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Abstract: With the development of social networks and intelligent terminals, it is becoming more
convenient to share and acquire images. The massive growth of the number of social images makes
people have higher demands for automatic image processing, especially in the aesthetic and emotional
perspective. Both aesthetics assessment and emotion recognition require a higher ability for the
computer to simulate high-level visual perception understanding, which belongs to the field of image
processing and pattern recognition. However, existing methods often ignore the prior knowledge of
images and intrinsic relationships between aesthetic and emotional perspectives. Recently, machine
learning and deep learning have become powerful methods for researchers to solve mathematical
problems in computing, such as image processing and pattern recognition. Both images and abstract
concepts can be converted into numerical matrices and then establish the mapping relations using
mathematics on computers. In this work, we propose an end-to-end multi-output deep learning
model based on multimodal Graph Convolutional Network (GCN) and co-attention for aesthetic
and emotion conjoint analysis. In our model, a stacked multimodal GCN network is proposed
to encode the features under the guidance of the correlation matrix, and a co-attention module is
designed to help the aesthetics and emotion feature representation learn from each other interactively.
Experimental results indicate that our proposed model achieves competitive performance on the IAE
dataset. Progressive results on the AVA and ArtPhoto datasets also prove the generalization ability
of our model.

Keywords: image aesthetics and emotion analysis; multi-out learning; image semantic recognition;
multimodal learning; Graph Convolutional Network; co-attention; intermediate supervision

1. Introduction

Current massive media and interactive modes have been developing since the Internet
revolution. Presently, people tend to enjoy, share and store images of higher aesthetic
quality in social networking [1]. At the same time, they often want to convey their emotional
information to others by images [2]. Both aesthetics and emotion are the abstract and high-
level semantic information of images, which contains lots of subjectivity [3]. There are
a wide variety of applications in aesthetic assessment and emotion recognition, such as
photo album management [4], on-line photo suggestion [5], image retrieval [6], digital
monitoring [7], and news analysis [8]. Therefore, it is significant to analyze the aesthetics
and emotion of images [9].

The image aesthetics study is typically cast into a classification or regression problem
where the visual content is mapped to the aesthetic ratings provided by human annota-
tors [10,11]. The emotion recognition of images is trying to predict the aroused human
emotion when given a particular piece of visual content [12,13]. Many early works have
mostly focused on manually crafted methods, which rely on various pixel-level features as
well as feature representations such as color histograms [14],texture descriptors [15] and
SIFT [16]. In recent years many deep neural network models, especially Convolutional
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Neural Network (CNN), have achieved the state-of-the-art performance on many computer
vision-related tasks [17–20]. An important reason for the success of CNN is that many large-
scale datasets are available, such as AVA [21], MS_COCO [22], T4SA [23] and PhotoArt [24].
These datasets have tremendously promoted the development on many visual research
areas, for example, image semantic segmentation [25,26], aesthetics assessment [27,28], and
emotion recognition [29,30].

However, most studies treat image aesthetics assessment and emotion recognition as
two independent studies, ignoring the fact that they are both people’s mental responses
to visual stimuli and correlated, i.e., an image can touch one’s heart not only because of
its visual content, but also its aesthetic composition. Images with higher aesthetic quality
usually arouse people some positive emotions. Psychological studies have proved that
human aesthetics as well as emotion can be aroused by visual content in the same time and
affected with each other [31,32].

Besides that, the composition information of different visual elements and the se-
mantic correlations between them define the harmony of an image [33]. Both aesthetics
assessment and emotion recognition can benefit from capturing and exploring such impor-
tant dependencies, which exist everywhere in our life, in visual and textual form [34,35].
Constructing a new large-scale multimodal dataset for it can be helpful but too costly. An
alternative approach is to combine existing datasets with common large-scale corpora in
some way.

