 1 1
— erxﬁtxuxuy + gocvtxuxxuxy + Zavtyuxxuyy — gm/txuxxxuy — QVEYUxxyly
4 5, 3 1 5 1 5 1 5
— gzx Uty + thxt VUllpxxy + E“t VigxUyxy + thxt VUpyUxyx — thxt VilpxxUy
2

1 5 3 o 1 .0 1 0 2,
— Eﬂét Vidgyly — Zat Vilyyylt + szﬁt Uy — Eaﬁt Uy — goc txuy iy

4 , ) 5 1 , 1 » 1 1
- gvc tyuxuy” + o tuuxuy + szvtyuxy — Eaﬁtyuy — thtxuutx + Etxtyuuty

3 1 1 1 3
+ izxvtuuxxy + aftuuy — izxtxutux — Eoctyutuy — szvtuxuxy — Eﬁvtxuxxy

250 250 1, 1 1 o, 5 1
+ axyuxuy + gtx Uty + goc Uty Uy + Zu o+ EWX — Elxt U~ — vauxx

1 1

— Evyuxy + Eutxy,

1a2txuu u 2a2t UlyU zoczt UllyxUy + 1lethuu + 1m/txuu

3 allxx = 3 YUUxUxy 3 YUlxxUy 2 g XXXX
3oa/t uu 1ocﬁt uu 1oa/txu u 1m/t Uyl 104/31‘ Uyl
1 YUl xxxy 5 YUulyy 1 xlbxxx — YUxUxxy 5 Yuxuy

+ Eaa/tyuxxuxy - szvtyuxxxuy + 506 Uy — vat UxUpyxx — EIX‘Bt Uy Ut

1 1 1 1 2
+ ;rxtzvuutxxx + Zloct2vuxxutx — 1zxt2vuxxxut + Ea/}utzutx — gaztyuxzuy

3 1 3 3 1
— Zlocﬁtxuxz + gavtxuxxz — atyuuy + 1leBtuux + gavtuuxxx — gtxvtuxuxx

1 1 1 1 2 1 1
- Zlﬁvtxuxxx - Zyvuxx — E,Byu + E,thu — gaztzutuxz + Eaxyuxz — anuux

1 1 1 1 1 1
+ Eyﬁxux + Zyvuxxxx — gzxzifxux3 + gzxztuuxz - E,thxux + Zﬁw””;
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Case 6. For Qg = 2Btuy, + 2yuy + 4tu; + xuy + u, we have the conserved vector

;8 4 3 1
Ty = guuxuxyat + guuxxuyzxt + 2uliyxxy vt + Euuxyﬁt + Uttt — Euuxxx —

Euuxyy
1 1 1,
_ Zuux + Euxuy/%t + uust + qu x4+ Euxuyy,
1 1 1 1 1 3
¢ = Eﬁyuyz + Zutuxx + Eutuyy + Eﬁztuyz — Ulpt — E1/3/qu2 — EVWXW + Evuxuxy

4 4
foctuutxuy — gatuutyux

1 1 4
+ XUy — Eyuuty — Buuy + PPt — uuyp + gaﬁtuxuyz ~3

4

3 8 1 1 1
- Z,thuuxxyy + gtxtutuxuy + Eﬁvtuxuxyy — Zﬁvtuxxuyy + Brtuyxyuy + gtxxuuxuxy

2 2 4 2
SaxXUx Uy + gzxyuxuy

2 2 2
— gAYy — SRYUllylly — gzxﬁtuuxuw - ézxﬁtuuxyuy + 3

3 3
SVEU Uy + Eﬁtutuy

3 3
SVEUU ey — E/Btuuty + 5

1 1 1
+ Zﬂxuxuy - Eﬁztuuw - E/thuxyz ~ 3

1 3
,vtutyuxx + SVXUUxxxy — Zvyuuxxyy

1
S VEUtxxUy + Vg iy — >

— Vtllpxllyy + 5

8
5 1 3 1 1
+ gvxuxuxxy + ivyuxuxyy — gvxuxxuxy — Zvyuxxuyy + gvxuxxxuy + VYlxxyly
1 1
— ULy Uy + E,Bxuuxy — E,Byuuyy,
y 2 2 5 4 1 2 1
T6 = gzxyuuyuxx + goc[%tux Uy — gtxtuutxux — gocxuuxuxx + évcyuuxuxy + Z,Bl/tuxuxxy
3 1 1 2 2
+ Z,thuuxxxy — Zﬁvtuxxuxy + Z,thuxxxuy + gaﬁtuuyuxx + gaﬁtuuxuxy
1 1 1 1 4 2
+ Evyuxxxuy + Euﬁztuxy — Euﬁuxxx + iuﬁuxyy + gzxtutuxz + gtxyuxzuy

