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Abstract: Forecasting the cycle time of each job is a critical task for a factory. However, recent
studies have shown that it is a challenging task, even with state-of-the-art deep learning techniques.
To address this challenge, a selectively fuzzified back propagation network (SFBPN) approach is
proposed to estimate the range of a cycle time, the results of which provide valuable information
for many managerial purposes. The SFBPN approach is distinct from existing methods, because
the thresholds on both the hidden and output layers of a back propagation network are fuzzified to
tighten the range of a cycle time, while most of the existing methods only fuzzify the threshold on
the output node. In addition, a random search and local optimization algorithm is also proposed to
derive the optimal values of the fuzzy thresholds. The proposed methodology is applied to a real
case from the literature. The experimental results show that the proposed methodology improved
the forecasting precision by up to 65%.

Keywords: cycle time; forecasting; selectively fuzzified back propagation network; fuzzy collabora-
tive forecasting

1. Introduction

This study aims to estimate the cycle time range of a job in a factory. The cycle time
(or manufacturing lead time) of a job is the time it takes for the job to pass through the
factory [1]. Various methods have been proposed to predict the cycle time of a job in a fac-
tory [2–4]. However, even if some advanced computing techniques, such as big data or deep
learning, are applied, the prediction accuracy is still not good enough [3–6]. To overcome
this problem, estimating the range of the cycle time instead is a meaningful treatment.

Estimating the cycle time range is an important issue because it provides valuable
information for various managerial activities. For example, in internal due date assign-
ment [1,5], an internal due date must be later than the upper bound of the cycle time in
order to ensure timely delivery [6,7]. However, it is also a challenging task because the
cycle time of a job is subject to many uncertainties caused by unstable human intervention,
unexpected machine breakdown, poor job sequencing and scheduling, and so on [8–10].
As a result, the cycle time range of a job may be very wide, or does not even contain the
actual value, which represents poor estimation precision [4,11,12].

Based on the above reasons, the research problem of this study is on how to improve
the precision for estimating the cycle time range of each job in a factory. Existing methods
in this field are subject to the following problems:

(1) Some existing methods establish the confidence interval of the cycle time [12–15].
However, even with advanced computing technologies such as deep learning and big
data analysis, the accuracy of predicting the cycle time is still not satisfactory. As far
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as the impact is reached, the established confidence interval of the cycle time has no
reference value.

(2) In some studies, the parameters of a cycle time forecasting method were fuzzified to
generate a fuzzy forecast, which represents the range of the cycle time. Most of these
methods only fuzzified a single parameter to simplify calculations [4,16]. However,
fuzzifying more parameters can further shorten the range of the cycle time.

To solve the problems of the existing methods and to improve the precision of esti-
mating the cycle time range of a job, a selectively fuzzified (SFBPN) approach is proposed
in this study. The contribution of the proposed methodology is to establish a systematic
procedure to efficiently fuzzify the multiple network parameters of a BPN, thereby further
reducing the cycle time range of each job.

In the proposed methodology, a SFBPN is constructed to estimate the cycle time range
of a job. In SFBPN, the thresholds on the hidden-layer and output-layer nodes are fuzzified
to further tighten the cycle time range. To derive the optimal values of the fuzzy thresholds,
a nonlinear programming (NLP) problem needs to be solved, which is not easy. To tackle
this difficulty, a random search and local optimization algorithm is proposed.

The remainder of this paper is organized as follows. Section 2 is dedicated to the
literature review. Section 3 introduces the proposed methodology, including the implemen-
tation procedure, the SFBPN architecture, and the random search and local optimization
algorithm. To assess the effectiveness of the proposed methodology, it has been applied to a
real case from the literature, which is described in Section 4. Section 5 presents concluding
remarks and puts forth some topics for future investigation.

2. Literature Review

Chen and Wang [13] applied fuzzy c-means (FCM) to classify jobs in a factory, and
then constructed a backpropagation network (BPN) to forecast the cycle times of the jobs
for each category. The range of the cycle time was estimated by constructing the confidence
interval of the cycle time. However, in theory, the confidence interval does not necessarily
contain the actual value. To solve this problem, Chen and Lin [17] fuzzified the parameters
of a BPN to generate a fuzzy cycle time forecast. The support of a fuzzy cycle time forecast
represented the range of the cycle time. However, nonlinear programming (NLP) problems
needed to be solved, which was not easy.

Hsieh et al. [18] applied response surface modelling (RSM) to evaluate the impact
of emergency jobs on the cycle times of normal jobs. More emergency jobs extended the
cycle times of normal jobs and widened the ranges of these cycle times. Therefore, the
percentage of emergent jobs in the factory should be minimized to improve the precision
of estimating the cycle ranges of normal jobs.