Motivated by all of this, in this paper, we propose a multi-output learning model based
on multimodal GCN and co-attention for aesthetics and emotion analysis. A summary of
our work is as follows:

1. Assisted by target and scene recognition, we extract semantic labels from images. Via
combining the co-occurrence frequency of the tags in the image dataset with their
similarity in the external large-scale textual corpus, we construct two correlation
matrices for aesthetics assessment and emotion recognition, respectively. Besides
that, we also produce a 2D marked feature map to map the correlation similarity onto
the image.

2. We convert an image into a regional graph in which each node denotes one region,
and any two nodes are connected by a weighted edge. The weight is obtained by
combining their visual similarity and correlation similarity. We perform reasoning on
the graph with stacked graph convolution and acquire composition-aware re-encoded
feature representation.

3. A co-attention module is designed to capture the mutual impacts between aesthetics
and emotion for further enhancing the feature representations.

The main contributions of our work are as follows:

• We propose a novel end-to-end trainable multi-output learning framework for image
aesthetics and emotion analysis.

• We extract semantic labels from images, construct multimodal correlation matrix, and
propose a unique regional feature encoding mechanism that can capture potential
aesthetic and emotional relationships.

• We present to use co-attention mechanism to jointly generate the aesthetics-guided and
emotion-guided attention, which leads to better understanding of image aesthetics
and emotion from each other interactively.

• We evaluate our method on three datasets, and our proposed method consistently
achieves superior performance over previous approaches.

The remainder of this work is organized as follows: in Section 2, we discuss previous
relevant works on image aesthetics assessment and emotion recognition. Section 3 details
our proposed multi-output learning model based on multimodal GCN and co-attention for
aesthetic and emotion analysis. In Section 4, we describe the datasets and implementation
details in our experiments, and then discuss the experimental results. Finally, in Section 5,
we conclude our work and present the future direction.
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2. Related Work

In this section, we discuss the related work of our proposed method. Before the
popularity of CNN, most emotion recognition studies has been dominated by traditional
methods using manually crafted features or shallow classifiers such as local binary patterns
(LBPs) [13,15,36], the Facial Action Coding System (FACS) with action units (AUs) [22,23],
and sparse learning [13]. In the last few years, deep neural networks have contributed a lot
to performance improvements concerning other popular learning algorithms, such as Naive
Bayes and SVM [37]. In particular, Long Short-Term Memory Networks (LSTM) [38–40]
and Convolutional Neural Networks (CNN) [29,41,42] were used for many emotion recog-
nition tasks, such as Twitter [39] and some other image datasets [43]. Most existing visual
sentiment classifiers have been trained on images, in which the emotion category is an-
notated by crowd-sourcing. Researchers propose deep networks to detect emotions by
encoding visual features and map them with true labels.

As for aesthetics assessment, the estimation of image styles, aesthetics, and quality
has been actively investigated over the past few decades. Similar to emotion recognition
studies, the work in image aesthetics evaluation experience the process from traditional
ways [21] to deep learning models [44,45]. K. Sheng et al. [46] presented an attention-based
multi-patch aggregation network that enhances training signals by assigning relatively
larger weights to misclassified image patches. Bowen Pan et al. [47] proposed a multi-task
deep convolutional rating network to learn the aesthetic score and attributes simultaneously
through a generative adversarial network.

However, researchers rarely focus on analyzing these two high-level and abstract
concepts, image aesthetic quality and emotional expression, in an interactive and unified
way, which has proved effective in the fields of computer [3,9,48] and psychology [31,32].
Yu et al. [49] extend a large-scale emotion dataset by further rating the aesthetic scores
by volunteers and propose a hybrid multi-task learning model on unified aesthetics and
emotion prediction. Nevertheless, they just concatenate the final output vectors which may
lead to inadequate learning.

In view of the significant progress in cross-modal learning that the co-attention mech-
anism has made [50,51], we propose a co-attention model to encode aesthetics and emotion
features in an interactive way simultaneously.

