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Abstract: In this paper, we introduce a new contraction-type mapping and provide a fixed-point
theorem which generalizes and improves some existing results in the literature. Thus, we prove that
the Boyd and Wong theorem (1969) and, more recently, the fixed-point results due to Wardowski
(2012), Turinici (2012), Piri and Kumam (2016), Secelean (2016), Proinov (2020), and others are
consequences of our main result. An application in integral equations and some illustrative examples
are indicated.
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1. Introduction

The Banach contraction principle [1] is a fundamental result in the fixed-point theory. It
ensures the existence and uniqueness of fixed points of certain self-maps on metric spaces
and provides an iterative method to find the respective fixed points. Therefore, it is a
very important and powerful tool in solving the existence problems in pure and applied
sciences. More precisely, if T is a self-mapping on a complete metric space (X, d) such that

d(Tx, Ty) ≤ cd(x, y), ∀ x, y ∈ X

for some c ∈ (0, 1), then there exists a unique x∗ ∈ X such that Tx∗ = x∗. Moreover,
for each x0 ∈ X, the sequence (Tnx0)n converges to x∗. In this setting, we say that T is a
Banach contraction.

Since then, many researchers generalized and improved the result of Banach by
extending the spaces and the operators. Additionally, new areas of application of these
results are being discovered.

A function T : X → X is called a Picard operator [2] if it has a unique fixed point x∗

and, for each x0 ∈ X, lim
n→∞

Tnx0 = x∗, where Tn is the n-th composition of T.

In 1969, Boyd and Wong [3] generalized the Banach contraction principle by replacing
the linear condition with a real-valued map called a comparison function. A self-mapping T
on a metric space is said to be a ϕ-contraction if

d(Tx, Ty) ≤ ϕ
(
d(x, y)

)
, ∀ x, y ∈ X, x 6= y, (1)

where ϕ : (0, ∞)→ (0, ∞) is upper semi-continuous from the right mapping and satisfies
ϕ(t) < t for every t > 0. They proved that if the metric space is complete, then T is a
Picard operator.

Later, Wardowski [4] introduced a new type of contractive self-map T on a metric
space (X, d), the so-called F-contraction. This is defined by the inequality

τ + F(d(Tx, Ty)) ≤ F(d(x, y)), ∀ x, y ∈ X, Tx 6= Ty,
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where τ > 0 and F : (0, ∞)→ R satisfies the conditions (F1)–(F3) defined as follows:

(F1) F is strictly increasing, that is, for all α, β ∈ (0, ∞) such that α < β, F(α) < F(β);
(F2) for each sequence (αn)n of positive numbers lim

n→∞
αn = 0 if, and only if

lim
n→∞

F(αn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
α→0+

αkF(α) = 0.

Wardowski proved that, whenever (X, d) is complete, every F-contraction is a Picard
operator. The above result has been extended to new classes of Picard mappings by
weakening the conditions (F1)–(F3) or by defining new contractive conditions by many
authors (see, for example, [5–13]).

In [14], Jleli and Samet denoted by Θ the family of mappings θ : (0, ∞) → (1, ∞),
satisfying the following conditions:

(Θ1) θ is nondecreasing;
(Θ2) for each sequence (tn)n ⊂ (0, ∞), lim

n→∞
θ(tn) = 1 if, and only if lim

n→∞
tn = 0+;

(Θ3) there exist r ∈ (0, 1) and l ∈ (0, ∞] such that lim
t↘0

θ(t)−1
tr = l.

Theorem 1. [14] Let (X, d) be a complete metric space and T : X → X be a given mapping.
Suppose that there exist θ ∈ Θ and k ∈ (0, 1) such that

x, y ∈ X, d(Tx, Ty) 6= 0 ⇒ θ
(
d(Tx, Ty)

)
≤
[
θ
(
d(x, y)

)]k
. (2)

Then, T is a Picard operator.

Very recently, Proinov [6] considered a self-mapping T on a complete metric space
satisfying a general contractive-type condition of the form

ψ
(
d(Tx, Ty)

)
≤ ϕ

(
d(x, y)

)
(3)

and proved some fixed-point theorems which extend many earlier results in the literature
(see some of them in [6]). In this paper, we generalize the fixed-point result given by
Proinov ([6], Th. 3.6) by considering general contractive conditions defined by inequality
G(d(Tx, Ty)) ≤ H(d(x, y)), for each x, y with Tx 6= Ty, where G, H : (0, ∞) → R satisfy
conditions (C1), (C2) and (C3) defined below.

