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Abstract: In this paper, we study estimates for quadratic forms of the type xT A−mx, m ∈ N, for
symmetric matrices. We derive a general approach for estimating this type of quadratic form and
we present some upper bounds for the corresponding absolute error. Specifically, we consider three
different approaches for estimating the quadratic form xT A−mx. The first approach is based on
a projection method, the second is a minimization procedure, and the last approach is heuristic.
Numerical examples showing the effectiveness of the estimates are presented. Furthermore, we
compare the behavior of the proposed estimates with other methods that are derived in the literature.

Keywords: quadratic form; estimates; upper bounds

1. Introduction

Let A ∈ Rn×n be a given symmetric positive definite matrix and x ∈ Rn. We are
interested in estimating the quadratic forms of the type xT A−mx, m ∈ N. Our main goal
was to find an efficient and cheap approximate evaluation of the desired quadratic form
without the direct computation of the matrix A−m. As such, we revisited the approach for
estimating the quadratic form xT A−1x, developed in [1], and extended it to the case of an
arbitrary negative power of A.

The computation of quadratic forms is a mathematical problem with many applica-
tions. Indicatively, we refer to some usual applications.

• Statistics: The inverse of the covariance matrix, which is referred to as a precision
matrix, usually appears in statistics. The covariance matrix reveals marginal correla-
tions between the variables, whereas the precision matrix represents the conditional
correlations between two data variables of the other variables [2]. The diagonal of
the inverse of covariance matrices provides information about the quality of data in
uncertainty quantification [3].

• Network analysis: The determination of the importance of the nodes of a graph is
a major issue in network analysis. Information for these details can be extracted by
the evaluation of the diagonal elements of the matrix (In − aA)−1, where A is the

adjacency matrix of the network, 0 < a <
1

ρ(A)
, and ρ(A) is the spectral radius

of A. This matrix is referred to as a resolvent matrix, see, for example, [4] and the
references therein.

• Numerical analysis: Quadratic forms arise naturally in the context of the computation
of the regularization parameter in Tikhonov regularization for solving ill-posed prob-
lems. In this case, the matrix has the form AAT + λIn, λ > 0. In the literature, many
methods have been proposed for the selection of the regularization parameter λ, such
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as the discrepancy principle, cross-validation, generalized cross-validation (GCV),
L-curve, and so forth; see, for an example, [5] (Chapter 15) and references therein.
These methods involve quadratic forms of type xT(AAT + λIn)−mx, with m = 1, 2, 3.

In practice, exact computation of a quadratic form is often replaced using an estimate
that is faster to evaluate. Regarding its numerous applications, the estimation of quadratic
forms is an important practical problem that has been frequently studied in the literature.
Let us indicatively refer to some well-known methods. A widely used method is based
on Gaussian quadrature [5] (Chapter 7) and [6]. Moreover, extrapolation procedures have
been proposed. Specifically, in [7], families of estimates for the bilinear form xT A−1y for
any invertible matrix, and in [8], families of estimates for the bilinear form y∗ f (A)x for a
Hermitian matrix were developed.

In the present work, we consider alternative approaches to this problem. To begin,
notice that the value of the quadratic form (x, A−mx) is proportional to the second power
of the norm of x. Therefore, the task of estimating (x, A−mx) consists of two steps:

1. Finding an α such that
(x, A−mx) ≈ α‖x‖2. (1)

2. Assessing the absolute error of the above estimate, i.e., determining a bound for
the quantity ∣∣∣α‖x‖2 − (x, A−mx)

∣∣∣. (2)

In Section 2, we present the upper bounds for the absolute error (2) for any given
α. Section 3 is devoted to estimates of the value α in (1) using a projection method.
In Section 4, we use bounds from Section 2 as a stepping stone for estimating xT A−mx using
the minimization method. A heuristic approach is outlined in Section 5. In Section 6, we
briefly describe two methods that were used in previous studies, namely, an extrapolation
approach and another one based on Gaussian quadrature. Section 7 is focused on adapting
the proposed estimates to the case of the matrix of form AAT + λIn. Numerical examples
that illustrate the performance of the derived estimates are found in Section 8. We end this
work with several concluding remarks in Section 9.

