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Abstract: In this paper, we propose an estimator for the Gerber–Shiu function in a pure-jump Lévy
risk model when the surplus process is observed at a high frequency. The estimator is constructed
based on the Fourier–Cosine series expansion and its consistency property is thoroughly studied.
Simulation examples reveal that our estimator performs better than the Fourier transform method
estimator when the sample size is finite.
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1. Introduction

The classical compound Poisson risk model, also known as the Cramér-Lundberg
model, was first proposed by Lundberg [1]. Some substantial mathematical results on this
model were given in Lundberg [2]. Since then, a lot of contributions have been made by
actuarial researchers to study ruin probability and many other ruin-related quantities
under this model. Many scholars analyzed the closed-form calculation formula for ruin
probability by Laplace transform, martingale theory, renewal theory, etc. Namely, Gerber
and Shiu [3] first proposed the Gerber–Shiu discounted penalty function. The Gerber–Shiu
function has become a popular risk measure in the analysis of ruin theory and decision
theory in different risk models. However, given that the classical compound Poisson risk
model is very limited, many scholars have devoted themselves to generalizing it with
various stochastic surplus models, see, e.g., Gerber [4], Tsai [5], Li and Garrido [6], who
considered the Cramér–Lundberg risk model perturbed by Brownian motion. Zhao and
Yin [7], Kyprianou [8] studied ruin-related quantities in a pure-jump Lévy process.

Suppose that the surplus process of an insurance company is described by the follow-
ing Lévy process

Ut = u + ct− Xt, t ≥ 0,

where u ≥ 0 is the initial surplus and c > 0 is the premium rate per time. The aggregate
claims process X = {Xt}t≥0 is a pure-jump Lévy process with characteristic function

ΦX(s) := E[eisXt ] = etΨ(s), s ∈ R,

where Ψ(s) =
∫ ∞

0 (eisx − 1)ν(x)dx is called the characteristic exponent. Here, ν(x) is a
Lévy density supported on (0, ∞) satisfying the usual condition

∫ ∞
0 (1∧ x2)ν(x)dx < ∞. In

order to ensure the insurance company has a net profit condition, we suppose the following
assumption holds.

Assumption 1. The premium rate c > µ1 :=
∫ ∞

0 xv(x)dx.
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Assumption 1 guarantees that surplus process has a positive drift. However, it is still
possible that the surplus process drops below zero level. In that case, we define the ruin
time by

τ = inf{t > 0 | Ut < 0},

where we set τ = ∞ if Ut ≥ 0 for all t ≥ 0. Given the initial surplus U0 = u, the ruin
probability is defined by

ψ(u) = P(τ < ∞|U0 = u), u ≥ 0.

A more general risk measure commonly used in risk theory is the Gerber–Shiu discounted
penalty function [3], which is

φ(u) = E[e−δtw(Uτ−, |Uτ |))I(τ < ∞)|U0 = u], u ≥ 0,

where δ ≥ 0 is the interest force, I(·) is the indictor function and w is a nonnegative penalty
function of the surplus before ruin (Uτ−) and the deficit at ruin (|Uτ |).

We note that the aforementioned papers have focused on the explicit solutions of ruin
probability and ruin-related quantities based on some specific assumptions regarding the
claim size distributions. However, their probabilistic characteristics are usually unknown
to the insurer. To relax the restriction on claim size distributions, Shimizu [9,10], You
and Cai [11], You and Yin [12], You et al. [13], You and Gao [14], Cai et al. [15] estimated
the Gerber–Shiu function by Laplace transform. Zhang [16,17], Shimizu and Zhang [18],
Zhang [19] considered estimating the Gerber–Shiu function by Fourier transform. Zhang
and Su [20], Su et al. [21] studied the estimator of the Gerber–Shiu function via Laguerre
series expansion. Chau et al. [22] studied the ultimate ruin probability and Gerber–Shiu
function by Fourier Cosine method in the Lévy risk model. Different from Chau et al. [22],
we estimate the Gerber–Shiu function based on discrete observations over a finite inter-
val. The Fourier–Cosine expansion method was used in different scenarios; we refer the
interested readers to [23–39]. The main goal of this paper is to estimate the Gerber–Shiu
function by Fourier–Cosine series expansion based on a discretely observed sample of the
aggregate claims process. Our estimator is easy to compute and has a fast convergence
compared to some reference methods.