2. Results

Let us consider two mappings G, H : (0, ∞)→ R satisfying the following conditions:

(C1) the set of continuity points of G is dense in (0, ∞);
(C2) for every r ≥ t > 0, one has G(r) > H(t);
(C3) lim inf

s↘t

(
G(s)− H(s)

)
> 0 for each t > 0.

We will denote by G the family of all pairs of functions (G, H) which satisfy conditions
(C1)–(C3).

The following result is easy to be proved.

Remark 1. Under hypothesis (C2), condition (C3) is equivalent to

(C′3) for each sequence (tn)n ⊂ (0, ∞), such that tn ↘ t > 0 we have

∑
n≥1

(G(tn)− H(tn)) = ∞.

Proof. “(C3) ⇒ (C′3)” Let (tn)n be a sequence of positive numbers such that tn ↘ t > 0.
Then,

0 < lim inf
s↘t

(
G(s)− H(s)

)
≤ lim inf

n→∞

(
G(tn)− H(tn)

)
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hence, the series of positive terms ∑
n≥1

(G(tn)− H(tn)) diverges.

“(C′3) ⇒ (C3)” We proceed by contradiction. Let us suppose that there exists t > 0
such that lim inf

s↘t

(
G(s)− H(s)

)
= 0. Then, one can find a sequence (tk)k, tk > t, such that

tk ↘ t and lim
k→∞

(
G(tk)− H(tk)

)
= 0. There is no loss of generality in assuming that (tk)k

is decreasing. By the above, there exists k1 ∈ N such that

G(tk1)− H(tk1) <
1
2

.

Next, one can find k2 > k1 such that

G(tk2)− H(tk2) <
1
22 .

Inductively, we obtain a subsequence (tkn)n of (tk)k such that

G(tkn)− H(tkn) <
1
2n , ∀ n ≥ 1,

and so the series ∑n
(
G(tkn) − H(tkn)

)
converges. Moreover, tkn ↘ t. This contradicts

(C′3).

Example 1. Let us consider α, β ∈ (0, 1), a > 0, τ > 0 such that αa < a− τ and let us define
G, H : R+ → R by

G(r) = βr,

H(r) =

{
βr− τ, r > a

β

αβr, 0 < r ≤ a
β .

Then, (G, H) ∈ G.

Proof. (C1) Obvious.
(C2) If r ≥ t > 0, then G(r) ≥ G(t) > H(t).
(C3) Let any t > 0. Then,

G(t)− H(t) =

{
τ, t > a

β

β(1− α)t, 0 < t ≤ a
β

and hence, lim inf
s↘t

(
G(s)− H(s)

)
> 0.

Example 2. Let us consider α < 1 and G, H : (0, ∞)→ R defined by

G(r) = ln(1 + r),

H(t) = ln(1 + t)α.

Then, (G, H) ∈ G.

Proof. (C1) Obvious.
(C2) Choose r ≥ t > 0. Then

G(r) = ln(1 + r) > α ln(1 + r) ≥ α ln(1 + t) = H(t).

(C3) If t > 0, then lim inf
s↘t

(
G(s)− H(s)

)
= (1− α) ln(t + 1) > 0.
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Lemma 1. Let F : (0, ∞)→ R be a map and (tk)k a sequence of positive real numbers such that
F(tk) −→

k
−∞. If one of the following conditions holds:

(a) F is nondecreasing;
(b) F is right-continuous and (tk)k is nonincreasing;
(c) F is lower semi-continuous and (tk)k is nonincreasing,

then lim
k→∞

tk = 0.

Proof. (a) ([11], L. 3.2).

Suppose that (tk)k is nonincreasing. Then, it is bounded so there is α ≥ 0 such that
tk ↘ α. Assume by contradiction that α > 0.

(b) By hypothesis, F(α) = lim
k→∞

F(tk) = −∞ which is a contradiction. So α = 0.

(c) Let any ε > 0. There exists δ > 0 such that, for every t > 0, |t− α| < δ, one has
F(α) ≤ F(t) + ε. One can find k(ε) ∈ N such that |tk − α| < δ for all k ≥ k(ε). Therefore,

F(α) ≤ F(tk) + ε, ∀ k ≥ k(ε)

contradicting the hypothesis F(tk)→ −∞. Consequently α = 0.