Wang and Zhang [14] modified the FCM−BPN method [13] by incorporating a condi-
tional mutual information-based feature selection mechanism to choose the inputs for the
FCM−BPN method. The improvement in the forecasting accuracy also helped to establish
a narrower cycle time range. However, the range was based on the confidence interval,
which might not contain the actual value.

In Chen [4], the threshold on the output node of a BPN was fuzzified to estimate
the range of the cycle time. Then, fuzzy intersection (FI) was applied to aggregate the
cycle time ranges estimated by multiple experts. In this way, the cycle time range could
be further reduced. However, the cycle time range was affected by extreme cases, namely
jobs with unexpected long- or short-cycle times [19]. To overcome this problem, Chen [20]
slightly adjusted each cycle time forecast before fuzzifying the threshold on the output
node. In this way, the impact of extreme cases could be mitigated. However, as only one
network parameter was fuzzified, there was still room for improvement.

Wang et al. [21] constructed a two-dimensional long short-term memory (LSTM)
network with multiple memory units to forecast the cycle time of a job. The LSTM network
was a deep recurrent neural network [22,23] Through deep learning and considering the
correlation between the network parameters, the forecasting accuracy could be improved,
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thereby helping to reduce the cycle time range. However, the problem of a confidence
interval still existed.

Chen and Wu [16] replaced a cycle time forecast with its linear function before fuzzi-
fying the threshold on the output node of a BPN to estimate the cycle time range, which
further tightened the lower and upper bounds of the cycle time [17]. Fuzzifying only one
network parameter limited the scope of improvement.

Wang et al. [24] modified the approach proposed by Wang and Zhang [14] by in-
corporating an adaptive logistic regression correlation analysis-based feature selection
mechanism instead. These two studies suffered from the same problem of a confidence
interval [25,26].

The novelty of the proposed methodology is highlighted by comparing it with some
of the existing methods, as summarized in Table 1.

Table 1. The novelty of the proposed methodology.

Method Type of Cycle
Time Forecasts Fuzzified Parameters Optimization Method Precision

Wang and Zhang [14] Crisp No Optimized feature selection Low

Chen and Wu [16] Fuzzy Threshold on the node
of the output layer

Equations based on the linear
function of the output High

Wang et al. [21] Crisp No Deep learning Low

Wang et al. [24] Crisp No Optimized feature selection Low−moderate

The proposed
methodology Fuzzy

Thresholds on nodes of
hidden and

output layers

Random search and local
optimization algorithm Very high

3. Methodology

The implementation procedure of the proposed methodology comprised the
following steps:

(1) Preprocess the collected data: two major tasks in this step are feature selection and
data normalization.

(2) Construct a SFBPN to forecast the cycle time of a job.
(3) Train the SFBPN using an existing algorithm to derive the cores of the

network parameters.
(4) Apply the random search and local optimization algorithm to derive the lower and

upper bounds of the thresholds.
(5) Estimate the cycle time ranges of all of the jobs.
(6) Evaluate the forecasting precision.

A flow chart is provided in Figure 1 to illustrate the implementation procedure of
the proposed methodology. Without a loss of generality, all of the fuzzy parameters and
variables in the proposed methodology are given in or approximated with triangular fuzzy
numbers (TFNs) [27,28].

3.1. Data Preprocessing

There are two major tasks at the stage of data preprocessing, namely, feature selection
and data normalization.

First, relevant features are selected based on the way the cycle time of a job is fore-
casted. One way is to treat the cycle times of jobs as a time series and to apply a time
series forecasting method to forecast the job cycle times [29], for which the relevant features
are the cycle times of jobs that have been completed recently. The other way is to fit the
relationship between the cycle time of a job and the attributes of the job. In this way,
relevant features include the attributes of a job, the cycle times of jobs that have been com-
pleted recently, production conditions when a job is released into the wafer fab, etc. [30,31].
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Features can also be functionalized, split, or combined using techniques such as principal
component analysis and stepwise regression, before serving as inputs [24,32]. In the lit-
erature, various techniques have been applied to select relevant features, e.g., subjective
elimination based on expert knowledge [24,33], backward elimination-based regression
analysis [31], backward elimination-based genetic programming [34,35], conditional mu-
tual information-based feature selection [14,21,36], adaptive logistic regression correlation
analysis [24], mutual information network deconvolution feature selection [37], etc. In this
study, input features were selected using backward elimination-based regression analysis.
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Figure 1. The implementation procedure of the proposed methodology.