Besides that, most attention to previous work is paid to modeling the image itself to
improve the performance, ignoring to explore intrinsic and high-level properties, such as
the composition of semantic elements. Recently, GCN has been widely used for natural
language processing and text emotion recognition [52,53], due to its powerful capacity of
exploring relationships among semantic and emotional elements. GCN can focus on graph-
structure data and encode features based on only themselves but also their relationships
with each other. Some researchers have applied GCN to semantic vision, as CNN cannot
reason rich dependency of different visual contents. Chen et al. [33] proposes a multi-label
image classification model based on GCN. They build a directed graph over the object
labels and map the label graph into a set of object classifiers. Liu et al. [34] takes the image
as a graph of regional nodes and computes aesthetic properties by reasoning on the graph.
Despite this, they only consider relationships that exist in their dataset. Combining textual
contents to facilitate visual understanding is usually a very effective approach, but one of
the limitations is the lack of multimodal data.

To address this issue, we transfer two large-scale textual corpora and construct the
relation graph assisted by mining knowledge from them. In this paper, we present a
multi-output learning model integrating GCN and co-attention to predict aesthetics and
emotion in the images.

3. Proposed Model

In this section, we propose a model for image aesthetics and emotion transactional
analysis assisted by multimodal GCN and co-attention mechanism. The pipeline of our
proposed framework is shown in Figure 1. First, we conduct textual multi-label semantic
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recognition and construct a correlation matrix for these labels assisted by external knowl-
edge transferring. Taking an image as the input, we extract the regional feature map from
the deep network and carry out information propagation on this regional graph via GCN.
After that, we acquire a processed regional feature map. We train two parallel branches
for aesthetics assessment and emotion recognition, respectively, and then send the two
elaborate regional feature maps to the co-attention module. The co-attention module
generates two attention mask matrix: one for the aesthetics feature and the other for the
emotion feature. Finally, we gain two attentional feature descriptors and take them to
perform prediction on each of those tasks.

Figure 1. Illustration of our proposed framework.

3.1. Textual Multi-Label Semantic Recognition

Image aesthetics assessment and emotion recognition could profit from multimodal
contents as they can provide more vivid and adequate information. For that purpose, we
would like to extract multiple textual properties from each input image. We send the input
image into a DeepLabv3+ [54] model that has already shown the state-of-art performance
in extensive visual Semantic Segmentation, multi-target detection, and scene recognition
research. As shown in Figure 2, corresponding labels for targets (with a confidence ≥ 0.7)
and scenes in each image are acquired simultaneously from the DeepLabv3+ pre-trained
on the MS_COCO [22] (for targets) and Ade20k dataset [55] (for targets and scenes). Thus,
we obtain a group of semantic labels on the entire dataset, i.e., L = {L1, L2, · · · , Lc}, where
c denotes the number of categories.
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Figure 2. Examples of Multi-label Semantic Recognition. Targets and scenes in images are displayed in different colors, and
targets with a confidence ≥ 0.7 are also shown.

3.2. Correlation Matrix for Textual Semantic Labels

For better using textual semantic attributes in images, we transfer external textual
correlation knowledge to construct a correlation matrix to guide information propagation
among the regional nodes in GCN. For aesthetics assessment, we generate a dataset that
contains all user comments crawled from the provided page links in the AVA dataset [21]
on https://www.dpchallenge.com (accessed on 19 June 2021) [56]. Each image is com-
mented and scored by users, commenters, participants, and non-participants on the website.
Figure 3 shows some examples in the AVA-comment dataset, where semantic labels are
marked in red. For emotion recognition, we use the Twitter sentiment dataset [23]. With
the training of these two corpora, we transform each semantic label into the task-specific
word vector vt, where t is the label of the aesthetics and emotion prediction task, via the
GloVe word embeddings [57] model, severally.

To construct the correlation matrix, we define the correlation between the semantic
labels via mining their co-occurrence patterns within the image dataset and model the
semantic label correlation dependency for different task t in the form of Ct

ij :

Ct
ij =

(
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ij
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j

log
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i
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The correlation matrix is unsymmetrical, as Ct
ij is not equal to Ct

ji. After that, we

perform L2-normalization on Ct
ij and obtain Ĉt

ij as follows:

Ĉt
ij =

Ct
ij

‖Ct‖2
(3)

https://www.dpchallenge.com
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Finally, we construct the correlation matrix Ĉt ∈ RNL×NL for each of two prediction
tasks, where NL denotes the number of textual semantic labels.