Definition 1. We say that a function F : (0, ∞) → R satisfies property (P) if, for every nonin-
creasing sequence (tk)k of positive numbers such that F(tk) −→

k
−∞, one has lim

k→∞
tk = 0.

Note that the previous lemma gives some classes of functions satisfying property (P).
At the same time, there exist functions having property (P), but which do not satisfy any of
the conditions of Lemma 1 as it follows from the following example.

Example 3. Let (rn)n be a decreasing sequence of positive numbers converging to 0 and f , g :
(0, ∞)→ R be two mappings such that lim

n→∞
f (rn) = −∞ and g is bounded from below. Then, the

mapping F : (0, ∞)→ R given by

F(t) =
{

f (t), t ∈ {rn, n = 1, 2, . . . }
g(t), t /∈ {rn, n = 1, 2, . . . }

satisfies property (P). If, further, the set of discontinuity points of g is at most countable (in particular
if g is monotone on each interval (rn+1, rn)), then the set of discontinuity points of F is also at
most countable.

Proof. Set M ∈ R such that M ≤ g(t) for all t > 0. Let us consider a nonincreasing
sequence (tk)k of positive numbers such that F(tk) −→

k
−∞. Then, there exists K ∈ N such

that F(tk) < M for each k ≥ K. Hence, F(tk) = f (tk) for each k ≥ K, that is, there is nk ∈ N
such that tk = rnk , this means that (tk)k≥K is a subsequence of (rn)n so tk −→

k
0.

For the last assertion, if we denote by ∆F, ∆g the sets of discontinuities of F and g,
respectively, then

∆F ⊂ {rn, n = 1, 2, . . . } ∪ ∆g,

so ∆F is at most countable.

Note that one can find easily numerous functions satisfying the conditions of Example 3
such as: rn = 1/n, f (r) = −1/r, g(t) = t and so on.

Proposition 1. [12,15] Let (xn)n be a sequence of elements from a metric space (X, d) and ∆
be a subset of (0, ∞) such that (0, ∞) \ ∆ is dense in (0, ∞). If d(xn, xn+1) −→n 0 and (xn)n is

not a Cauchy sequence, then there exist η ∈ (0, ∞) \ ∆ and the sequences of natural numbers
(mk)k, (nk)k such that
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(1) d(xmk , xnk )↘ η, k→ ∞,
(2) d(xmk+p, xnk+q)→ η, k→ ∞, p, q ∈ {0, 1}.

Our main result is the following:

Theorem 2. Let (X, d) be a complete metric space and G, H be two mappings such that (G, H) ∈ G
and one of them satisfies property (P). Let also consider the map T : X → X satisfying the
following condition

G(d(Tx, Ty)) ≤ H(d(x, y)), ∀ x, y ∈ X, Tx 6= Ty. (4)

Then T is a Picard operator.

Proof. First of all we remark that, from conditions (C2) and (4), we deduce that T satisfies

d(Tx, Ty) < d(x, y), ∀ x, y ∈ X, Tx 6= Ty, (5)

which implies that T has at most one fixed point.
In order to show the existence of fixed point of T, let x0 ∈ X be fixed. We define a

sequence (xn)n by xn = Txn−1, n ≥ 1, and let us denote dn = d(xn+1, xn), n ≥ 0. If there
exists n0 ∈ N such that xn0+1 = xn0 , then xn0 is a fixed point of T. We next suppose that
xn+1 6= xn for each n ∈ N. Then, dn > 0 for all n ∈ N and, by (5), the sequence (dn)n is
decreasing. Thus, one can find d ≥ 0 such that dn ↘ d.

Next, we will prove that d = 0. Indeed, using (4), we get G(dn) ≤ H(dn−1) for all
n ≥ 1. From the above, we obtain

G(dn)− G(dn−1) ≤ H(dn−1)− G(dn−1),

for every n ≥ 1. Therefore,

n

∑
k=1

(G(dk)− G(dk−1)) ≤
n

∑
k=1

(H(dk−1)− G(dk−1))

so

G(dn) ≤ G(d0) +
n

∑
k=1

(H(dk−1)− G(dk−1)) −→n −∞,

according to condition (C′3) from Remark 1. It follows that lim
n→∞

G(dn) = −∞. At the same

time, since dn < dn−1, we deduce from (C2) that H(dn) < G(dn−1) for all n = 1, 2, . . . ,
hence, lim

n→∞
H(dn) = −∞.