2. Bounds on the Error

In Proposition 1 below, we derive an upper bound on the error (2) for a given estimate
α‖x‖2 of the quadratic form xT A−mx. The first three expressions for the bounds (UB1–UB3)
are a direct generalization of a result from [1].

Proposition 1. Let A ∈ Rn×n be a symmetric positive definite matrix and x ∈ Rn and est = α‖x‖2

be an estimate of the quadratic form xT A−mx. If we denote b = αAmx− x, the absolute error of
the estimate

∣∣α‖x‖2 − (x, A−mx)
∣∣ is bounded from above by the following expressions:

UB1.
‖x‖2‖b‖
2‖Amx‖

(
κm +

1
κm

)
UB2.

‖x‖ · ‖b‖2

2‖Amb‖

(
κm +

1
κm

)
UB3.

‖x‖2‖b‖2

4
√

xT Amx ·
√

bT Amb

(
κm/2 +

1
κm/2

)2

UB4.
‖x‖ · ‖b‖

λm
min

UB5. For estimates satisfying α‖x‖2 ≤ (x, A−mx), we have also the family of error bounds

‖x‖2

2‖Amx‖ · ‖Apx‖

(
κm +

1
κm

)√
‖Apx‖2‖b‖2 − (Apx, b)2 ,

where p ≥ 0 can be chosen as any integer such that (x,Apx)
(Amx,Apx) < α.
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Proof.
UB1.

The matrix A−m is symmetric because A is symmetric, and it holds that

|xT A−mb| = |(x, A−mb)| = |(A−mx, b)| ≤ ‖A−mx‖ · ‖b‖,

by the Cauchy–Schwarz inequality.
Moreover, we have

‖A−mx‖ =
√
(A−mx, A−mx) =

√
(x, A−2mx). (3)

Using the Kantorovich inequality for the matrix Am and considering that
λmin(A2m) = λ2m

min, λmax(A2m) = λ2m
max, we have

(xTx)2

(xT A2mx)(xT(A2m)−1x)
≥ 4λmin(A2m)λmax(A2m)

(λmin(A2m) + λmax(A2m))2

⇒ ‖x‖4

(xT A2mx)(xT A−2mx)
≥

4λ2m
minλ2m

max

(λ2m
min + λ2m

max)
2

⇒ xT A−2mx ≤ ‖x‖4

(x, A2mx)
(λ2m

min + λ2m
max)

2

4λ2m
minλ2m

max

⇒ xT A−2mx ≤ ‖x‖4

4‖Amx‖2

(
λm

min
λm

max
+

λm
max

λm
min

)2
=

‖x‖4

4‖Amx‖2

(
1

κm + κm
)2

,

where κ =
λmax

λmin
is the condition number of A. Therefore, the norm ‖A−mx‖ given by (3)

can be bounded by

‖A−mx‖ ≤ ‖x‖2

2‖Amx‖

(
1

κm + κm
)

. (4)

Hence, we have

|xT A−mb| ≤ ‖A−mx‖ · ‖b‖ = ‖x‖2

2‖Amx‖

(
1

κm + κm
)
‖b‖.

UB2.
Due to the Cauchy–Schwarz inequality, it holds that

|xT A−mb| = |(x, A−mb)| ≤ ‖x‖ · ‖A−mb‖.

Following a similar approach as above based on the Kantorovich inequality, we obtain

‖A−mb‖ ≤ ‖b‖2

2‖Amb‖

(
1

κm + κm
)

.

So,

|xT A−mb| ≤ ‖x‖ · ‖b‖
2

2‖Amb‖

(
1

κm + κm
)

.

UB3.
It holds that

|xT A−mb| = |(A−
m
2 x, A−

m
2 b)| ≤ ‖A−

m
2 x‖ · ‖A−

m
2 b‖

=

√
(A−

m
2 x, A−

m
2 x) ·

√
(A−

m
2 b, A−

m
2 b) =

√
(x, A−mx) ·

√
(b, A−mb).
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Applying the Kantorovich inequality to the matrix Am in a similar way as above, we
can immediately obtain the inequality

xT A−mx ≤ ‖x‖4

4xT Amx

(
1

κ
m
2
+ κ

m
2

)2
.

