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Abstract: This paper focuses on investigating the finite-time projective synchronization of Caputo
type fractional-order complex-valued neural networks with time delay (FOCVNNTD). Based on
the properties of fractional calculus and various inequality techniques, by constructing suitable the
Lyapunov function and designing two new types controllers, i.e., feedback controller and adaptive
controller, two sufficient criteria are derived to ensure the projective finite-time synchronization
between drive and response systems, and the synchronization time can effectively be estimated.
Finally, two numerical examples are presented to verify the effectiveness and feasibility of the
proposed results.

Keywords: fractional-order complex-valued neural networks; finite-time projective synchronization;
feedback control; adaptive control

1. Introduction

As a branch of mathematical analysis, fractional calculus mainly deals with differential
or integration of arbitrary non-integer order. Fractional calculus is especially suitable for
describing the physical change process with memory property and historical dependence,
and most of the research objects in the actual system have such properties, which are also
main advantages. Compared with the integer-order derivative model, their differences are
mainly reflected in the following aspects: in time, the integer-order differential equation
represents a change or a certain property of a physical or mechanical process at a certain
moment, which cannot describe the memory characteristics of neurons, while the fractional
derivative contains all the information from the start time to the present time, so that it can
describe the memory property of neurons more truly. With the deepening of the theoretical
research of fractional calculus, fractional calculus has been widely used in various fields.

Recently, researchers have found that it was excellent to introduce fractional calculus
theory into the research of neural networks. Since fractional calculus has infinite memory,
some scholars have turned it into neural networks and established fractional-order neural
network models, it can better describe the dynamic behaviors of neurons. Since there
are many types of input variables, state variables, activation functions, and connection
weights, neural networks can be divided into two categories: real-valued neural networks
(RVNNs) and complex-valued neural networks (CVNNs). However, the CVNNs completes
the information processing in the complex number domain, which is still very different
from the RVNNs. It should be pointed that CVNNs has advantage in solving some difficult
real-world problems [1–6].

As a typical phenomenon, synchronization is widely concerned because of its appli-
cation in signal processing [7], image encryption [8], and pattern recognition [9]. So far,
several types of synchronization have been studied, such as complete synchronization [10],
lag projective synchronization [11], antisynchronization [12], quasiuniform synchroniza-
tion [13], projective synchronization [14], global asymptotical synchronization [15], and
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global Mittag-Leffler synchronization [16,17]. Compared with the above synchronization
types, projective synchronization can achieve faster communication due to its proportional
characteristics. Recently, in order to realize the synchronization of two chaotic systems,
many synchronization strategies have been designed, including adaptive control [18,19],
pulse control [20], intermittent control [21], and feedback control [22,23]. It shows that
an appropriate controller can synchronize the response system with the drive system at
an infinite level. Self-adaptation is a feature that the research object can change its own
habits to adapt to the new environment. Adaptive control is an unpredictable change of
the system, which can make the system adjust its own characteristics according to the
environmental changes to achieve the desired optimal state. According to the obtained
process information and a certain design method, the adaptive control system makes
control decisions to modify the structure, parameters or control function of the controller,
so that the control effect is optimal or approximately better.

Based on the above discussion, under the premise that the complex-valued system is
regarded as a whole, this paper mainly studies the finite-time projective synchronization
problem of a class of FOCVNNTD. Firstly, based on the finite-time projective synchroniza-
tion theory, two different types of controllers are introduced. Then by constructing the
Lyapunov function, using feedback controller and adaptive controller, some new sufficient
conditions for the finite-time projective synchronization of the considered FOCVNNTD are
given. Furthermore, the synchronization time is effectively estimated, which is related to
the order of the fractional derivative and the control parameters. Finally, the theoretical
results in this thesis are verified by numerical simulations.

The main structure of this thesis: In the Section 2, the definition of fractional derivative
and several important lemmas are presented. In the Section 3, by using a feedback controller
and adaptive controller, some different synchronization criteria are established. The fourth
part gives numerical exercises to demonstrate the effectiveness and applicability of the
obtained results. Finally, the direction of future work is pointed out.