1 1
—UXUxUyyyx + Zvyuxuxxy + E,Byuxuy

1 1
+ Eﬁztuxuy + Btusuy + Evtutxxux + 1

1 3 1
— —VtUUpyyxy — =VXUUyxxx + Zvyuuxxxy + —VtUiUyyy — VU Uyy — Zvyuxxuxy

2 8 2 2
+ uyu 1vcuu 24 1ﬁxu 2 1ﬁuu + 11/u u VXl vuu
Yuix 3 x 1 x 2 x T gVllxlh — xx 3 XXX
+ 1owcu 3
3 X 7

Case 7. For Q7 = yF'(t) — auyF(t), we have the conserved vector
1 1 1
T = — Eyuxl-"’(if) + (4¢xuuxx — 4au§>F(t),
1 1 3 1 1 1 1
5 = — Ey,ﬂ://(f) + (ayuxuy — s + 1 VY Uy + E,Byuy - EM‘B + SUtY — 4V14xx) F'(t)

1 1
— XUl + aﬁuuxy

5 1
SOVUxUxyxy + ucﬁuxuy + 1

1, 2 5
3“ UllxUyy + 3rx u uy+ 3

1 1 3
+§1xvuuxxxy + Zauutx — gzxvuxxuxy + Savuxxxuy) F(t)
1 1 1 1 1 1
Ty = (szyuf; + Eﬁyux + 4vyuxxxx> ( WUl Uy — gtxzuz - thﬁu,zc + gavuix

1 1
—Zlva/uxuxxx + Socvuuxxxx + oc,Buuxx
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Case 8. For Qg = G(t), we have the conserved vector

1
Té = Euxc;(t),

1 1 3 1
Tg = — EMG/(t) + (vcuxuy + Eﬁuy + Zvuxxy + zut) G(t)/
1 1 1
Tg = (206113% + Eﬁux + 2V14xxx> G(t).

3.2. Conservation Laws Utilizing Noether’s Theorem

We now construct conservation laws for Equation (1). We utilize the classical Noether’s
theorem [34,43] to achieve this task.
Equation (1) has a second-order Lagrangian

1
L :E (Vuxxuxy — UtUx — ’W%c”y - ﬁuxuy)’ (37)

since 0L/éu = 0 on (1). Here, §/0u is the Euler operator. Thus, we can determine the
Noether symmetries of (1) by employing the Lagrangian (37) on the determining equation

XL 4+ £{D(1) + Dx(€) + Dy(¢)} — D+(G') — D+(G¥) — Dy (G¥) = 0, (38)

with gauge functions G!, G*, and GY. Expanding (38) and solving the resultant linear PDEs
yield the following Noether symmetries and gauge functions:

0
X;=-—,G'=0,G"=0,GY =0,
ot’
Xzzi,cfzolcx:o,cy:(),
dy
Xs = g(t) 2, Gt = 0,G% = — Sug/(1),GY = 0
3 g aul 7 2 g 2 y
d d 1 1
X :2 - _— t:—f x: ]/:_,
4 atay—i—xau,G 2u,G 0,G Z[Su,

Xs = af(t )aax Fyf )3 G' = 0,G* = —uyf" (1) — 5puf (1),G* =0,

— y —
Bu, G 0,GY = -p-u.

0 d d o
X6—4octa +axss +2wyay (/3x+au)£,G =

Thus, the conserved vectors corresponding to the above obtained Noether point

symmetries, using [41]
‘ 1 oL
Tk:£§k+ (Ua_u$j§])< >> 2( _ xleé)a o
1=k L

are given by, respectively,

Bl

Lk

1 1 1
Tlt =— Erxu%uy — E,Buxuy + Evuxxuxy,
" 3 1 1 2
Ty =aupuyuy + Zvutuxxy — Zvuxxuty - Evutxuxy + iﬁutuy + Eut’

1 1
Ti/ = —qupu? + E[Sutux +

“VUtUxxx — wVUxxUtyx,
2 4 !