Subsequently, the collected data were normalized into [0.1, 0.9] to ensure the extrapo-
lation ability of the SFBPN using the partial normalization method [4]:

zjp
= N(xjp)

=
xjp−min

r
xrp

max
r

xrp−min
r

xrp
· 0.8 + 0.1

(1)

where N() is the partial normalization function. j and r are both indexes of a job; 1 ≤ j,
r ≤ n. p is the index of an input; 1 ≤ p ≤ P. xjp (or xrp) is the p-th attribute of job j (or r); zjp
is the normalized value of xjp. To convert zjp back to the original value:

xjp
= U(zjp)

=
zjp−0.1

0.8 · (max
r

xrp −min
r

xrp) + min
r

xrp

(2)

where U() is the partial un-normalization function.
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3.2. Forecasting the Cycle Time of a Job Using a SFBPN

In the proposed methodology, a SFBPN is constructed to forecast the cycle time of a
job in a wafer fab. The SFBPN is a special FBPN for which the parameters are selectively
fuzzified. The architecture of the SFBPN is illustrated in Figure 2, which has three layers,
namely: the input layer, the hidden layer, and the output layer.
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In the network training phase, inputs to the SFBPN are weighted and transmitted to
each node of the hidden layer, on which they are aggregated and then outputted as follows

h̃jl = (hjl1, hjl2, hjl3)

= 1

1+e
−ñh

jl

∼= ( 1

1+e
−nh

jl1
, 1

1+e
−nh

jl2
, 1

1+e
−nh

jl3
)

(3)

where
ñh

jl = (nh
jl1, nh

jl2, nh
jl3)

= Ĩh
jl(−)θ̃

h
l

= (Ih
jl1 − θh

l3, Ih
jl2 − θh

l2, Ih
jl3 − θh

l1)

(4)

Ĩh
jl = (Ih

jl1, Ih
jl2, Ih

jl3)

=
P
∑

p=1
w̃h

plzjp

= (
P
∑

p=1
wh

pl1zjp,
P
∑

p=1
wh

pl2zjp,
P
∑

p=1
wh

pl3zjp)

(5)

where l is the index of a hidden-layer node; l = 1 ~ L. h̃jl is the output from node l of the
hidden layer. θ̃h

l is the threshold on this node; w̃h
pl is the weight of the connection between

input node p and this node. (–) denotes fuzzy subtraction [38]. After passing h̃jl to the
output layer, the network output õj is generated as follows

õj = (oj1, oj2, oj3)

= 1

1+e
−ño

j

∼= ( 1

1+e
−no

j1
, 1

1+e
−no

j2
, 1

1+e
−no

j3
)

(6)

where
õj = (oj1, oj2, oj3)

= 1

1+e
−ño

j

∼= ( 1

1+e
−no

j1
, 1

1+e
−no

j2
, 1

1+e
−no

j3
)

(7)
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Ĩo
j = (Io

j1, Io
j2, Io

j3)

=
M
∑

l=1
w̃o

l (×)h̃jl

∼= (
M
∑

l=1
min(wo

l1hjl1, wo
l1hjl3, wo

l3hjl1, wo
l3hjl3),

M
∑

l=1
wo

l2hjl2,

M
∑

l=1
max(wo

l1hjl1, wo
l1hjl3, wo

l3hjl1, wo
l3hjl3))

(8)

θ̃o is the threshold on the output node; w̃o
l is the weight of the connection between

node l of the hidden layer and the output node. As h̃jl ≥ 0, Equation (8) can be shortened,
as follows

Ĩo
j = ( ∑

w̃o
l≥0

wo
l1hjl1 + ∑

w̃o
l <0

wo
l1hjl3,

M

∑
l=1

wo
l2hjl2, ∑

w̃o
l≥0

wo
l3hjl3 + ∑

w̃o
l <0

wo
l3hjl1) (9)

Some theoretical properties of the SFBPN are discussed in the following.

Theorem 1.

(Io
j1, Io

j2, Io
j3) = (θo

3 − ln(
1

oj1
− 1), θo

2 − ln(
1

oj2
− 1), θo

1 − ln(
1

oj3
− 1)) (10)

Proof. The required proof is trivial. �

Property 1. oj3 decreases when θo
1 increases; oj1 increases when θo

3 decreases.

3.3. Determining the Values of Network Parameters

The training of the SFBPN is decomposed into three tasks, i.e., determining the core,
lower bound, and upper bound of each network parameter [39].

At first, the SFBPN is treated as a crisp one and trained using an existing algorithm,
such as the gradient descent (GD) algorithm, the Levenberg−Marquardt (LM) algorithm,
the Broyden−Fletcher−Goldfarb−Shanno (BFGS) quasi-Newton algorithm, the GD algo-
rithm with momentum and adaptive learning rate (GDX), or the resilient backpropagation
(RP) algorithm [40], to determine the cores of the network parameters (such as wh

pl2, θh
l2,

wo
l2, and θo

2), thereby optimizing the forecasting accuracy measured in terms of the root
mean squared error (RMSE):

RMSE =

√√√√√ n
∑

i=1
(oj2 − N(aj))

2

n
(11)

where aj is the cycle time (i.e., actual value) of job j. Assuming the obtained optimal
solution is indicated with {wh∗

pl2, θh∗
l2 , wo∗

l2 , θo∗
2 }.