2. Preliminaries and Model Description

In this section, we first review some basic knowledge about the fractional calculus.
Then several key lemmas and requisite assumptions are introduced for the following
discussion. Finally, we establish a FOCVNNTD model.

Definition 1 ([24]). The Caputo fractional derivative of order µ for a function h(t) ∈ Cn+1([0,+∞), R)
is defined as:

t0
Dµ

t h(t) =
1

Γ(n− µ)

∫ t

t0

(t− τ)
n−µ−1

h(n)(τ)dτ,

and t > t0, n− 1 < µ < n ∈ Z+, Γ(·) is the Gamma function, where

Γ(µ) =
∫ ∞

0
tµ−1e−tdt.

Particularly, when 0 < µ < 1,

t0
D t

µh(t) =
1

Γ(1− µ)

∫ t

t0

(t− τ)−αh′(τ)dτ

Lemma 1 ([25]). Let h(t) ∈ Cn[0,+∞), 0D−µ
t h(t) is the Riemann–Liouville fractional integral,

where n− 1 < µ, ν < n ∈ Z+,

(1) 0D−µ
t 0D−ν

t h(t) = 0D−(µ+ν)
t h(t), µ, ν ≥ 0;

(2) 0D−µ
t 0D−ν

t h(t), µ = ν ≥ 0;

(3) 0D−µ
t 0Dν

t h(t) = h(t)−∑n−1
k=0

tk

k! h(k)(0), µ = ν ≥ 0.
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Lemma 2 ([26]). Let h(t) ∈ Cn[0,+∞) is continuous and analytic function, the following
inequality holds:

C
t0

Dµ
t h(t)h(t) ≤ h(t)C

t0
Dµ

t h(t) + h(t)C
t0

Dµ
t h(t), (1)

and t ≥ t0, 0 < µ < 1.

Lemma 3 ([27]). If x and y are any two complex numbers, and for any real constant ρ, then the
inequality is established as follows:

xy + xy ≤ ρxx +
1
ρ

yy. (2)

Lemma 4 ([28]). Suppose that function h(t) ∈ Cn[0,+∞) is continuous and differentiable on
t ∈ [t0, ∞), then for any real constant ω, it has

C
t0

Dµ
t (h(t)−ω)2 ≤ 2(h(t)−ω)C

t0
Dµ

t h(t). (3)

Lemma 5 ([29]). Let m ∈ N, x1, x2, · · · , xm are non-negative real numbers, then for m > 1,(
n

∑
k=1

xk

)m

≤ nm−1
n

∑
k=1

xm
k . (4)

Lemma 6 ([30]). Assume that function H(t) is continuous, positive-definite, and satisfies the
following inequality,

C
t0

Dµ
t H(t) ≤ −dHγ(t), (5)

where d > 0, 0 < γ < µ and all of them are constants. Then H(t) satisfies the inequality as follows:

Hµ−γ(t) ≤ Hµ−γ(t0)−
dΓ(1 + µ− γ)(t− t0)

µ

Γ(1 + µ)Γ(1− γ)
, t0 ≤ t ≤ t1, (6)

and lim
t→∞

H(t) = 0, for all t ≥ T, here T is expressed by

T = t0 + (
Γ(1 + µ)Γ(1− γ)Hµ−γ(t0)

dΓ(1 + µ− γ)
)

1
µ

. (7)

Consider a class of FOCVNNTD as the drive system: Dµxk(t) = −ckxk(t) +
n
∑

j=1
akj f j(xj(t)) +

n
∑

j=1
bkjgj(xj(t− τ)) + Ik

xk(s) = ϕk(s), s ∈ [t0 − τ, t0]