We conclude by hypothesis that lim
n→∞

dn = 0.

Now, assume that the sequence (xn)n is not Cauchy, and let ∆ be the set of discontinu-
ities of G. Since (G, H) satisfies (C1), it follows that (0, ∞) \ ∆ is dense in (0, ∞).

According to Proposition 1, one can find η ∈ (0, ∞) \ ∆ and the sequences (mk)k, (nk)k
such that

d(xmk , xnk )↘ η, d(xmk+1, xnk+1)→ η, k→ ∞.

Since η > 0, there is K ∈ N such that d(xmk+1, xnk+1) > 0 for all k ≥ K. Therefore,
from (4), for all k ≥ K, we get

G(d(xmk+1, xnk+1)) ≤ H(d(xmk , xnk )). (6)

Since G is continuous at η, from the last inequality we obtain letting k→ ∞(
G− H

)(
d(xmk , xnk )

)
≤ G

(
d(xmk , xnk )

)
− G

(
d(xmk+1, xnk+1)

)
−→

k
G(η)− G(η) = 0, (7)
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which contradicts (C3). Consequently, (xn)n is a Cauchy sequence and, X being complete,
there exists x∗ ∈ X such that xn → x∗ as n→ ∞. Finally, condition (5) yields

d(Tx∗, x∗) = lim
n→∞

d(Txn, xn) = 0.

Thus, Tx∗ = x∗.

Example 4. Let us consider G, H : (0, ∞)→ R defined by

G(t) =
{

ln t, t ∈ (0, 1
2 ]

ln(t− 1
12 ), t ∈ ( 1

2 , ∞)

H(t) = ln
t

t + 1
.

Then, G is not monotone, satisfies property (P) and (G, H) ∈ G. Furthermore, if X = [0, ∞)
is endowed with the standard metric d(x, y) = |x− y| and T : X → X, Tx = x

x+1 , satisfies (4),
then T is a Picard operator while it does not satisfy the Banach condition.

Proof. (C1) Obvious.
(C2) Let us consider r ≥ t > 0. Three cases can occur:

I. r ≤ 1
2 . Then

G(r) = ln r ≥ ln t > ln
t

t + 1
= H(t).

II. r ≥ t > 1
2 . From the following relations

t− 1
12

>
t

t + 1
⇔ t2

t + 1
>

1
12

we deduce that
G(r) ≥ G(t) = ln(t− 1

12
) > ln

t
t + 1

= H(t).

III. r > 1
2 ≥ t. One has

r− 1
12

>
5

12
>

1
3
≥ t

t + 1

hence, G(r) > H(t).
(C3) Let any t > 0. If t < 1

2 , then lim inf
s↘t

(
G(s)− H(s)

)
= ln(t + 1) > 0. Additionally,

if t ≥ 1
2 , then lim inf

s↘t

(
G(s)− H(s)

)
= ln

(
1− 1

12t
)
(t + 1) > 0.

Clearly, G satisfies (P), and it is not monotone.
In order to prove the second part of the statement, set x, y ∈ X such that Tx 6= Ty.

Then, x 6= y, say x < y. The following cases can occur:

I. 0 < y−x
(1+x)(1+y) ≤

1
2 . Then

y− x
(1 + x)(1 + y)

<
y− x

1 + y− x

⇒ G
(
d(Tx, Ty)

)
= ln

y− x
(1 + x)(1 + y)

< ln
y− x

1 + y− x
= H

(
d(x, y)

)
.

II. y−x
(1+x)(1+y) >

1
2 . Then

G
(
d(Tx, Ty)

)
= ln

( y− x
(1 + x)(1 + y)

− 1
12
)
< ln

y− x
1 + y− x

= H
(
d(x, y)

)
.
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Therefore, the inequality (4) is fulfilled.
Theorem 2 shows that T is a Picard operator (its unique fixed point being x = 0).
For the last sentence, let us consider two sequences xn = 1

n , yn = 2
n . Then

lim
n→∞

d
(
Txn, Tyn

)
d(xn, yn)

= lim
n→∞

1
(1 + xn)(1 + yn)

= 1

hence, T does not satisfy the Banach condition.