Subsequently, the following NLP problem is solved to derive the lower and upper
bounds of the network parameters, thereby optimizing the forecasting precision measured
in terms of the average range (AR) of fuzzy cycle time forecasts:

(NLP Problem)

Min AR =
1
n

n

∑
j=1

(oj3 − oj1) (12)

subject to
oj1 ≤ N(aj); j = 1 ∼ n (13)

oj3 ≥ N(aj); j = 1 ∼ n (14)



Mathematics 2021, 9, 1430 7 of 18

oj1 =
1

1 + e−no
j1

; j = 1 ∼ n (15)

oj3 =
1

1 + e−no
j3

; j = 1 ∼ n (16)

no
j1 = Io

j1 − θo
3; j = 1 ∼ n (17)

no
j3 = Io

j3 − θo
1; j = 1 ∼ n (18)

Io
j1 = ∑

wo∗
l2≥0

wo
l1hjl1 + ∑

wo∗
l2 <0

wo
l1hjl3; j = 1 ∼ n (19)

Io
j3 = ∑

wo∗
l2≥0

wo
l3hjl3 + ∑

wo∗
l2 <0

wo
l3hjl1; j = 1 ∼ n (20)

hjl1 =
1

1 + e−nh
jl1

; j = 1 ∼ n (21)

hjl3 =
1

1 + e−nh
jl3

; j = 1 ∼ n (22)

nh
jl1 = Ih

jl1 − θh
l3; j = 1 ∼ n (23)

nh
jl3 = Ih

jl3 − θh
l1; j = 1 ∼ n (24)

Ih
jl1 =

P

∑
p=1

wh
pl1zjp; j = 1 ∼ n (25)

Ih
jl3 =

P

∑
p=1

wh
pl3zjp; j = 1 ∼ n (26)

oj1 ≤ o∗j2 ≤ oj3; j = 1 ∼ n (27)

θo
1 ≤ θo∗

2 ≤ θo
3 (28)

wo
l1 ≤ wo∗

l2 ≤ wo
l3; l = 1 ∼ L (29)

θh
l1 ≤ θh∗

l2 ≤ θh
l3; l = 1 ∼ L (30)

wh
pl1 ≤ wh∗

pl2 ≤ wh
pl3; p = 1 ∼ P; l = 1 ∼ L (31)

Constrains (30) to (33) define the sequence of the three corners of the corresponding TFN.
The NLP problem is not easy to solve. To tackle this difficulty, Chen and Lin [18]

fuzzified only the threshold on the output node, and set the other network parameters to
crisp values to simplify the problem, as follows:

wo
l1 = wo∗

l2 = wo
l3; l = 1 ∼ L (32)

θh
l1 = θh∗

l2 = θh
l3; l = 1 ∼ L (33)

wh
pl1 = wh∗

pl2 = wh
pl3; p = 1 ∼ P; l = 1 ∼ L (34)

As a result, Ih
jl1 = Ih∗

jl2 = Ih
jl3, hjl1 = h∗jl2 = hjl3, and Io

j1 = Io∗
j2 = Io

j3. The threshold on
the output node can be optimized as follows.

Theorem 2. Reference [17].

θo∗
3 = θo∗

2 + min
j
(ln(

1
N(aj)

− 1)− ln(
1
oj
− 1)) (35)
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θo∗
1 = θo∗

2 −max
j

(ln(
1

N(aj)
− 1)− ln(

1
oj
− 1)) (36)

Proof. Substituting Equations (17) and (18) into Equations (15) and (16) gives the following

oj1 =
1

1 + e−(Io
j1−θo

3)
(37)

oj3 =
1

1 + e−(Io
j3−θo

1)
(38)

Substituting Equations (37) and (38) into Constraints (13) and (14), gives the following:

1

1 + e−(Io
j1−θo

3)
≤ N(aj) (39)

1

1 + e−(Io
j3−θo

1)
≥ N(aj) (40)

Therefore,

θo
3 ≥ Io

j1 + ln(
1

N(aj)
− 1) (41)

θo
1 ≤ Io

j3 + ln(
1

N(aj)
− 1) (42)

As Io
j1 = Io∗

j2 = Io
j3,

θo
3 ≥ Io∗

j2 + ln(
1

N(aj)
− 1) (43)

θo
1 ≤ Io∗

j2 + ln(
1

N(aj)
− 1) (44)

Applying Theorem 1 to Constraints (43) and (44) gives the following:

θo
3 ≥ θo∗

2 − ln(
1

o∗j2
− 1) + ln(

1
N(aj)

− 1) (45)

θo
1 ≤ θo∗

2 − ln(
1

o∗j2
− 1) + ln(

1
N(aj)

− 1) (46)

Constraints (45) and (46) hold for all jobs. Therefore,

θo
3 ≥ max

j
(θo∗

2 − ln(
1

o∗j2
− 1) + ln(

1
N(aj)

− 1)) (47)