Figure 3. Examples in the AVA-comment dataset. Semantic labels in comments are marked in red.

3.3. Visual Regional Feature Extraction

In this part, we view an image as a graph composed of local regions and would like
to complete reasoning over the regional graph to promote image aesthetics assessment
and emotion recognition. For this purpose, we take the image as the input and send it to
the DeepLabv3+ to produce the 3D feature map in which each spatial region represents a
local area of the image, and the arrangement of all regional feature maps describes a spatial
composition of various visual components of an image. Besides that, we also produce a
2D semantic map in which each region is marked by an integer corresponding to one of
textual semantic labels. For visualization, we show the marked map on the original image
in Figure 4, where semantic labels are displayed as colored numbers, for example, 3 is Sky,
5 is Tree, 13 is Person, 17 is Mountain, 27 is Sea, 104 is Ship, and so on. The 3D feature map
has the same size (h× w) as the 2D semantic map, and that is the latter is an additional
label group for the former.

Figure 4. Examples of 2D semantic map visualization. Semantic labels are marked as numbers in different colors.
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3.4. GCN for Visual Regional Feature Encoding

To capture correlations between visual image contents and explore these interdepen-
dencies, we construct a multimodal regional correlation graph guiding composition-aware
feature encoding. In this part, we adopt graph convolution operation under the interactive
guidance of textual semantic properties as the regional dependency modeling mechanism
to learn a more competitive feature representation for image aesthetics assessment and
emotion recognition.

In the beginning, given the feature map of dimensions h×w× d, we denote a set of m
regions as R = {r1, r2, · · · , rm}, where m = h× w is the total number of regional feature
vectors. The graph structure is composed of multiple node vectors. In other words, to
construct the graph, we represent each node as the local region, which is a d-dimensional
vector. In addition, we connect each pair of nodes with a weighted edge. Considering
multimodal content, we calculate the weight Aij as follows:

Aij = Ĉĩ j̃V̂ij (4)

where Ĉ is the correlation matrix given in Equation (3) , ĩ and j̃ are the corresponding label
of i and j in the 2D semantic map, and V̂ij is the visual similarity normalized by so f tmax
like [], represented using following equations:

Vij = (Uri)
T(Vrj

)
(5)

V̂ij =
exp(Vij)

∑m
k=1 exp(Vik)

(6)

where U ∈ Rd×d and V ∈ Rd×d are two transformation matrices [58] that will be constantly
updated with the network training.

For the weight matrix Aij, we filter out those pretty small values by a threshold of 0.1
and obtain a new weight matrix Â as:

Âij =

{
Âij i f Âij ≥ 0.1

0 i f Âij < 0.1
(7)

As an adjacency matrix of the relationship between nodes, Â ∈ Rm×m describes the
interdependence of regional areas in the image. In the graph reasoning stage, we use
multi-layer GCN to transmit the structural information of nodes through the adjacent
matrix as follows:

Hl+1 = ReLu
(

ÂHl Bl
)

(8)

where Hl is the lth layer updated node feature, Bl ∈ Rd×d is lth layer learnable transforma-
tion matrix, and ReLu is the activation function. Figure 5 is a visualization of multi-layer
GCN, where regional nodes with different semantic labels are marked with different colors,
and edges denote the relationships between nodes with different multimodal contents.
During the stacked graph reasoning, each node feature is updated only by itself and the
nodes that are correlated with multimodal content.

3.5. Co-Attention Module for Aesthetics and Emotion Analysis

In this part, we model the mutual interaction between regional image features of
different tasks based on the collaborative attention mechanism. Specifically, given the
task-specific visual feature representation Xt ∈ Rm×d, we construct the attention matrix
and generate two attentional feature representations for aesthetics and emotion.