Corollary 1. Let (X, d) be a complete metric space and let T : X → X satisfy

G
(
d(Tx, Ty)

)
≤ H

(
d(x, y)

)
, ∀ x, y ∈ X, Tx 6= Ty, (8)

where G, H : (0, ∞)→ R are two mappings satisfying the following conditions:

(a) G is nondecreasing;
(b) H is upper semi-continuous from the right;
(c) G(t) > H(t) for every t > 0.

Then, T is a Picard operator.

Proof. Clearly the set of continuity points of G is dense in (0, ∞) and G satisfies property
(P). By (a) and (c), it is also obvious that (G, H) satisfies (C2).

Let any t > 0. Using (b) and (c) one obtains

lim sup
s↘t

H(s) ≤ H(t) < G(t),

hence,

lim inf
s↘t

(
G(s)− H(s)

)
≥ lim inf

s↘t
G(s)− lim sup

s↘t
H(s) > G(t)− G(t) = 0.

Consequently, (C3) is verified. The conclusion now follows from Theorem 2.

Next, we will show that the result of Boyd and Wong [3] can be obtained from
Corollary 1. We need first the following elementary lemma.

Lemma 2. Let G : (0, ∞)→ R, ϕ : (0, ∞)→ (0, ∞) be functions such that:

(i) ϕ is upper semi-continuous from the right at some a ∈ (0, ∞);
(ii) G is nondecreasing and right-continuous at ϕ(a).

Then, the function G ◦ ϕ is upper semi-continuous from the right at a.

Proof. One has

lim sup
t↘a

ϕ(t) = inf
ε>0

(
sup

t∈(a,a+ε)

ϕ(t)
)
= lim

ε↘0

(
sup

t∈(a,a+ε)

ϕ(t)
)
≤ ϕ(a).

We need to show that

lim sup
t↘a

G
(

ϕ(t)
)
≤ G

(
ϕ(a)

)
.

Two cases can occur.
Case I. lim sup

t↘a
ϕ(t) < ϕ(a). Then, there exists ε0 > 0 such that

0 < sup
t∈(a,a+ε0)

ϕ(t) < ϕ(a).
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Thus, by the monotonicity of G, one has

G
(

sup
t∈(a,a+ε0)

ϕ(t)
)
≤ G

(
ϕ(a)

)
⇒ inf

ε>0
G
(

sup
t∈(a,a+ε)

ϕ(t)
)
≤ G

(
ϕ(a)

)
hence,

lim sup
t↘a

G
(

ϕ(t)
)
= inf

ε>0

(
sup

t∈(a,a+ε)

G(ϕ(t))
)
≤ inf

ε>0
G
(

sup
t∈(a,a+ε)

ϕ(t)
)
≤ G

(
ϕ(a)

)
.

Case II. lim sup
t↘a

ϕ(t) = ϕ(a). Then, using (i), (ii),

lim sup
t↘a

G
(

ϕ(t)
)
≤ lim

ε↘0
G
(

sup
t∈(a,a+ε)

ϕ(t)
)
= G

(
lim
ε↘0

( sup
t∈(a,a+ε)

ϕ(t))
)
= G

(
ϕ(a)

)
.

Remark 2. If we take in Corollary 1 a nondecreasing and right-continuous function G : (0, ∞)→
R and H = G ◦ ϕ, where ϕ is a comparison function, then every self-mapping T on a complete
metric space satisfying (1) is a Picard operator.

Proof. By the monotonicity of G, it is obvious that (8) is equivalent to (1). From Lemma 2, it
follows that H is upper semi-continuous from the right function. The rest of the conditions
from Corollary 1 are clearly verified.

In the next two corollaries, we will highlight that the results given by Secelean and
Wardowski [8], Secelean [9], Wardowski [4], and Piri and Kumam [5] can be obtained as
particular cases of Theorem 2.

For every µ ∈ R+ we denote by Ψµ the family of all nondecreasing functions
ψ : (−∞, µ)→ (−∞, µ) such that ψ(t) < t for all t ∈ (−∞, µ).