θo
1 ≤ min

j
(θo∗

2 − ln(
1

o∗j2
− 1) + ln(

1
N(aj)

− 1)) (48)

To minimize oj3 − oj1, oj3 and oj1 are to be minimized and maximized, respectively.
For this purpose, according to Property 1, θo

1 and θo
3 should be maximized and minimized,

respectively. As a result,

θo∗
3 = max

j
(θo∗

2 − ln(
1

o∗j2
− 1) + ln(

1
N(aj)

− 1)) (49)

θo∗
1 = min

j
(θo∗

2 − ln(
1

o∗j2
− 1) + ln(

1
N(aj)

− 1)) (50)

Theorem 2 is proved. �
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3.4. Fuzzifying Thresholds on Hidden-Layer Nodes

In the proposed methodology, the thresholds on both the hidden-layer and output-
layer nodes are fuzzified to further enhance the forecasting precision measured in terms of
the average range of fuzzy cycle time forecasts. The optimal values of these thresholds can
be derived as follows.

Theorem 3.

θo∗
3 = min

j
( ∑

wo∗
l2≥0

wo∗
l2

1 + e−(Ih∗
jl2−θh∗

l3 )
+ ∑

wo∗
l2 <0

wo∗
l2

1 + e−(Ih∗
jl2−θh∗

l1 )
+ ln(

1
N(aj)

− 1)) (51)

θo∗
1 = max

j
( ∑

wo∗
l2≥0

wo∗
l2

1 + e−(Ih∗
jl2−θh∗

l1 )
+ ∑

wo∗
l2 <0

wo∗
l2

1 + e−(Ih∗
jl2−θh∗

l3 )
+ ln(

1
N(aj)

− 1)) (52)

Proof. First, substituting Equations (23) and (24) into Equations (21) and (22) gives
the following

hjl1 =
1

1 + e−(Ih
jl1−θh

l3)
; j = 1 ∼ n (53)

hjl3 =
1

1 + e−(Ih
jl3−θh

l1)
; j = 1 ∼ n (54)

Then, substituting Equations (53) and (54) into Constraints (19) and (20) gives
the following

Io
j1 = ∑

wo∗
l2≥0

wo
l1

1 + e−(Ih
jl1−θh

l3)
+ ∑

wo∗
l2 <0

wo
l1

1 + e−(Ih
jl3−θh

l1)
; j = 1 ∼ n (55)

Io
j3 = ∑

wo∗
l2≥0

wo
l3

1 + e−(Ih
jl3−θh

l1)
+ ∑

wo∗
l2 <0

wo
l3

1 + e−(Ih
jl1−θh

l3)
; j = 1 ∼ n (56)

As Ih
jl1 = Ih∗

jl2 = Ih
jl3,

Io
j1 = ∑

wo∗
l2≥0

wo∗
l2

1 + e−(Ih∗
jl2−θh

l3)
+ ∑

wo∗
l2 <0

wo∗
l2

1 + e−(Ih∗
jl2−θh

l1)
; j = 1 ∼ n (57)

Io
j3 = ∑

wo∗
l2≥0

wo∗
l2

1 + e−(Ih∗
jl2−θh

l1)
+ ∑

wo∗
l2 <0

wo∗
l2

1 + e−(Ih∗
jl2−θh

l3)
; j = 1 ∼ n (58)

Substituting Equations (57) and (58) into Constraints (43) and (44) results in
the following

θo
3 ≥ ∑

wo∗
l2≥0

wo∗
l2

1 + e−(Ih∗
jl2−θh

l3)
+ ∑

wo∗
l2 <0

wo∗
l2

1 + e−(Ih∗
jl2−θh

l1)
+ ln(

1
N(aj)

− 1) (59)

θo
1 ≤ ∑

wo∗
l2≥0

wo∗
l2

1 + e−(Ih∗
jl2−θh

l1)
+ ∑

wo∗
l2 <0

wo∗
l2

1 + e−(Ih∗
jl2−θh

l3)
+ ln(

1
N(aj)

− 1) (60)

According to Property 1,

θo∗
3 = min

j
( ∑

wo∗
l2≥0

wo∗
l2

1 + e−(Ih∗
jl2−θh∗

l3 )
+ ∑

wo∗
l2 <0

wo∗
l2

1 + e−(Ih∗
jl2−θh∗

l1 )
+ ln(

1
N(aj)

− 1)) (61)
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θo∗
1 = max

j
( ∑

wo∗
l2≥0

wo∗
l2

1 + e−(Ih∗
jl2−θh∗

l1 )
+ ∑

wo∗
l2 <0

wo∗
l2

1 + e−(Ih∗
jl2−θh∗

l3 )
+ ln(

1
N(aj)

− 1)) (62)