First, similar to [59], we construct the attention matrix M ∈ Rm×m that calculates the
similarity between Xaes and Xemo via the measurement function:

M = tanh
(

XaesWsXemoT + bs

)
(9)
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where Ws ∈ Rd×d and bs ∈ Rm×m are both learnable matrices, and tanh is the activation
function.

With the affinity matrix M, two task-specific attentional feature representations
X̃t ∈ Rm×k can be calculated as follows:

X̃aes = tanh
(

XaesWa +
(

XaesWa
⊗

MXemoWe

)
+ be

)
(10)

X̃emo = tanh
(

XemoWe +
(

XemoWe
⊗

MTXaesWa

)
+ ba

)
(11)

where Wa ∈ Rd×k, We ∈ Rd×k, ba ∈ Rm×k, and be ∈ Rm×k are all learnable matrices, and
⊗

denotes element-wise product.
Finally, we feed the attentional feature into a three-layer network consisting of a

convolutional layer and two FC layers to obtain a 1D vector for aesthetic and emotional
evaluation.

Figure 5. Visualization of multi-layer GCN, a framework for stacked graph reasoning with the
regional map based on relationships between nodes. Nodes with different semantic labels are marked
with different colors, and edges denote multimodal relationships between nodes. Each node feature
is gradually updated only by itself and the nodes with edges connected to it.

3.6. Intermediate Supervision

Our model architecture contains three stages: (1) learning image features via deep
networks; (2) graph reasoning with the regional map; and (3) collaborative attention
encoding. To avoid the gradient vanishing with repetitious backpropagation, we apply
intermediate supervision, which has demonstrated strong performance among the methods
of multiple iterative stages [60,61], to produce a loss on each stage. We feed the feature into
a three-layer network consisting of a convolutional layer and two FC layers to obtain a 1D
vector and use the cross-entropy loss as the objective function. It is expressed as follows:

Losst = Losst
1 + Losst

2 + Losst
3 (12)

Losstotal = Lossaes + Lossemo (13)
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4. Experiments and Results

In this section, we evaluate our proposed multi-output learning model integrating
multimodal GCN and co-attention. First, we introduce the datasets and the experimental
settings in our work. Then the results of our proposed method are compared against
several baselines. Finally, we discuss the performance of our model.

4.1. Datasets

We conduct experiments on the Images with Aesthetics and Emotion (IAE) dataset [49],
a new dataset associated with both aesthetic and emotional labels. Specifically, IAE is
an extension of the earlier work in [43], where more than 22,000 images are manually
divided into eight emotion categories, i.e., amusement, anger, awe, contentment, disgust,
excitement, fear, and sadness. Each category consists of more than 1100 images. These
images are next rated with ten volunteers from the aesthetic perspective in [49]. Thus,
the IAE dataset contains 11,550 high-aesthetic and 10,536 low-aesthetic images. Figure 6
shows the distribution of 8-category emotion in high-aesthetic and low-aesthetic images.
As we can see, most positive emotions, especially awe and contentment, appear more
frequently with high aesthetics, while negative emotions always come with low aesthetics.
It provides empirical support that aesthetics and emotion are correlated and can be studied
interactively. For a fair comparison, we follow the same data partition used in their work,
i.e., 70% of images for training, 10% of images for validation, and the rest for testing.

Figure 6. Data distribution in IAE dataset. The first four emotions (i.e., amusement, excitement, awe, and contentment) are
positive, while the last four (i.e., disgust, anger, fear, and sadness) are negative.

To verify the generalization ability of the single prediction task for aesthetics and
emotion, we also choose two benchmark datasets, AVA [21] and ArtPhoto [24]. AVA is
the largest publicly available dataset for aesthetic visual analysis and contains scored
images collected during the digital photography contest on https://www.dpchallenge.com
(accessed on 19 June 2021). ArtPhoto is a set of artistic photographs downloaded from an
art sharing site, https://www.deviantart.com (accessed on 19 June 2021) [62], taking the
emotion categories as search terms.