So, we have

|xT A−mb| ≤

√
‖x‖4

4xT Amx

(
1

κ
m
2
+ κ

m
2

)2 ‖b‖4

4bT Amb

(
1

κ
m
2
+ κ

m
2

)2

=
‖x‖2‖b‖2

4
√

xT Amx ·
√

bT Amb

(
1

κ
m
2
+ κ

m
2

)2
.

UB4.
Applying the Cauchy–Schwarz inequality, we obtain

|xT A−mb| = |(x, A−mb)| ≤ ‖x‖ · ‖A−mb‖ ≤ ‖x‖ ‖b‖
λmin(Am)

= ‖x‖ ‖b‖
λm

min
.

UB5.
Since A is positive definite, as is Aq for any integer q, the angle between vectors v and

Aqv does not exceed π/2 for any v, i.e., ](v; Aqv) ≤ π

2
.

Taking v = A−mx and q = p + m, we obtain

](A−mx; Ap+m A−mx) ≤ π

2
⇒ ](A−mx; Apx) ≤ π

2
.

The assumption (x,Apx)
(Amx,Apx) < α implies that

(x, Apx)− α(Amx, Apx) < 0⇒ (x− αAmx, Apx) < 0

⇒ (−b, Apx) < 0⇒ ](Apx;−b) ∈
(π

2
, π
]
.

Hence, we obtain

](A−mx;−b) ≥ ](Apx;−b)︸ ︷︷ ︸
∈( π

2 ,π]

−](A−mx; Apx)︸ ︷︷ ︸
∈[0, π

2 ]

≥ ](Apx;−b)− π

2
> 0 .

At the same time, the assumption α‖x‖2 ≤ (x, A−mx) implies

(x, αx) ≤ (x, A−mx)⇒ (A−mx, αAmx) ≤ (A−mx, x)⇒ (A−mx, x− αAmx︸ ︷︷ ︸
−b

) ≥ 0;

so, ](A−mx;−b) ≤ π
2 . To summarize,

π

2
≥ ](A−mx;−b) ≥ ](Apx;−b)︸ ︷︷ ︸

∈( π
2 ,π]

−π

2
> 0 .

Consequently,

0 ≤ cos](A−mx;−b) ≤ cos
(
](Apx;−b)− π

2

)
= sin](Apx;−b).
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So, we have

|(A−mx,−b)| = ‖A−mx‖ · ‖ − b‖ ·
∣∣cos](A−mx;−b)

∣∣ ≤ ‖A−mx‖ · ‖b‖ · |sin](Apx,−b)|. (5)

The norm ‖A−mx‖ can be bounded using the Kantorovich inequality, as shown in
Relation (4). Regarding the factor |sin](Apx,−b)|, we have

|sin(](Apx;−b))| =
√

1− cos2 ](Apx;−b) =

√
1− (Apx,−b)2

‖Apx‖2‖b‖2

=

√
1− (Apx, b)2

‖Apx‖2‖b‖2 =

√
‖Apx‖2‖b‖2 − (Apx, b)2

‖Apx‖ · ‖b‖ .

Therefore, the relation (5) can be reformulated as

|(A−mx, b)| ≤ ‖x‖2

2‖Amx‖ · ‖Apx‖

(
1

κm + κm
)√
‖Apx‖2‖b‖2 − (Apx, b)2.

3. Estimate of xT A−mx by the Projection Method

Our goal is to find a number α such that xT A−mx ≈ α‖x‖2 (cf. (1)). To that end, let us
take a fixed k ∈ N0 = N∪ {0} and consider the following decomposition of x,

x = αAmx− b,

where b ⊥ Akx. (That is, αAmx is a projection of x onto Amx along the orthogonal comple-
ment of Akx.) Then, we have

(x, Akx) = (αAmx, Akx)− (b, Akx).

Using the assumption b ⊥ Akx, we obtain

(x, Akx) = α(Amx, Akx),

and so

α =
(x, Akx)

(x, Am+kx)
.