, (8)

where Dµ is the Caputo derivative, k, j ∈ N = (1, 2, · · · , n), 0 < µ < 1, n corresponds to
the number of units; xk(t) ∈ C denotes the state variable of the drives system in time t,
f j(·), gj(·) ∈ C → C represent the activation function without time delay and with time

delay, respectively. akj, bkj ∈ C stand for the connection weight and the delay connection
weight, respectively, ck > 0 is the self-regulating parameters; τ > 0 is time delay; and Ik
denotes the external input. ϕk(t) is real-valued continuous function on [−τ, 0], its norm is

given by ‖ϕ‖ = sup
t∈[−τ,0]

n
∑

k=1
|ϕk(t)|.
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In order to study the finite-time projective synchronization of the FOCVNNTD, the
corresponding response system is defined by: Dµyk(t) = −ckyk(t) +

n
∑

j=1
akj f j(yj(t)) +

n
∑

j=1
bkjgj(yj(t− τ)) + Ik + uk(t)

yk(s) = φk(s), s ∈ [t0 − τ, t0]

, (9)

yk(t) is the state variable of the response system and uk(t) denotes appropriate controller.
For the sake of the main results can be obtained, an assumption is given below:

Assumption 1. Assume that f (·) and g(·) satisfy the Lipschitz condition, for any x, y ∈ R,
there exists two real number Fj and Gj(j = 1, 2, · · · , n), such that

∣∣ f j(x)− f j(y)
∣∣ ≤ Fj|x− y|,∣∣gj(x)− gj(y)

∣∣ ≤ Gj|x− y|.

Definition 2 ([31]). Under the appropriate controller, there exist numbers {t0, J, δ, ε}, δ < ε, if and
only if, for ∀t ∈ J = [t0, t0 + T], there exists a small error bound ε > 0 such that ‖e(t)‖ < ε, then
the drive system (8) and the response system (9) can realize finite-time projective synchronization,
where t0 is the initial observation time.

3. Results

In this section, we will discuss the finite-time projective synchronization of FOCVN-
NTD by designing feedback controller and adaptive controller. Define the error system
ek(t) = yk(t)− βxk(t) between drive system (8) and response system (9), where β is the
projective coefficient. Then

Dµek(t) = −ckek(t) +
n
∑

j=1
akj
[

f j(yj(t))− β f j(xj(t))
]

+
n
∑

j=1
bkj
[
gj(yj(t− τ))− β f j(xj(t− τ))

]
+ (1− β)Ik + uk(t)

(10)

3.1. Finite-Time Projective Synchronization with Feedback Controller

To achieve the finite-time projective synchronization between drive system (8) and
response system (9), select the feedback controller as follows:

uk(t) = πk(t) + wk(t)

πk(t) =
n
∑

j=1
akj
[
β f j(xj(t))− f j(βxj(t))

]
+

n
∑

j=1
bkj
[
βgj(xj(t− τ))− f j(βxj(t− τ))

]
+ (β− 1)Ik

wk(t) = −ηkek(t)−
λkek(t)

(ek(t)ek(t))
q

(11)

where q ∈ (1− µ, 1), ηk, γk ∈ C, ηR
k , and λR

k are all real numbers.

Theorem 1. On the premise of assumption 1 and the feedback controller (11), if the following
conditions hold

P > nζ, ζ > 1, (12)

then drive system (8) and response system (9) can achieve the finite-time projective synchroniza-
tion, where

P = min
1≤k≤n

[
(ck + ck + ηk + ηk)−

n

∑
j=1

(akjakjFjFj + bkjbkjGjGj)− n

]
.
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Proof of Theorem 1. Based on the feedback controller (11), by using Lipschtz condition,
one has

Dµek(t) = −(ck + ηk)ek(t) +
n
∑

j=1
akj
[

f j(yj(t))− f j(βxj(t))
]

+
n
∑

j=1
bkj
[
gj(yj(t− τ))− gj(βxj(t− τ))

]
− λkek(t)

(ek(t)ek(t))
q

≤ −(ck + ηk)ek(t) +
n
∑

j=1
akjFjej(t) +

n
∑

j=1
bkjGjej(t− τ)− λkek(t)

(ek(t)ek(t))
q ,

(13)

The Lyapunov function is chosen as follows:

V1(t) =
n

∑
k=1

ek(t)ek(t).