To capture interdependencies between visual image contents, we construct a cor-
relation matrix that helps to guide composition-aware feature encoding by transferring
external textual knowledge. For aesthetics assessment, we crawl the user comments for

https://www.dpchallenge.com
https://www.deviantart.com
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images in AVA from https://www.dpchallenge.com (accessed on 19 June 2021) to form the
AVA-Comments dataset. All quotes and extra HTML tags such as links are removed. As for
emotion recognition, we use the Twitter sentiment dataset [23] in which more than 3 million
tweets containing both text and images are collected. Following their work, we select only
the tweets classified with a confidence ≥ 0.85 and marked as positive or negative, thus get
more than 550K tweets. With the training of these two corpora, we transform each semantic
label into the task-specific word vector via the GloVe word embeddings model, severally.

4.2. Experimental Settings

DeepLabv3+ network with Xception [63] as its backbone is used for our feature
encoding. The input raw image is resized to 224× 224, and the output feature map is
28× 28× 256 after the Atrous Spatial Pyramid Pooling (ASPP) [64] module, followed by
a 1× 1 convolution layer. The number of GCN layers is three, and the dimension k of
feature space in the co-attention module is 128. In our networks, the model is initialized
on ImageNet and then fine-tuned end-to-end with images for aesthetics and emotion
multi-output prediction. For network optimization, SGD is used as an optimizer. The
base learning rate is 10−4 and reduced by a factor of 10 every ten epochs. The momentum,
weight decay, total epoch and batch size are set to 0.9, 10−5, 50 and 32, respectively. Our
networks are implemented based on PyTorch.

4.3. Comparison Evaluation with Baselines

In this section, we first present a comparison evaluation on IAE to demonstrate the
effectiveness of our method. Then we evaluate the performance of our model in the single
prediction task for aesthetics and emotion on AVA and ArtPhoto, respectively.

Table 1 shows the performance of our method on the IAE dataset along with the
different results of others. ResNet50 [65], WRN [66], MLSP [67], RGNet [34], CycleEmo-
tionGAN [68], and APSE [69] are single-task learning models. SSNet [70], CSNet [71],
AENet-FL and AENet [49] are multi-task learning models. The experimental results in
Table 1 reveal that our proposed model outperforms other methods on various networks.
Compared with single-task learning methods, our method outperforms two base networks
ResNet50 and WRN by 9.78% and 9.7% for aesthetics assessment. However, for emotion
recognition, the improvement is 9.05% and 7.49%. We also introduce four single-task learn-
ing models as baselines, of which MLSP and RGNet are for aesthetic assessment, while
CycleEmotionGAN and APSE are for emotion recognition. Against them, our method
exhibits at least 5.18% and 3.95% performance improvement in the respective prediction
tasks. Besides that, it is interesting to see that the best result of previous multi-task learning
models (AENet) also beats those single-task learning models, which give a proof of the
aesthetic and emotion conjoint analysis. For multi-task learning models, such as SSNet,
our method achieves 6.84% and 9.91% higher accuracy for aesthetics and emotion tasks,
respectively. Compared with CSNet, our method outperforms it by 6.93% and 6.97% for
aesthetics and emotion. AENet is an extension of AENet-FL, as the former adds the extra
fusion layers and achieves 81.05% and 66.23% accuracy, overcoming the latter. In com-
parison, our method achieves 85.63% and 70.14%, surpassing them by a large margin of
at least 4.58% and 3.91% for aesthetics and emotion, severally. The competitive results
demonstrate the effectiveness of our proposed model, both in aesthetics assessment and
emotion recognition.