Corollary 2. Let us consider (X, d) a complete metric space, and T : X → X. We suppose that
there exists a nondecreasing function F : (0, ν) → R, ν > diam(X) := sup

x,y∈X
d(x, y), and a

right-continuous map ψ ∈ Ψµ, µ = sup
t∈(0,ν)

F(t), and

(∀)x, y ∈ X [d(Tx, Ty) > 0⇒ F(d(Tx, Ty)) ≤ ψ
(

F(d(x, y)
)
].

Then, T is a Picard operator.

Proof. Let us consider G, H : (0, ∞)→ R defined by

G = F, H = ψ ◦ F.

We will state that G, H satisfy conditions (C1), (C2) and (C3).

(C1) This condition is clearly verified due to the monotonicity of F.
(C2) Fix r ≥ t > 0. Then, by the property of ψ, one has

H(t) = ψ
(

F(t)
)
< F(t) ≤ F(r) = G(r).

(C3) Let us consider a sequence of positive real numbers (tn)n such that tn ↘ t > 0. Then,
the sequence

(
F(tn)

)
n is non-increasing and F(t) ≤ F(tn) for every n = 1, 2, . . . hence,

one can find λ ∈ [F(t), µ) such that F(tn)↘ λ. Since ψ is right-continuous at λ, one
has

lim
n→∞

(
G(tn)− H(tn)

)
= lim

n→∞

(
F(tn)− ψ(F(tn))

)
= λ− ψ(λ) > 0,
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so ∑
n

(
G(tn)− H(tn)

)
= ∞, that is (G, H), satisfies (C′3). From Remark 1, we deduce

that (C3) is also satisfied.

By Lemma 1, we deduce that G satisfies property (P).
Now, the conclusion follows from Theorem 2.

If, in the previous corollary, we take ψ(t) = t − τ for some τ > 0, one obtains an
improvement of the results from [4,9], where F satisfies only condition (F1).

Corollary 3. Let us consider (X, d) a complete metric space and T : X → X. We suppose that
there exist nondecreasing F : (0, ∞)→ R and τ > 0, such that

∀ x, y ∈ X [d(Tx, Ty) > 0⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y))].

Then, T is a Picard operator.

Inspired by [16], we can formulate an improvement of Wardowski’s result given in
the previous corollary.

Corollary 4. Let us consider a complete metric space (X, d) and two functions
F : (0, ∞) → R, θ : (0, ∞) → (0, ∞). Assume that F has property (P) and the set of its
continuity points is dense in (0, ∞). Suppose further that ∑

n
θ(tn) = ∞ for each decreasing

sequence of real numbers (tn)n with a positive limit. If T : X → X is such that

θ
(
d(x, y)

)
+ F

(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
∀ x, y ∈ X with Tx 6= Ty,

then T is a Picard operator.

Proof. Set G, H : (0, ∞)→ ∞, G = F, H = F− θ. On account of the hypothesis, it follows
immediately that (G, H) satisfies (C1), and G has the property (P).

Since conditions (C2), (C′3) are also obviously verified, one can apply Theorem 2.

Corollary 5. [13] Let us consider a complete metric space (X, d) and three functions F : (0, ∞)→
R, ϕ : (0, ∞)→ (0, ∞), T : X → X satisfying the following conditions:

(α) F is nondecreasing;
(β) lim inf

s↘t
ϕ(s) > 0 for each t > 0;

(γ) ϕ
(
d(x, y)

)
+ F

(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
for all x, y ∈ X with Tx 6= Ty.

Then, T is a Picard operator.

Proof. The conclusion follows easily from Theorem 2 by taking G = F and H = F− ϕ.

Remark 3. The following corollary shows that Theorem 1 can be obtained from Theorem 2 without
imposing on the function θ conditions (Θ2) and (Θ3). We will also answer the open question
formulated in [17].

Corollary 6. Let us consider a nondecreasing function θ : (0, ∞) → (1, ∞) and k ∈ (0, 1).
Assume that T is a self-mapping on a complete metric space (X, d) such that (2) holds. Then, T is a
Picard operator.

Proof. Define G, H : (0, ∞) → R, G = 1
1−θ , H = 1

1−θk . Since θ and k satisfy (2), it follows
that G, H satisfy (4). We will show that (G, H) ∈ G.