Using Lemmas 1–5, according to Equation (10), we obtain

DµV1(t) ≤
n
∑

k=1
(ek(t)Dµek(t) + ek(t)Dµek(t))

=
n
∑

k=1
[−(ck + ck + ηk + ηk) ek(t)ek(t) +

n
∑

j=1
(akjFjek(t)ej(t) + akjFjek(t)ej(t))

+
n
∑

j=1
(bkjGjek(t)ej(t− τ) + bkjGjek(t)ej(t− τ))− (λk + λk)(ek(t)ek(t))

1−q
]

≤
n
∑

k=1

[
ek(t) · (−(ck + ηk)ek(t) +

n
∑

j=1
akjFjej(t) +

n
∑

j=1
bkjGjej(t− τ)− λk ·ek(t)

(ek(t)ek(t))
q )

+ ek(t)(−(ck + ηk)ek(t) +
n
∑

j=1
akjFjej(t) +

n
∑

j=1
bkjGjej(t− τ)− λkek(t)

(ek(t)ek(t))
q )

]
≤

n
∑

k=1
[−(ck + ck + ηk + ηk) ek(t)ek(t) +

n
∑

j=1
(akjakjFjFjek(t)ek(t) + ej(t)ej(t))

+
n
∑

j=1
(bkjbkjGjGjek(t)ek(t) + ej(t− τ)ej(t− τ))− (λk + λk)(ek(t)ek(t))

1−q
]

= −
n
∑

k=1

[
(ck + ck + ηk + ηk)−

n
∑

j=1
(akjakjFjFj + bkjbkjGjGj)

]
ek(t)ek(t)

+
n
∑

k,j=1
(ej(t)ej(t) + ej(t− τ)ej(t− τ))−

n
∑

k=1
(λk + λk)(ek(t)ek(t))

1−q

≤ −
n
∑

k=1

[
(ck + ck + ηk + ηk)−

n
∑

j=1
(akjakjFjFj + bkjbkjGjGj)

]
ek(t)ek(t)

+n
n
∑

k=1
(ek(t)ek(t) + ek(t− τ)ek(t− τ))−

n
∑

k=1
(λk + λk)(ek(t)ek(t))

1−q

= −
n
∑

k=1

[
(ck + ck + ηk + ηk)−

n
∑

j=1
(akjakjFjFj + bkjbkjGjGj)− n

]
ek(t)ek(t)

+n
n
∑

k=1
ek(t− τ)ek(t− τ)−

n
∑

k=1
(λk + λk)(ek(t)ek(t))

1−q

≤ −PV1(t) + nV1(t− τ)− dV1−q
1 (t)

≤ −(P− nζ)V1(t)− dV1−q
1 (t)

for ζ > 1, d = min
1≤k≤n

(λk + λk), if P > nζ,

P = min
1≤k≤n

[
(ck + ck + ηk + ηk)−

n

∑
j=1

(akjakjFjFj + bkjbkjGjGj)− n

]
,
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according to Lemma 6, one can get

DµV1(t) ≤ −dV1−q
1 (t),

then

V(µ+q−1)
1 (t) ≤ V(µ+q−1)

1 (0)− dΓ(µ + q)tµ

Γ(1 + µ)Γ(q)
, 0 ≤ t ≤ t1

for t ≥ t1, we have V(t) = 0, here t1 can be estimated by

t1 = (
Γ(1 + µ)Γ(q)Vµ+q−1

1 (0)
dΓ(µ + q)

)

1
µ

.

So when t ≥ t1, we have lim
t→∞
‖ek(t)‖ = 0, then system (8) and system (9) will reach

the finite-time projective synchronization under the feedback controller (11). �

3.2. Finite-Time Projective Synchronization with Adaptive Controller

To achieve the finite-time projective synchronization between the drive system (8) and
response system (9), we can design the following adaptive controller

uk(t) = πk(t) + νk(t)

πk(t) =
n
∑

j=1
akj
[
β f j(xj(t))− f j(βxj(t))

]
+

n
∑

j=1
bkj
[
βgj(xj(t− τ))− f j(βxj(t− τ))

]
+ (β− 1)Ik

νk(t) = −ηk(t)ek(t)−
λkek(t)

(ek(t)ek(t))
q

, (14)

where

µ ∈ (
1
2

, 1), q ∈ (1− µ,
1
2
), Dµηk(t) = ek(t)ek(t)− σksign(ηk(t)− η̃k)|ηk(t)− ηk|

1−2q.