4
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1
Té :Euxuy/

1 3 1 1 !
T} =5ttty + ucuxuﬁ + g Viylhay — EV”?cy = g Viaxtlyy 55”5’

y 1 1 1 .
T2 zivuxxuxy + Zvuxxxuy - Eutux’
1

Té = — Euxg(t)/

3 1 1
= (—[xuxuy — Z1/uxxy — Eﬁuy — Zut>g(t) + iug’(t)/

1 1 1
Ty = (—zau,zc - E,Bux - 41/uxxx)g(t);
1 1
Ti :Eu — Exux + atuxily,
v 1 1 1 5 2
T, fivuxy — Exut — AXUyly — Eﬁxuy — vauxxy + atupuy + 20 tuxuy, + avtuyUyyy
— uwtu,zcy — aViUxyxlyy + ocﬁtui,
1 1 1
Tz :Eﬁu + zxvtuyuxxx — vauxxx — E,Bxux — Eaxu,zc — otusu, + m/tuxxuxy;
1 1
TL =S wi ()~ Sy f' (1),
1 3 1 1 3
TS = <2¢x2u§uy + Zavuxuxxy — 4oc1/uxxuxy>f(t) + <—2yut — QY Uylly — Zvyu”y
1 1 1 y 1 "
+1vuxx - Eﬁyuy + 2,Bu)f (t) + Eyuf (1),
1 1 1 1 1 1
T5y = <2a2u?{ + Etx,Bu,zc + 2Vt — 4avu§x)f(t) — <2ayu32€ + Eﬁyux
1
+4Vyuxxx>f,(t)}
g1 5 2, 2,1 1
Ty zixrxux — 2tauyuy + Exﬁux + Etxuux + yauyuy — 2tafuyuy + 2001y Uy
1
— Eﬁul
1
T¢ :Exuyu)%ocz + ZyuiuxocZ + uuyuxrxz + 4tuyuxutrx2 + yﬁuﬁzx - yvu,zcyoc + 2tula

1 3 1 1
+ Eﬁuuytx + xPuyUrd — ViyxUyyo — Evuyuxxa — Eyvuwuxxzx — vauxyuxxzx
3 3 3 1
+ ZLW”""V“ + Eyvuyuxxyzx + vauxuxxya + Euuta + yuyua + 2tBuyura
1 1 3
+ 3tVthyxy U — Py Uy — 200Uy U + Exﬁzuy — Eﬁvuxy + 1xﬁvuxxy

1
+ Exﬁut/
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1 1 1 1 1
T6y zixzxzui + xapu’ + Eazuuﬁ + 2tatusu? + Exleux + Eaﬁuux — 5 Wilkxxiix
2

1 1 1 1
+ Exoa/uxxxux —yaupy + 2tafusiy — Exoa/uxx — Eﬁvuxx + Eyoa/uxyuxx

1 1 1 1,
+ Zxﬁvuxxx + Zucvuuxxx + Eyavuyuxxx + FXV Uy Ut — XV Uy Uy — E’B u.

It should be noted that we derived eight conservation laws of (1) by invoking the
multiplier method whereas Noether’s theorem yielded six conservation laws. However,
we see that only one conservation law is common when using both methods. The conser-
vation laws obtained with the Lagrange multiplier method could be obtained by means
of Noether’s theorem using contact transformations. Thus, we conclude that there are
benefits and constraints of the different methods used when deriving the conservation
laws of nonlinear partial differential equations.

4. Concluding Remarks

In this paper, we investigated the generalized two-dimensional generalized shallow
water wave Equation (1). We determined the Lie point symmetries of this equation,
performed symmetry reductions, and reduced it to an NLODE (8). This NLODE (8) was
integrated directly and its solution was obtained in the form of an incomplete elliptic
integral. Moreover, Kudrayshov’s method was employed to obtain the solution of the
NLODE (8). These solutions were presented graphically. Finally, we used the multiplier
method and Noether’s theorem to derive the conservation laws of (1). The multiplier
method yielded eight multipliers, which gave eight local conservation laws for Equation (1),
whereas Noether’s theorem provided us with six local conservation laws, which included
energy and linear momentum conservation laws.
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