Since every continuity point of θ is a continuity point of both G and H and θ is
monotonic, it follows that G, H satisfy (C1). Next, if r ≥ t > 0, then

G(r) ≥ G(t) =
1

1− θ(t)
>

1
1− θ(t)k = H(t)
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hence (C2) holds. Let us consider (tn), tn ↘ t > 0. Then, the sequence
(
θ(tn)

)
is

nonincreasing and bounded, hence, there exists λ ≥ θ(t) such that θ(tn) ↘ λ. Thus,
lim

n→∞

( 1
1−θ(tn)

− 1
1−θ(tn)k

)
= 1

1−λ −
1

1−λk > 0. Consequently,

∑
n

(
G(tn)− H(tn)

)
= ∞

hence, (C′3). Next, we apply Remark 1.
According to Lemma 1, G satisfies property (P).

In the following, we will show that one of the main theorems of Proinov can be
obtained as a consequence of our results.

Corollary 7. ([6], Th. 3.6) Let (X, d) be a complete metric space and T : X → X be a mapping
satisfying condition (3), where the functions ψ, ϕ : (0, ∞)→ R has the following properties:

(i) ψ is nondecreasing;
(ii) ϕ(t) < ψ(t) for every t > 0;
(iii) lim sup

s↘t
ϕ(s) < lim

s↘t
ψ(s) for every t > 0.

Then, T is a Picard operator.

Proof. Let us denote G = ψ, H = ϕ.
We first note that (i) implies that G satisfies property (P). Next, from (i) and (ii) we

deduce that, for some r ≥ t > 0, we have

G(r) ≥ G(t) > H(t)

hence, (G, H) satisfies (C2).
Additionally, due to the monotonicity of ψ, we deduce that there exists lim

s↘t
ψ(s) and

lim
s↘t

ψ(s) = lim inf
s↘t

ψ(s) ∈ R, for every t > 0. Consequently, using (iii), one has

lim inf
s↘t

(
ψ(s)− ϕ(s)

)
≥ lim inf

s↘t
ψ(s)− lim sup

s↘t
ϕ(s) > lim inf

s↘t
ψ(s)− lim

s↘t
ψ(s) = 0.

Thus, (G, H) satisfies (C3).
The conclusion follows from Theorem 2.

Notice that Corollary 1 can be obtained as a particular case of the previous corollary.

Remark 4. Example 4 proves that the result of Proinov pointed out in Corollary 7 can be obtained
from Theorem 2 without imposing the monotonicity of the function ψ.

3. Application

Next, we use our main results in order to give an existence and uniqueness result for
the solution of a certain integral equation.

Proposition 2. Let us consider G, H defined in Example 1, and the integral equation

x(t) =
t∫

0

K(t, s, x(s))ds + f (t), t ∈ [0, 1] (9)

under the following conditions:

(H0)K ∈ C([0, 1]× [0, 1]×R,R), f ∈ C([0, 1],R);
(H1) |K(t, s, u)− K(t, s, v)| ≤ l(u, v) for all t, s ∈ [0, 1] and u, v ∈ R, where
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(i)
l : R×R→ R

l(u, v) =

{
|u− v| −m τ

β , |u− v| > a
β

γ · |u− v|, |u− v| ≤ a
β

(ii) a−m · τ < α · a < a− τ
(iii) γ = a−m·τ

a

Then, the Equation (9) has a unique solution in C([0, 1],R) (the class of continuous functions
x : [0, 1]→ R).

Proof. Let us endow C([0, 1],R) with ‖x‖∞ = sup
t∈[0,1]

|x(t)|, and let

T : C([0, 1],R)→ C([0, 1],R),

defined by

Tx(t) =
t∫

0

K(t, s, x(s))ds + f (t).

According to Example 1 and Remark 1, the applications G, H satisfy the conditions
(C1), (C2) and (C3). On the other hand, for each x, y ∈ C([0, 1],R) and t ∈ [0, 1], we have

β|Tx(t)− Ty(t)| ≤ β

t∫
0

|K(t, s.x(s))− K(t, s.y(s))|ds

≤ β

t∫
0

l(x(s), y(s))ds ≤
t∫

0

H(|x(s)− y(s)|)ds ≤ H(‖x− y‖∞).

Therefore, for every x, y ∈ C([0, 1],R), we get

G(‖Tx− Ty‖∞) = β‖Tx− Ty‖∞ = β sup
t∈[0,1]

|Tx(t)− Ty(t)| ≤ H(‖x− y‖∞).