Hence, we obtain a family of estimates for xT A−mx as follows:

(x, A−mx) ≈ (x, Akx)
(x, Am+kx)

‖x‖2 (k ∈ N0). (6)

We denote these estimates by estproj(k), k ∈ N0. The computational implementation

requires
⌈

m + k
2

⌉
matrix-vector products (mvps).

Let us now explore the error corresponding to the above choice of α. We have

(x, A−mx) = (αAmx, A−mx)− (b, A−mx);

therefore,

(x, A−mx) = α‖x‖2 − (x, A−mb).
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Since α‖x‖2 is the estimate (see (1)), the error term is provided as (x, A−mb). Bounds
on its absolute value can be found using Proposition 1 with

b = αAmx− x =
(x, Akx)

(x, Am+kx)
Amx− x.

Remark 1. Let us comment on the choice of the parameter k.

• Observe that upper bounds UB1 and UB4 from Proposition 1 are minimal for k = m. In this
case, we have b ⊥ Amx; thus, b has the smallest possible norm. Therefore, from the point of
view of minimizing the upper bound on the error (more precisely, minimizing upper bounds
UB1 and UB4), a convenient choice is k = m.

• However, if the goal is fast estimation, we can take k = 0 for even m and k = 1 for odd m,

as these two choices provide estproj(0) =
‖x‖4

‖Am/2x‖2 and estproj(1) =
‖x‖2(x,Ax)
‖A(m+1)/2x‖2 , respectively,

which are both easy to evaluate.

In general, for any choice of k, the error of the estimate can be assessed using Proposition 1.

4. Estimate of xT A−mx Using the Minimization Method

The estimates that we present in this section stem from the upper bounds UB2 and
UB3 for the absolute error |(x, A−mb)|, which are derived in Proposition 1. Our goal is to
reduce the absolute error by finding the value α that minimizes these bounds.

Plugging b = αAmx − x in the explicit formulas for UB2 and UB3, we can easily
check that the two upper bounds in question attain their minimal values if and only if α
minimizes the function

f (α) =
α2‖Amx‖2 − 2α(x, Amx) + ‖x‖2√

α2(x, A3m+kx)− 2α(x, A2m+kx) + (x, Am+kx)
,

where k = m corresponds to UB2 and k = 0 corresponds to UB3. By differentiating this
expression with respect to α, we find that the upper bounds UB2 and UB3 are minimized
at α̂, being the root of the equation

‖Amx‖2(x, A3m+kx)α3 − 3‖Amx‖2(x, A2m+kx)α2+

+
(

2‖Amx‖2(x, Am+kx) + 2(x, Amx)(x, A2m+kx)− ‖x‖2(x, A3m+kx)
)

α+

+ ‖x‖2(x, A2m+kx)− 2(x, Amx)(x, Am+kx) = 0,

where, as before, the values k = m and k = 0 correspond to UB2 and UB3, respectively.
With this value α̂, we obtain the estimation of xT A−mx as

estmin = α̂‖x‖2.

For the sake of brevity, we adopt the notation estmin1 for k = 0 and estmin2 for k = m.

The computational implementation requires
⌈

3m + k
2

⌉
mvps.

5. The Heuristic Approach

Let us consider the quantity

Rm(x) =
‖x‖2‖Amx‖2

(x, Amx)2 . (7)

We refer to Rm(x) as the generalized index of proximity.
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Lemma 1. Assume that A ∈ Rn×n is a symmetric matrix. For any nonzero vector x ∈ Rn,
the value Rm(x) satisfies Rm(x) ≥ 1. The equality Rm(x) = 1 holds true if and only if x is an
eigenvector of A.

Proof. By the Cauchy–Schwarz inequality, we have (x, Amx)2 ≤ ‖x‖2‖Amx‖2; hence,
Rm(x) ≥ 1. The equality Rm(x) = 1 is equivalent to the equality in the Cauchy–Schwarz
inequality, which occurs if and only if the vector Amx is a scalar multiple of the vector x, in
other words, when Amx = αx for a certain α ∈ R. This is further equivalent to Ax = λx
(with λ satisfying λm = α) given the assumption that A is symmetric.