In the controller (14), ηk(t) is determined by the input, state, output or performance
parameters of the system.

Theorem 2. On the premise of assumption 1 and the adaptive controller (14), if the following
conditions are satisfied

Q > nζ ′, ζ ′ > 1, (15)

then the finite-time projective synchronization between the system (8) and the system (9) will be
completed, where

Q = min
1≤k≤n

[
(ck + ck + 2η̃k)−

n

∑
j=1

(akjakjFjFj + bkjbkjGjGj)− n

]
.

Proof of Theorem 2. Based on the adaptive controller (14) and Lipschtz condition, we have

Dµek(t) = −ckek(t) +
n
∑

j=1
akj
[

f j(yj(t))− f j(βxj(t))
]

+
n
∑

j=1
bkj
[
gj(yj(t− τ))− gj(βxj(t− τ))

]
− ηk(t)ek(t)−

λkek(t)
(ek(t)ek(t))

q

≤ −ckek(t) +
n
∑

j=1
akjFjej(t) +

n
∑

j=1
bkjGjej(t− τ)− ηk(t)ek(t)−

λkek(t)
(ek(t)ek(t))

q ,

(16)
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Then, we choose the following Lyapunov function:

V2(t) =
n

∑
k=1

ek(t)ek(t) +
n

∑
k=1

(ηk(t)− η̃k)
2.

By using Lemmas 2–5, Equation (16) can be obtained as follows:

DµV2(t) ≤
n
∑

k=1
(ek(t)Dµek(t) + ek(t)Dµek(t)) + Dµ

n
∑

k=1
(ηk(t)− η̃k)

2

≤
n
∑

k=1

[
ek(t)(−ckek(t) +

n
∑

j=1
akjFjej(t) +

n
∑

j=1
bkjGjej(t− τ)− ηk(t)ek(t)−

λkek(t)
(ek(t)ek(t))

q )

+ek(t)(−ckek(t) +
n
∑

j=1
akjFjej(t) +

n
∑

j=1
bkjGjej(t− τ)− ηk(t)ek(t)−

λkek(t)
(ek(t)ek(t))

q )

]
+2

n
∑

k=1
(ηk(t)− η̃k)Dµηk(t)

≤
n
∑

k=1

[
−(ck + ck) +

n
∑

j=1
(akjakjFjFj + bkjbkjGjGj)− (ηk(t) + ηk(t))

]
ek(t)ek(t)

+
n
∑

k,j=1
(ej(t)ej(t) + ej(t− τ)ej(t− τ))−

n
∑

k=1
(λk + λk)(ek(t)ek(t))

1−q

+2
n
∑

k=1
(ηk(t)− η̃k)

[
ek(t)ek(t)− σksign(ηk(t)− η̃k)|ηk(t)− η̃k|1−2q

]
≤

n
∑

k=1

[
−(ck + ck) +

n
∑

j=1
(akjakjFjFj + bkjbkjGjGj)− (ηk(t) + ηk(t))

]
ek(t)ek(t)

+n
n
∑

k=1
(ek(t)ek(t) + ek(t− τ)ek(t− τ))−

n
∑

k=1
(λk + λk)(ek(t)ek(t))

1−q

+2
n
∑

k=1
(ηk(t)− η̃k)

[
ek(t)ek(t)− σksign(ηk(t)− η̃k)|ηk(t)− η̃k|1−2q

]
≤

n
∑

k=1

[
−(ck + ck + 2η̃k) +

n
∑

j=1
(akjakjFjFj + bkjbkjGjGj) + n

]
ek(t)ek(t)