Theorem 3 is proved. �

To derive the optimal values of θ̃o∗ and θ̃h∗
l , a two-step procedure is established in this

study. First, the thresholds on the hidden-layer nodes are set to certain values. Then, the
optimal value of the threshold on the output node can be derived according to Theorem
3. After repeating this process, the optimal values of these thresholds can be obtained.
Accordingly, the following random search and local optimization of Algorithm is proposed,
as follows (Algorithm 1):

Algorithm 1: Random search and local optimization

Step 1. Set t (time index) to 1.
Step 2. Set ARmin (the minimum of AR so far) to a large positive value.
Step 3. Set θh

l3 = θh∗
l2 + ξl and θh

l1 = θh∗
l2 − ζl for all l; ξl and ζl are random numbers within [0, v].

Step 4. Derive the values of θo∗
1 and θo∗

3 according to Theorem 3.
Step 5. Calculate oj1 and oj3 based on the updated network parameters.
Step 6. Evaluate AR.
Step 7. If ARmin > AR, set ARmin to AR and record the values of θh

l3, θh
l1, θo∗

1 and θo∗
3 .

Step 8. t = t + 1.
Step 9. If t > T (the number of iterations), go to Step 10; otherwise, return to Step 3.
Step 10. Stop.

4. Case Study
4.1. Background

With the advancement of wafer fabrication technologies, more and more advanced
semiconductor devices (such as 3D NAND and finFETs) have emerged; however, the
required cycle times have also become longer. For example, a 5 nm semiconductor device
may have up to 100 mask layers, and each layer takes 0.8 to 1.5 days. To cope with this,
wafer fabrication factories (wafer fabs) usually require faster equipment with patterning
tools [41]. However, it is well known that a longer cycle time is associated with higher
variation [42]. Therefore, forecasting the cycle time of a job becomes even more difficult.

The case of a wafer fab for making dynamic random access memory (DRAM) products
is adopted to illustrate the proposed methodology. This case has been investigated by
Chen [4]. In this case, the data of 120 jobs in the wafer fab have been collected. After a
backward regression analysis, six factors were considered to be most influential to the cycle
time of a job, as defined in Table 2. Therefore, P = 6.

Table 2. Factors influential to the cycle time of a job.

Variable Definition

xj1 job size (pieces)

xj2 fab work-in-process (WIP; jobs)

xj3 queue length before the bottleneck (jobs)

xj4 queue length on the processing route (jobs)

xj5 average waiting time of recently completed jobs (h)

xj6 fab utilization

The average and standard deviation of the cycle times were 1229 and 208 h, respec-
tively, showing that the collected cycle times were highly uncertain. The data of the first 80
jobs were used to build/train the model, whereas the remaining data were reserved for
testing/evaluation.
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4.2. Application of the Proposed Methodology

MATLAB was applied to implement the proposed methodology on a PC with an i7-
7700 CPU of 3.6 GHz and 8 GB of RAM. First, to derive the cores of the network parameters,
SFBPN was treated as a crisp one and was trained using the LM algorithm. To optimize the
forecasting accuracy in terms of RMSE, various numbers of nodes in the hidden layer were
tried. The results are summarized in Figure 3. With more than eight nodes in the hidden
layer, the RMSE for fitting the training data could be reduced to a sufficiently low level
(i.e., <30 h). In addition, too many nodes in the hidden layer might increase the possibility
of overfitting. Therefore, the number of hidden-layer nodes was set to eight.
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Figure 3. RMSEs associated with various numbers of hidden-layer nodes.

The trained SFBPN was then applied to generate the cores of the fuzzy cycle time
forecasts. The results are shown in Figure 4. The SFBPN forecasted the cycle times
accurately for the training data. However, some cycle time forecasts deviated from the
actual values when the SFBPN was applied to the test data, showing the necessity for
estimating the range of a cycle time.
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Figure 4. The cores of fuzzy cycle time forecasts.

Subsequently, the random search and local optimization algorithm was applied to
estimate the range of time by fuzzifying the thresholds on the hidden and output layers.
The number of iterations (T) was set to 100. The ranges of random numbers ξl and ζl were
set to be within [0, 1], i.e., v = 1. The estimation results are shown in Figure 5. For the
training data, the estimated range of the cycle time contained the actual value. However,
such a property might not hold for test data.
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The forecasting precision was evaluated in terms of the average range (AR), hit rate
(HR), and the cost for inclusion (CFI):

AR =

n
∑

j=1
(U(oj3)−U(oj1))

n
(63)

HR =

n
∑

j=1
In(j)

n
· 100% (64)

CFI =
AR
HR

(65)

where

In(j) =
{

1 if U(oj1) ≤ aj ≤ U(oj3)
0 otherwise

(66)

The results are summarized in Table 3.

Table 3. The forecasting precision achieved using the proposed methodology.