As a result of Lemma 1, the equality

Rm(A−m/2x)n1 Rm(Am/2x)n2 = Rm(x)n1+n2 ,

where n1, n2 ∈ Z, is identically true for any eigenvector of A (i.e., for any vector satisfying
Rm(x) = 1), and becomes approximately true for vectors x with the property Rm(x) ≈ 1.

Therefore, if Rm(x) ≈ 1, we have

‖A−m/2x‖2n1‖Am A−m/2x‖2n1

(A−m/2x, Am A−m/2x)2n1

‖Am/2x‖2n2‖Am Am/2x‖2n2

(Am/2x, Am Am/2x)2n2
≈ ‖x‖

2(n1+n2)‖Amx‖2(n1+n2)

(x, Amx)2(n1+n2)

⇒ (x, A−mx)n1‖Am/2x‖2n1

‖x‖4n1

‖Am/2x‖2n2‖A3m/2x‖2n2

‖Amx‖4n2
≈ ‖x‖

2(n1+n2)‖Amx‖2(n1+n2)

(x, Amx)2(n1+n2)

⇒ (x, A−mx)n1 ≈ ‖x‖6n1+2n2‖Amx‖2n1+6n2

(x, Amx)3(n1+n2)(x, A3mx)n2

⇒ (x, A−mx) ≈ n1

√
‖x‖6n1+2n2‖Amx‖2n1+6n2

(x, Amx)3(n1+n2)(x, A3mx)n2
.

We refer to this estimate as esth. If, in particular, n1 = 1 and n2 = 0, we denote the
estimate by esth1, and if n1 = n2 = 1, the corresponding estimate is denoted by esth2. The

computational implementation requires
⌈

3m
2

⌉
mvps.

6. A Comparison with Other Methods

In this section, we briefly describe two methods that were proposed in the literature
for estimating quadratic forms of the type xT f (A)x, where A ∈ Rn×n, x ∈ Rn, and f is
a smooth function defined on the spectrum of A. The first method is an extrapolation
procedure developed in [8] and the second one is based on Gaussian quadrature [5]
(Chapter 7) and [6].

6.1. The Extrapolation Method

We adjust the family of estimates for xT f (A)x given in [8] (Proposition 2) by setting
f (t) = t−m, m ∈ N. Hence, we directly obtain the estimating formula given in the
following lemma.

Lemma 2. Let A ∈ Rn×n be a symmetric matrix. An extrapolation estimate for the quadratic form
xT A−mx, m ∈ N, is given by

eν = ρ−mν ‖x‖2(m+1)

(x, Ax)m , ρ =
‖x‖2‖Ax‖2

(x, Ax)2 , ν ∈ R. (8)

We refer to this estimation as estextrap(ν). The computational implementation requires
just one mvp.
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Remark 2. In the special case of m = 1, some of the proposed estimates are identified to the
corresponding extrapolation estimates for specific choices of the family parameter ν. We have

• For ν = −1, estextrap(−1) ≡ esth1.
• For ν = 0, estextrap(0) ≡ estproj(0).
• For ν = 1, estextrap(1) ≡ estproj(1).

Notably, the extrapolation procedure proposes estimates for the quadratic form
xT A−mx and not bounds. The choice of the family parameter ν is arbitrary and no bounds
for the absolute error of the estimates are provided.

6.2. Gaussian Techniques

We consider the spectral factorization of A, which allows us to express the matrix A as
A = ∑n

k=1 λkvkvT
k , where λk ∈ R are the eigenvalues of A with corresponding eigenvectors

vk. Therefore, the quadratic form xT A−mx can be written as

xT A−mx =
n

∑
k=1

λ−m
k (x, vk)

2. (9)

The Summation (9) can be considered a Riemann–Stieltjes integral of the form∫ λmax

λmin

λ−mdµ(λ),

where the measure µ(λ) is a piecewise constant function defined by

µ(λ) =


0, if λ < λmin,

∑
j
i=1(x, vi)

2, if λj ≤ λ < λj+1,

∑
p
i=1(x, vi)

2, if λmax ≤ λ.

This Riemann–Stieltjes integral can be approximated using Gauss quadrature rules [5,6].
Hence, it is necessary to produce a sequence of orthogonal polynomials, which can be
achieved by the Lanczos algorithm. The operation count for this procedure is dominated
by the application of the Lanczos algorithm, which requires a cost of kn2 matrix-vector
products, where k is the number of Lanczos iterations. As the number of the iterations
increases, the estimates increase in accuracy but the complexity and the execution time
increase as well.