As mentioned above, to verify the generalization ability of the single prediction task
for aesthetics and emotion, we also train our model on IAE and test it on AVA and ArtPhoto.
The comparison results can be found in Table 2. As we can see, there is a sharp decline in
performance for all methods. It is due to the heterogeneity between the different data sets.
In comparison, our method achieves 80.2% and 40.77% accuracy, surpassing them by a
large margin for both prediction tasks, especially for emotion prediction. It may be because
we pre-extract semantic labels from images in the test set and construct a correlation matrix
based on their co-occurrence frequency and textual similarity. With the help of transferring

https://www.dpchallenge.com


Mathematics 2021, 9, 1437 11 of 17

the correlation, the information gap could be alleviated. The competitive results prove
that the multimodal GCN module based on external knowledge transfer does improve
the prediction performance and generalization ability for both aesthetics assessment and
emotion recognition.

Table 1. Comparison on IAE for aesthetics assessment and emotion recognition, respectively (aesthetics is abbreviated as
Aes, emotion as Emo, and accuracy as ACC).

Method Description % IAE Aes ACC % IAE Emo ACC %

ResNet50 Single-task for Aes and Emo respectively. 74.85 61.09
WRN Single-task for Aes and Emo respectively. 75.16 62.65
MLSP Single-task for only Aes. 78.68 —
RGNet Single-task for only Aes. 80.45 —

CycleEmotionGAN Single-task for only Emo. — 65.78
APSE Single-task for only Emo. — 66.19
SSNet Multi-task for both Aes and Emo. 77.79 60.23
CSNet Multi-task for both Aes and Emo. 77.70 63.17

AENet-FL Multi-task for both Aes and Emo. 76.68 61.46
AENet Multi-task for both Aes and Emo. 81.05 66.23
Ours Multi-task for both Aes and Emo. 85.63 70.14

Table 2. Comparison on AVA for aesthetics assessment and on ArtPhoto for emotion recognition, respectively (aesthetics is
abbreviated as Aes, emotion as Emo, and accuracy as ACC).

Method Description % IAE Aes ACC % IAE Emo ACC %

ResNet50 Single-task for Aes and Emo respectively. 71.18 24.83
WRN Single-task for Aes and Emo respectively. 71.33 27.02
MLSP Single-task for only Aes. 71.89 —
RGNet Single-task for only Aes. 73.47 —

CycleEmotionGAN Single-task for only Emo. — 30.83
APSE Single-task for only Emo. — 29.54
SSNet Multi-task for both Aes and Emo. 68.39 23.86
CSNet Multi-task for both Aes and Emo. 70.48 27.30

AENet-FL Multi-task for both Aes and Emo. 70.29 24.22
AENet Multi-task for both Aes and Emo. 72.83 27.92
Ours Multi-task for both Aes and Emo. 80.2 40.77

4.4. Discussion on the Performance and Results of Our Model

Figure 7 demonstrates the normalized confusion matrix of 8-category emotions on
the IAE and ArtPhoto datasets to analyze the performance of our proposed method in
each emotion category. They both contain eight emotion categories, i.e., amusement, anger,
awe, contentment, disgust, excitement, fear, and sadness. In the IAE dataset, the Anger
and Fear categories have lower accuracy than others. Many Anger and Fear categories
are misclassified as sadness categories. Besides that, the excitement category can be easily
mistaken for the amusement category, which may be attributed to the similar emotion
features of the two categories. Moreover, when we test on the ArtPhoto, our model does
not perform as well as before. Only the Fear category can be correctly distinguished with a
probability of more than 50%.

Figure 8 is a visualization of intermediate supervision, as mentioned in Section 3.6.
As we can see, in both aesthetics and emotion branches, the loss in all three stages is
decreasing as the training continues. It proves that the gradient is back-propagated to the
whole end-to-end network, and all parameters are updated.

Figure 9 summarizes the results in different stages on IAE, as mentioned in Section 3.6.
For aesthetics assessment and emotion recognition, both the GCN module and co-attention
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module in our model can boost performance. Moreover, it is interesting to find out that our
co-attention module performs better in enhancing the prediction of the Awe and Disgust
categories, which may be attributed to the similar consistency and correlation between the
two emotion categories and aesthetic perception.

Figure 7. Normalized confusion matrix of 8-category emotion on the IAE and ArtPhoto datasets.

Figure 8. Visualization of intermediate supervision.