+n
n
∑

k=1
ek(t− τ)ek(t− τ)−

n
∑

k=1
(λk + λk)(ek(t)ek(t))

1−q − 2
n
∑

k=1
σk((ηk(t)− η̃k)

2)
1−q

By utilizing Lemma 5, one can get

n
∑

k=1
(λk + λk)(ek(t)ek(t))

1−q
+ 2

n
∑

k=1
σk((ηk(t)− η̃k)

2)
1−q

≥ min
1≤k≤n

{
(λi + λk), 2σk

}
·
[

n
∑

k=1
(ek(t)ek(t))

1−q
+

n
∑

k=1
((ηk(t)− η̃k)

2)
1−q
]

≥ d̃
[

n
∑

k=1
(ek(t)ek(t))

1−q
+

n
∑

k=1
((ηk(t)− η̃k)

2)
1−q
]

≥ d̃
[

n
∑

k=1
ek(t)ek(t) +

n
∑

k=1
(ηk(t)− η̃k)

2
]1−q

= d̃V1−q
2 (t).

(17)

In summary, we can deduce

DµV2(t) ≤ −QV1(t) + nV1(t− τ)− d̃V1−q
2 (t) ≤ −(Q− nζ ′)V1(t)− d̃V1−q

2 (t), (18)

for ζ ′ > 1, d̃ = min
1≤k≤n

{
(λk + λk), 2σk

}
, if Q > nζ ′, where

Q = min
1≤k≤n

[
(ck + ck + 2η̃k)−

n

∑
j=1

(akjakjFjFj + bkjbkjGjGj)− n

]
,



Mathematics 2021, 9, 1406 8 of 14

according to Lemma 6, we have

DµV2(t) ≤ −d̃V1−q
2 (t),

then

V(µ+q−1)
2 (t) ≤ V(µ+q−1)

2 (0)− d̃Γ(µ + q)tµ

Γ(1 + µ)Γ(q)
, 0 ≤ t ≤ t2,

for t ≥ t2, V2(t) = 0, here t2 can be estimated by

t2 = (
Γ(1 + µ)Γ(q)Vµ+q−1

2 (0)

d̃Γ(µ + q)
)

1
µ

.

when t ≥ t2, we get lim
t→∞
‖ek(t)‖ = 0, then system (8) and system (9) will achieve the

finite-time projective synchronization under the adaptive controller (14). �

Remark 1. If the projective coefficient β = 1, system (8) and system (9) become complete synchro-
nization.

Remark 2. In the existing literature, the finite-time projective synchronization problems of FOCVN-
NTD in the complex field have not been investigated, and only the finite-time projective synchro-
nization of fractional-order real-valued systems was considered in [32].

Remark 3. In [14], through the simple feedback controller and adaptive controller, the quasi-
projective synchronization and complete synchronization of FOCVNNTD are considered. In [33],
in the light of the graph theory method, the criteria for ensuring finite-time synchronization of
fractional-order complex-valued coupled systems are obtained. Compared with [33], this paper
has designed two new types of feedback controller (11) and adaptive controller (14) to realize the
finite-time projective synchronization of FOCVNNs.

Remark 4. Linear feedback controller can restrain the influence of internal characteristics and
external disturbances. However, the parameters of the controller are fixed, when the internal
characteristics of the system change or the external disturbances change greatly, the performance of
the system is often greatly reduced or even unstable. Therefore, it is appropriate to adopt adaptive
controller for a class of systems whose object characteristics or disturbance characteristics vary
widely, moreover, it is required to keep high performance indexes.

4. Numerical Simulations

In this section, there are two numerical simulations are be given to verify the effective-
ness and feasibility of the obtained results. The FOCVNNTD are considered as the drive
system, the form is as follows:

Dµxk(t) = −ckxk(t) +
2

∑
j=1

akj f j(xj(t)) +
2

∑
j=1

bkjgj(xj(t− τ)) + Ik, k = 1, 2, (19)

where µ = 0.7, xj(t) = zj(t) + iẑj(t), τ = 1, I(t) = (I1(t), I2(t))
T = (0, 0).

f j(xj) =
1−e−zj

1+e−zj
+ i 1

1+e−ẑj
, gj(xj) =

1−e−ẑj

1+e−ẑj
+ i 1

1+e−zj
.