Data Part AR (h) HR CFI (h)

Training 260 100% 260

Test 261 43% 613



Mathematics 2021, 9, 1430 13 of 18

4.3. Comparison with Existing Methods

Several existing methods have also been applied to this case for comparison. The first
existing method is a traditional statistical analysis technique, the 6σ confidence interval
method [26], in which three times the standard deviation was added to and subtracted from
the core in order to determine the upper and lower bounds of the cycle time. However, in
theory, the probability that a ±3σ confidence interval contains an actual value is only 99.7%
under the residual normality assumption. The standard deviation, σ, using the FBPN was
derived as follows [1]:

σ =

√
n

n− P− 1
· RMSE (67)

In this experiment, σ was 289 h. The forecasting precision using the 6σ confidence
interval method is shown in Table 4.

Table 4. The forecasting precision using the 6σ confidence interval method.

Data Part AR (h) HR CFI (h)

Training 1736 100% 1736

Test 1736 100% 1736

The second existing method is the fuzzy linear regression (FLR)-quadratic program-
ming (QP) method proposed by Donoso et al. [43], in which the relationship between the
cycle time of a job and its attributes is fitted with a FLR regression, as follows:

õj = w̃0(+)
P

∑
p=1

w̃pxjp (68)

To derive the values of the fuzzy parameters in Equation (69), the following QP
problem was solved:

(QP)

Min Z = ω1

T

∑
t=1

(oj2 − aj)
2 + ω2

T

∑
t=1

(oj3 − oj1)
2 (69)

subject to
aj ≥ oj1 + s(oj2 − oj1) 1 ≤ j ≤ n (70)

aj ≤ oj3 + s(oj2 − oj3); 1 ≤ j ≤ n (71)

oj1 = w01 +
P

∑
p=1

wp1xjp; 1 ≤ j ≤ n (72)

oj2 = w02 +
P

∑
p=1

wp2xjp; 1 ≤ j ≤ n (73)

oj3 = w03 +
P

∑
p=1

wp3xjp; 1 ≤ j ≤ n (74)

wp1 ≤ wp2 ≤ wp3; 0 ≤ p ≤ P (75)

0 ≤ oj1 ≤ oj2 ≤ oj3; 1 ≤ j ≤ n (76)

where ω1 and ω2 are the weights; ω1, ω2 ∈ [0, 1]; ω1 + ω2 = 1. s is the satisfaction level;
s ∈ [0, 1]. In this study, these parameters were set as ω1 = 0.3; ω2 = 0.7; s = 0.25. The
forecasting precision achieved by applying the FLR-QP method is shown in Table 5.
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Table 5. The forecasting precision achieved by applying the FLR-QP method.

Data Part AR (h) HR CFI (h)

Training 617 100% 617

Test 616 100% 616

The third method is the FBPN method proposed by Chen and Lin [17], in which only
the threshold on the output node was fuzzified to estimate the range of the cycle time. The
estimated ranges of cycle times are shown in Figure 6. The forecasting precision using
Chen and Lin’s FBPN method was evaluated, and the results are shown in Table 6.

Mathematics 2021, 9, 1430 15 of 19 
 

 

where 1ω  and 2ω  are the weights; 1ω , 2 [0, 1]ω ∈ ; 1 2 1ω ω+ = . s  is the satisfaction 
level; [0, 1]s∈ . In this study, these parameters were set as 1 0.3ω = ; 2 0.7ω = ; 0.25s = . 
The forecasting precision achieved by applying the FLR-QP method is shown in Table 5. 

Table 5. The forecasting precision achieved by applying the FLR-QP method. 

Data Part AR (h) HR CFI (h) 
Training 617 100% 617 

Test 616 100% 616 

The third method is the FBPN method proposed by Chen and Lin [17], in which only 
the threshold on the output node was fuzzified to estimate the range of the cycle time. The 
estimated ranges of cycle times are shown in Figure 6. The forecasting precision using 
Chen and Lin’s FBPN method was evaluated, and the results are shown in Table 6. 

 
Figure 6. Estimated ranges of the cycle times using Chen and Lin’s FBPN method. 

Table 6. The forecasting precision using the FBPN method proposed by Chen and Lin [17]. 

Data Part AR (h) HR CFI (h) 
Training 301 100% 301 

Test 301 43% 709 

From the experimental results, the following discussion was made: 
(1) All of the compared methods maximized the hit rate for the training data. However, 

the average ranges achieved using these methods differed significantly, as illustrated 
by Figure 7. In this regard, the proposed methodology outperformed the existing 
methods by establishing the narrowest range for the cycle time. 

 
Figure 7. Average ranges achieved using various methods for the training data. 