We refer to this estimation as to estGauss.

7. Application in Estimating xT(AAT + λIn)−mx

In several applications, the appearance matrix has the form B = AAT + λIn, λ > 0,
which is a symmetric positive definite matrix. For instance, this type of matrix appears in
specifying the regularization parameter in Tikhonov regularization. In this case, the esti-
mation of the quadratic forms of the type xT B−mx is required. The estimates derived in the
previous sections involve positive powers of B, i.e., Bk, k ∈ N. However, since the direct
computation of the matrix powers Bk is not stable for every λ, our next goal was to develop
an alternative approach to its evaluation. As we show below, the computation of Bk can
be obviated.

Since the matrices AAT and In commute, the binomial theorem applies,

Bm = (AAT + λIn)
m =

m

∑
j=0

(
m
j

)
λj(AAT)m−j, m ∈ N,

and hence
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Bmx =
m

∑
j=0

(
m
j

)
λj(AAT)m−jx, m ∈ N.

The above representation of the vector Bmx effectively allows us to avoid the com-
putation of the powers of the matrix B = AAT + λIn that appear in the estimates of the
quadratic form xT B−mx. The expressions of type (AAT)m−j can be evaluated successively
as follows:

ATx, AATx, AT AATx, AAT AATx, . . .

8. Numerical Examples

Here, we present several numerical examples that illustrate the performance of the
derived estimates. All computations were performed using MATLAB (R2018a). Through-
out the numerical examples, we denote by ei the ith column of the identity matrix of
appropriate order and 1n as the nth vector with all elements equal to one.

Example 1. Upper bounds for the absolute error.

In this example, we consider the symmetric positive define matrix A = BT B ∈
R1000×1000, where B is the Parter matrix selected from the MATLAB gallery. The condition
number of the matrix A is κ = 17.8983. We choose the vector x ∈ R1000 as the 100th column
of the identity matrix, i.e., x = e100. We estimate the quadratic form xT A−2x whose exact
value is 0.0127. In Table 1, we present the generated estimates following the proposed
approach and the upper bounds for the corresponding absolute error, which are given in
Proposition 1.

Table 1. Estimating xT A−2x = 0.0127, where A = BT B, B = Parter, x = e100.

Estimated Upper Bounds on Eabs

Value UB1 UB2 UB3 UB4 UB5

estproj(0) 0.0103 0.0541 0.1909 0.0690 0.1080 0.0540
estproj(2) 0.0103 0.0540 0.1926 0.0692 0.1079 0.0540
estmin1 0.0106 0.0731 0.1029 0.0499 0.1460 0.0538
estmin2 0.0105 0.0701 0.1032 0.0497 0.1401 0.0538
esth1 0.0103 0.0541 0.1872 0.0684 0.1082 0.0540
esth2 0.0103 0.0543 0.1828 0.0677 0.1084 0.0540

Example 2. Estimation of quadratic forms.

We consider the Kac–Murdock–Szegö (KMS) matrix A ∈ R1000×1000, which is sym-
metric positive-definite and Toeplitz. The elements Aij of this matrix are Aij = r|i−j|, i, j =
1, 2, . . . , 1000, 0 < r < 1. We tested this matrix for r = 0.2 and the condition number of A is
κ = 2.25. We estimated both the quadratic forms xT A−2x = 1.2072 and xT A−3x = 296.8727.
The chosen vectors were x = e1000 + 1/4e120 ∈ R1000 and x = 1n. The results are provided
in Tables 2 and 3. As we shown, the derived estimates are satisfactory in both cases.

Table 2. Estimating xT A−2x = 1.2072, where A = KMS, x = e1000 + 1/4e120.

estproj(0) estproj(2) estmin1 estmin2 esth1 esth2

1.0176 0.8636 1.0268 0.9910 1.1990 1.2335
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Table 3. Estimating xT A−3x = 296.8727, where A = KMS, x = 1n.

estproj(0) estproj(3) estmin1 estmin2 esth1 esth2

296.6203 296.5306 299.8469 297.7640 296.7100 296.7562

Example 3. Estimation of the whole diagonal of the covariance matrices.