A = (akj)2×2 =

(
3 + 3i −0.2− 0.2i
−2− 2i 1 + i

)
,

C = diag(c1, c2) = (1 + i, 1 + i),

B = (bkj)2×2 =

(
−0.2− 0.2i −1.5− 1.5i
−0.5− 0.5i 0.3 + 0.3i

)
.
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The response system is given by:

Dµyk(t) = −ckyk(t) +
2

∑
j=1

akj f j(yj(t)) +
2

∑
j=1

bkjgj(yj(t− τ)) + Ik + uk(t), k = 1, 2. (20)

For s ∈ [−1, 0], take the initial conditions

x(s) = (x1(s), x2(s)) = (−0.1 + 0.2i, 1 + 0.3i),
y(s) = (y1(s), y2(s)) =(0.8 + 0.5i, 0.9− 0.6i).

For convenience of calculation, choose Fj = Gj =
√

2.
Figure 1 shows the phase trajectories of the real and imaginary parts of the error

system (10).
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Example 1. In order to realize the finite-time projective synchronization of the drive system (19)
and the response system (20), the system (11) is designed as a linear feedback controller, where

q = 0.1, takeη1 = 30 + 30i, η2 = 35 + 35i, ζ = 1.5,λ = (λ1, λ2) = (2.5 + 2.5i, 3 + 3i).
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By simple calculation,

P = min
1≤k≤2

[
(ck + ck + ηk + ηk)−

2

∑
j=1

(akjakjFjFj + bkjbkjGjGj)− n

]
= 14.68,

nζ = 3 < P. Therefore, the conditions and assumptions are satisfied in Theorem 1, and the
obtained settling time is t1 ≈ 1.1678.

The state trajectories of the real and imaginary parts of the error system (10) and error norm
trajectory curve are depicted in Figure 2 when β = 0.6+ 0.5i, which shows that the system (19) and
the system (20) can reach the finite-time projective synchronization under the feedback controller
(11). Figure 3 displays the state trajectories of the real and imaginary parts of the error system (10)
and error norm trajectory curve when β = 1, which shows that the system (19) and the system (20)
will accomplish the complete synchronization under the feedback controller (11).
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Figure 3. (a) The state trajectory of the error system when β = 1. (b). The trajectory of the error norm
β = 1.

Example 2. In order to realize the finite-time projective synchronization of the system (19) and the
system (20), the system (14) is built as an adaptive controller, where q = 0.4, ζ ′ = 1.8, σ1 = 0.3,
σ2 = 0.6, η̃1 = 25, η̃2 = 20, η1(0) = 0.1, η2(0) = 0.2, λ = (λ1, λ2) = (2.5 + 2.5i, 3 + 3i). By
simple calculation, we have

Q = min
1≤k≤2

[
(ck + ck + 2η̃k)−

n

∑
j=1

(akjakjFjFj + bkjbkjGjGj)− n

]
= 4.68,

nζ ′ = 3.6 < Q. Similarly, the conditions and assumptions are satisfied in Theorem 2, and the
obtained settling time is t2 ≈ 1.6169. The state trajectories of the real and imaginary parts of the
error system (10) and error norm trajectory curve are showed in Figure 4 when β = 0.6+ 0.5i, which
shows that the system (19) and the system (20) will achieve the finite-time projective synchronization
under the adaptive controller (14). Figure 5 depicts the state trajectories of the real and imaginary
parts of the error system (10) and error norm trajectory curve when β = 1, which shows that
the system (19) and the system (20) will achieve the complete synchronization under the adaptive
controller (14).
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In this paper, a feedback controller and adaptive controller were designed to study the
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simulations are given to illustrate the effectiveness and applicability of the obtained results.
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