300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800

0 10 20 30 40 50 60 70 80 90 100 110 120

cy
cl

e 
tim

e 
(fo

re
ca

st)
 (h

rs
)

j

UB
actual value
LB

0
200
400
600
800

1000
1200
1400
1600
1800
2000

6s confidence
interval

FLR-QP FBPN proposed
methodology

A
R 

(h
rs

)

Figure 6. Estimated ranges of the cycle times using Chen and Lin’s FBPN method.

Table 6. The forecasting precision using the FBPN method proposed by Chen and Lin [17].

Data Part AR (h) HR CFI (h)

Training 301 100% 301

Test 301 43% 709

From the experimental results, the following discussion was made:

(1) All of the compared methods maximized the hit rate for the training data. However,
the average ranges achieved using these methods differed significantly, as illustrated
by Figure 7. In this regard, the proposed methodology outperformed the existing
methods by establishing the narrowest range for the cycle time.
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(2) It is questionable whether the advantage of the SFBPN approach over the existing
methods is significant. To investigate this, the following hypotheses were tested:

Hypothesis 1 (H1). The estimation precision using the SFBPN approach in terms of the average
range is the same as that using the existing method.

Hypothesis 2 (H2). The estimation precision using the SFBPN approach in terms of the average
range is more effective than that using the existing method.

Table 7 presents a summary of the paired t test results. The estimation precision
using the SFBPN approach was significantly improved (α = 0.05) when compared with the
existing methods.

Table 7. The paired t test results.

6σ Confidence Interval FLR-QP FBPN SFBPN

Mean 1736.5 616.8 301.1 260.0

Variation 6.4 × 10−24 506.6 77.6 4856.5

Observations 80 80 80 80

Pearson correlation
coefficient 0.005 −0.091 −0.168

Degree of freedom 79 79 79

t statistic 189.5 42.46 5.12

P(T ≤ t) one-tail 4.4 × 10−107 1.87 × 10−56 1.07 × 10−6

t Critical one-tail 1.66 1.66 1.66

P(T ≤ t) two-tail 8.7 × 10−107 3.74 × 10−56 2.14 × 10−6

t Critical two-tail 1.99 1.99 1.99

(3) For the test data, none of these methods optimized the hit rate and the average range
simultaneously. Hit rate was usually enhanced at the expense of wide ranges of fuzzy
cycle time forecasts. For this sake, CFI might be a better measure for forecasting
precision. In this regard, the proposed methodology surpassed the existing methods
through reducing the CFI by up to 65%, as shown in Figure 8.
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(4) In the random search and local optimization algorithm, it is interesting to know
whether the ranges of random numbers affected the forecasting performance of the
proposed methodology. To investigate this issue, various ranges of ξl and ζl were
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tried so as to observe changes in the forecasting precision. The results are summarized
in Figure 9. Obviously, with a wider range, it became more difficult to find the optimal
solution, which led to a poorer forecasting precision.
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5. Conclusions and Future Research Directions

Forecasting the cycle time of a job is a critical task for a factory. However, owing to
the uncertainty of the cycle time, it becomes a challenging task, even with state-of-the-art
deep learning techniques. To address this challenge, estimating the range of the cycle time
requires a viable treatment. In this study, a SFBPN approach is proposed. In the proposed
methodology, thresholds on both the hidden and output layers of a BPN are fuzzified to
estimate the range of the cycle time, while in the existing methods, only the threshold on
the output node is fuzzified. In this way, the SFBPN approach can further tighten the range
of the cycle time. To derive the optimal values of the fuzzy thresholds, a random search
and local optimization algorithm is also proposed.

A real case from the literature is adopted to assess the effectiveness of the proposed
methodology and to compare it with those of several existing methods. According to the
experimental results, the following conclusions were drawn:

(1) For training data (i.e., learned examples), all of the compared methods were able to
include the actual values in the corresponding fuzzy cycle time forecasts or cycle time
confidence intervals. However, only the proposed methodology could minimize the
average ranges of the fuzzy cycle time forecasts.

(2) For the test data (i.e., unlearned examples), CFI was a better measure for the fore-
casting precision. In this regard, the advantage of the proposed methodology over
existing methods was up to 65%.

However, the proposed methodology is subject to the following limitations:

(1) Although the random search and local optimization algorithm is likely to find a
promising solution within a short time, it cannot guarantee the global optimality of
the solution.

(2) The case used to illustrate the proposed methodology is relatively small. A larger case
needs to be analyzed to further elaborate the effectiveness of the proposed methodology.

In future studies, connection weights in the SFBPN can also be fuzzified to further
enhance the forecasting precision; however, this is computationally intense and requires
an efficient algorithm [44–46]. As an alternative, fuzzifying some thresholds and some
connection weights may be more tractable. In addition, the SFBPN approach is a general
methodology that can be applied to estimate a range of data with uncertainty in other
fields. Furthermore, other types of fuzzy numbers [47] can also be adopted to represent
fuzzy thresholds. Hybridizing various methods to achieve total synergy [48] is another
direction worth investigation.
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