The conclusion now follows from Theorem 2 applied to operator T.

4. Conclusions

We introduce a new type of contractive function on a metric space that generalizes
and extends some of the contractions studied in the literature, and we provide a fixed-point
theorem that improves many of the known results. Some examples and an application to
integral equations are also given. The result we proved can be extended to more general
metric spaces.

Author Contributions: Conceptualization, N.A.S. and I.M.O.; Formal analysis, N.A.S. and I.M.O.;
Funding acquisition, N.A.S.; Methodology, N.A.S. and I.M.O.; Supervision, N.A.S.; Validation, N.A.S.
and I.M.O.; Visualization, N.A.S. and I.M.O.; Writing—original draft, N.A.S. and I.M.O.; Writing—
review and editing, N.A.S. and I.M.O. Both authors contributed equally and significantly to the
creation of this article.

Funding: This research was funded by Lucian Blaga University of Sibiu & Hasso Plattner Foundation
research grants LBUS-IRG-2020-06.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Mathematics 2021, 9, 1433 12 of 12

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1992, 3,

133–181. [CrossRef]
2. Rus, I.A. Weakly Picard operators and applications. Semin. Fixed Point Theory 2001.
3. Boyd, D.W.; Wong, J.S.W. On Nonlinear Contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [CrossRef]
4. Wardowski, D. Fixed points of a new type contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94

[CrossRef]
5. Piri, H.; Kumam, P. Some fixed-point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014,

2014, 210. [CrossRef]
6. Proinov, P.D. Fixed-point theorems for generalized contractive mappings in metric spaces. Fixed Point Theory Appl. 2020, 22, 1–27.

[CrossRef]
7. Secelean, N.A.; Zhou, M. Generalized F-Contractions on Product of Metric Spaces. Mathematics 2019, 7, 1040. [CrossRef]
8. Secelean, N.A.; Wardowski, D. ψF-Contractions: Not Necessarily Nonexpansive Picard Operators. Results Math. 2016, 70,

415–431.
9. Secelean, N.A. Weak F-contractions and some fixed point results. Bull. Iran. Math. Soc. 2016, 42, 779–798.
10. Secelean, N.A. Generalized F-iterated function systems on product of metric spaces. J. Fixed Point Theory Appl. 2015, 17, 575–595.

[CrossRef]
11. Secelean, N.A. Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013, 2013, 277. [CrossRef]
12. Turinici, M. Wardowski implicit contractions in metric spaces. arXiv 2012, arXiv:1211.3164.
13. Wardowski, D. Solving existence problems via F-contractions. Proc. Amer. Math. Soc. 2018, 146, 1585–1598. [CrossRef]
14. Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 2014, 38. [CrossRef]
15. Berzig, M.; Karapinar, E.; Roldan-Lopez-de-Hierro, A.-F. Discussion on generalized- (αψ, β)− contractivemappings via general-

ized altering distance function and related fixed-point theorems. Abstr. Appl. Anal. 2014, 2014, 259768. [CrossRef]
16. Amini-Harandi, A. Fixed and coupled fixed points of a new type set-valued contractive mappings in complete metric spaces.

Fixed Point Theory Appl. 2012, 2012, 212–215. [CrossRef]
17. Liu, X.; Chang, S.; Xiao, Y.; Zhao, L.C. Existence of fixed points for Θ-type contraction and Θ-type Suzuki contraction in complete

metric spaces. Fixed Point Theory Appl. 2016, 2016, 8. [CrossRef]

http://doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/10.1090/S0002-9939-1969-0239559-9
http://dx.doi.org/10.1186/1687-1812-2012-94
http://dx.doi.org/10.1186/1687-1812-2014-210
http://dx.doi.org/10.1007/s11784-020-0756-1
http://dx.doi.org/10.3390/math7111040
http://dx.doi.org/10.1007/s11784-015-0235-2
http://dx.doi.org/10.1186/1687-1812-2013-277
http://dx.doi.org/10.1090/proc/13808
http://dx.doi.org/10.1186/1029-242X-2014-38
http://dx.doi.org/10.1155/2014/259768
http://dx.doi.org/10.1186/1687-1812-2012-215
http://dx.doi.org/10.1186/s13663-016-0496-5

	Introduction
	Results
	Application
	Conclusions
	References