In this example, we consider thecovariance matrices of order n, whose elements Aij
are given by

Aij =

 1 + iα, i = j
1

|i− j|β
, i 6= j

, i = 1, 2, . . . , n,

where α, β ∈ R and β ≥ 1 [9]. We estimated the whole diagonal of the inverse of covariance
matrices through the derived estimates presented in this work. Moreover, we used the
two approaches presented in Section 6, which were used in previous studies. We applied
the Gauss quadrature using k = 3 Lanczos iterations. We chose the pair of values for
the parameters (α, β) = (3, 1). We validated the quality of the generated estimates by
computing the mean relative error (MRE) given by

MRE =
1
n

n

∑
i=1

|A−1
ii − est(i)|
|A−1

ii |
,

where est(i) is the corresponding estimate for the diagonal element A−1
ii . The results are

recorded in Table 4. Specifically, we analyzed the performance of the proposed estimates in
terms of the MRE and the execution time (in seconds).

Table 4. Mean relative errors and execution times for estimating the diagonal of the covariance
matrices of order n with (α, β) = (3, 1).

n Estimate MRE Time

1000

estproj(0) ≡ estextrap(0) 1.2688 × 10−4 5.3683 × 10−4

estproj(1) ≡ estextrap(1) 4.3539 × 10−4 5.4723 × 10−4

estmin1 2.9994 × 10−4 2.3557 × 10−1

estmin2 3.0020 × 10−4 2.1121 × 10−1

esth1 ≡ estextrap(−1) 3.5996 × 10−4 6.5678 × 10−4

esth2 3.8761 × 10−3 5.9529 × 10−2

estGauss 1.2687 × 10−4 1.7068

3000

estproj(0) ≡ estextrap(0) 4.2294 × 10−5 2.2339 × 10−3

estproj(1) ≡ estextrap(1) 1.4516 × 10−4 2.2521 × 10−3

estmin1 1.0508 × 10−4 1.2698
estmin2 1.0528 × 10−4 1.0726

esth1 ≡ estextrap(−1) 1.2004 × 10−4 2.5384 × 10−3

esth2 1.6973 × 10−3 5.1289 × 10−1

estGauss 4.2294 × 10−5 1.1647 × 101

5000

estproj(0) ≡ estextrap(0) 2.5377 × 10−5 1.4881 × 10−2

estproj(1) ≡ estextrap(1) 8.7099 × 10−5 1.4502 × 10−2

estmin1 6.6113 × 10−5 1.2790 × 101

estmin2 6.6256 × 10−5 8.3479
esth1 ≡ estextrap(−1) 7.2027 × 10−5 1.7101 × 10−2

esth2 1.1532 × 10−3 6.4850
estGauss 2.5377 × 10−5 2.0130 × 102
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Example 4. Network analysis.

In this example, we tested the behavior of the proposed estimates in network anal-
ysis. Specifically, we estimated the whole diagonal of the resolvent matrix (In − aA)−1,
where A is the adjacency matrix of the network. We chose the parameter a = 0.85/λmax.
We considered three adjacency matrices of order n = 4000, which were selected by the
CONTEST toolbox [10]. In Table 5, we provide the mean relative error for estimating the
whole diagonal of the resolvent matrix. We also provide the execution time in seconds in
the brackets in this table.

Table 5. Mean relative errors and execution times (seconds) for estimating the diagonal of the
resolvent matrix.

Network estproj(0) estproj(1) estmin1 estmin2 esth1 esth2

pref 8.770 × 10−3 1.646 × 10−2 3.008 × 10−3 1.240 × 10−2 9.218 × 10−4 6.500 × 10−4

[2.723 × 10−4] [3.447 × 10−4] [5.091] [4.105] [3.747 × 10−4] [9.471 × 10−2]
lock and key 3.590 × 10−2 6.700 × 10−2 1.540 × 10−2 4.313 × 10−2 3.620 × 10−3 3.170 × 10−4

[3.927 × 10−4] [4.429 × 10−4] [6.754] [4.884] [4.946 × 10−4] [8.387 × 10−1]
renga 7.173 × 10−2 1.014 × 10−1 2.875 × 10−2 5.516 × 10−2 4.110 × 10−2 2.936 × 10−2

[4.153 × 10−4] [4.724 × 10−4] [4.597] [4.059] [5.103 × 10−4] [6.477 × 10−2]

Example 5. Solution of ill-posed problems via the GCV method.