We conduct several experiments to evaluate the performance of the GCN module. We
have designed 5 variants of our model, without or with different GCN. The first variant is
that we remove the GCN module and send features to the co-attention module directly.
The second variant is that we set all values in the weight matrix Â to 1, which turns the
GCN into the fully connected networks (FCN). For the rest of the variants, we take Ĉ, V̂,
and Â = Ĉ

⊗
V̂ (
⊗

denotes element-wise product) as the textual, visual, and multimodal
weight matrix for GCN. The performance of these models is shown in Table 3. For a fair
comparison, we use the same experimental settings among all the variants. From the
results, we can see that the variant with FCN does not perform better than the variant
without GCN. Both perform worse than the rest of the variants with different modality
GCN, which means that simply increasing the number of layers does not work, and GCN
does explore the dependencies among visual elements. As for single modality GCN, visual
and textual correlation reasoning achieve a similar accuracy on both aesthetics and emotion
prediction tasks. Both are defeated by multimodal GCN, by at least 1.67 % and 1.33 %
higher accuracy on aesthetics and emotion tasks, which provides evidence for the validity
of our multimodal GCN module.
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Figure 9. Results in different stages on IAE.

Table 3. Comparison of the model without or with different GCN on IAE for aesthetics assessment
and emotion recognition, respectively (aesthetics is abbreviated as Aes, emotion as Emo, and accuracy
as ACC).

Variants IAE Aes ACC % IAE Emo ACC %

without GCN 80.48 65.63
with FCN 80.55 65.89

with textual GCN 83.77 68.81
with visual GCN 83.96 68.35

Multimodal GCN 85.63 70.14

5. Conclusions

Every day, more and more humans share their experiences, communicate their moods
and state of mind with images on social networks. Meanwhile, they always look forward to
enjoying higher quality images, which are more likely to trigger their emotion. Therefore,
aesthetics assessment and emotion recognition are two fundamental problems in user
perception understanding. Although the two tasks are correlated and mutually beneficial,
they are usually solved separately in existing studies.

For image aesthetics and emotion analysis, they belong to image processing and
pattern recognition in computational mathematics. Methods of machine learning and deep
learning have provided tremendous assistance in mathematical problem-solving in recent
years. Using the deep neural network, we map images and abstract concepts into numerical
matrices. In addition, after a series of mathematical operations, we build relationships
between visual data with labels in aesthetic and emotional perspectives.

In this paper, we propose an end-to-end multi-output deep learning model based
on multimodal GCN and co-attention for image aesthetics and emotion conjoint analysis.
We extract semantic labels from the image and construct a correlation matrix, assisted
by the label distribution in the dataset and external textual information by corpus-based
knowledge transferring. As the correlation matrix mapped onto the image, we perform
stacked graph reasoning on the regional image map and then obtain a composition-aware
re-encoded feature representation. After that, we send these features into the co-attention
module and let them learn from each other interactively and selectively. To avoid the
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gradient vanishing with repetitious backpropagation, we apply intermediate supervision
to produce a loss on each stage.

Experimental results on the multiple datasets demonstrate the performance of our
proposed method for aesthetics and emotion analysis. On the Image with Aesthetics and
Emotion (IAE) dataset, our method achieves 85.63% and 70.14% accuracy for aesthetics
and emotion tasks, respectively. Compared with the baselines, our method outperforms
both single- and multi-task learning models by at least 4.58% and 3.91% accuracy. We also
test on AVA and ArtPhoto by performing a cross-dataset evaluation with IAE to verify
the generalization ability of our method for two prediction tasks. Our method achieves
80.2% and 40.77% accuracy, surpassing the baselines by a large margin for both two tasks.
However, the result for emotion prediction is needed to be further improved. In addition,
the visualized results and the comparison results show that the intermediate supervision,
GCN module, and co-attention module can boost the performance of our model.

As future work, we plan to introduce some more complex and nuanced relation-
ships, such as camera style and emotion cause, to help the model simulate high-level
visual perceptions.
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