Let us consider the least-squares problem of the form minx∈Rd ‖Ax − b‖2, where
A ∈ Rn×d and b ∈ Rn. In ill-posed problems, the solution of the above minimization
problem is not satisfactory and it is necessary to replace this problem with another one that
is a penalized least-squares problem of the form

min
x∈Rd
{‖Ax− b‖2 + λ‖x‖2}, (10)

where λ > 0 is the regularization parameter. This is the popular Tikhonov regularization.
The solution of (10) is xλ = (AT A + λId)

−1 ATb. A major issue is the specification of
the regularization parameter λ. This can be achieved by minimizing the GCV function.
Following the expression of the GCV function V(λ) in terms of quadratic forms presented
in [11], we write

V(λ) =
bT B−2b

(Tr(B−1))2 ,

where B = AAT + λIn ∈ Rn×n.
In this example, we considered three test problems of order n, which were selected

from the Regularization Tools package [12]. In particular, we considered the Shaw, Tomo,
and Baart problems. Each of these test problems generates a matrix A and a solution x. We
computed the error-free vector b such that b = Ax. The perturbed data vector bper ∈ Rp

was computed by the formula bper = b + e ‖ b ‖ σ√
n

, where σ is a given noise level and

e ∈ Rn is a Gaussian noise with mean zero and variance one. We estimated the GCV
function using the estimate esth1 without computing the matrix B, but we used the relations
for Bx given in Section 7. We found the minimum of the corresponding estimation over
a grid of values for λ and we computed the solution xλ. Concerning the grid of λ, we
considered 100 equally spaced values in log-scale in the interval [10−12, 10].

In Figures 1–3, we plot the exact solution x of the problem and the estimated solution
xλ generated by Tikhonov regularization via the GCV function. Specifically, for each test
problem, we depict two graphs. The left-hand-side graph corresponds to the determination
of the regularization parameter via the estimated GCV using esth1, and the right-hand-
side graph concerns the exact computation of the GCV function. In Table 6, we list the
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characteristics of Figures 1–3. In particular, we provide the order n, the noise level σ, and
the error norm of the derived solution xλ of each test problem.

Table 6. Characteristics of Figures 1–3.

Test Problem (n, σ) Method ‖ x− xλ ‖
Shaw estimation 2.1885 × 10−1

(200, 10−7) exact GCV 1.9049 × 10−1

Tomo estimation 1.9188 × 10−2

(100, 10−5) exact GCV 7.0236 × 10−2

Baart estimation 5.9189 × 10−2

(100, 10−7) exact GCV 5.9958 × 10−2
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Figure 1. Solution of the Shaw test problem via an estimation of GCV (left) and the exact GCV (right).
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Figure 2. Solution of the Tomo test problem via an estimation of GCV (left) and the exact GCV (right).
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Figure 3. Solution of the Baart test problem via an estimation of GCV (left) and the exact GCV (right).
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9. Conclusions

In this work, we proposed three different approaches for estimating the quadratic
forms of the type xT A−mx, m ∈ N. Specifically, we considered a projection method,
a minimization approach, and a heuristic procedure. We also expressed upper bounds on
the absolute error of the derived estimates; they allowed us to assess the precision of the
results obtained by the aforementioned methods.

The proposed approaches provide efficient and fast estimates. Their efficiency was
illustrated by numerical examples. Comparing the proposed estimates with the corre-
sponding ones presented in the literature, we formed the following conclusions.

• The projection method improves the results of the extrapolation procedure by provid-
ing bounds on the absolute error.

• Although the estimates based on the Gauss quadrature are accurate, they require more
time and more mvps than the proposed approaches as the number of the Lanczos
iterations increases. The methods shown in the present paper are thus convenient
especially in situations when a fast estimation of moderate accuracy is sought.
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