The remainder of this paper is organized as follows. In Section 2, we introduce some
preliminaries on Fourier–Cosine series expansion and construct the estimator of the Gerber–
Shiu function by Fourier–Cosine method. In Section 3, we analyze the consistency of the
estimator when the sample size is large. Finally, in Section 4, we display some simulation
examples to illustrate the performance of the estimator in a finite sampling setting.

2. The Estimator

In this paper, we propose an estimator based on Fourier-Cosine series expansion to
estimate the Gerber-Shiu function. Throughout this paper, we use L1(R) to denote the
class of integrable functions. For any f ∈ L1(R), we denote its Fourier transform by

F f (s) =
∫

eisx f (x)dx, s ∈ R.

It is known that, for a function f with domain [a1, a2], the following cosine series expan-
sion occurs,

f (x) =
∞

∑
k=0

′
{

2
a2 − a1

∫ a2

a1

f (x) cos
(

kπ
x− a1

a2 − a1

)
dx
}

cos
(

kπ
x− a1

a2 − a1

)
, (1)

where ∑′ means the first term of the summation has half weight. For a function f defined
on [0, ∞), we introduce an auxiliary function,

fa(x) = f (x) · I(0 ≤ x ≤ a), a > 0.
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Then fa has finite domain [0, a] and applying formula (1) gives,

f (x) = fa(x) =
∞

∑
k=0

′
{

2
a

∫ a

0
f (x) cos

(
kπ

x
a

)
dx
}

cos
(

kπ
x
a

)
, 0 ≤ x ≤ a, (2)

since f (x) = fa(x) for x ∈ [0, a]. Due to eiz = cos(z) + i sin(z), for a large a, we have

2
a

∫ a

0
f (x) cos

(
kπ

x
a

)
dx =

2
a

Re
{∫ a

0
f (x)ei kπ

a xdx
}
≈ 2

a
Re
{
F f
(

kπ

a

)}
,

where Re(z) denotes real part of the complex number z and Formula (2) can be written as

f (x) ≈
∞

∑
k=0

′ 2
a

Re
{
F f
(

kπ

a

)}
cos
(

kπ
x
a

)
, 0 ≤ x ≤ a. (3)

Furthermore, for a large integer K, we can truncate the above summation and obtain

f (x) ≈
K−1

∑
k=0

′ 2
a

Re
{
F f
(

kπ

a

)}
cos
(

kπ
x
a

)
, 0 ≤ x ≤ a. (4)

Let us consider the Gerber–Shiu function. It follows from Formula (4) that the Gerber–Shiu
function can be approximated by

φ(u) ≈ φK,a(u) :=
K−1

∑
k=0

′ 2
a

Re
{
Fφ

(
kπ

a

)}
cos
(

kπ
u
a

)
, 0 ≤ u ≤ a. (5)

In order to use the approximation (5), we present some known results on the Fourier
transform Fφ(s), which are available in [18].

Assumption 2. Suppose that the penalty function w satisfies∫ ∞

0

∫ ∞

0
(1 + x)w(x, y)v(y)dydx < ∞.

Assumptions 1 and 2 ensure that φ ∈ L1(R). Furthermore, under these two assumptions, Shimizu
and Zhang [18] found that the Fourier transform Fφ can be expressed as follows,

Fφ(s) =
N(s)

c− D(s)
, s ∈ R, (6)

where

D(s) =
Ψ(s)−Ψ(iρ)

ρ + is
, N(s) =

∫ ∞

0
a(s; z, ρ)v(z)dz, (7)

with
a(s; z, ρ) =

∫ ∞

0
e−ρy ϕ(s; y, z)dy,

and for s ∈ R,

ϕ(s; y, z) = e−isy
∫ ∞

0
eisxw(x, z− x)I(0 < y < x < z)dx.

Here the parameter ρ is called the Lundberg exponent and it is the nonnegative root of the
following equation

cs + Ψ(is) = δ,

and note that ρ = 0 as δ = 0.
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We shall propose an estimator for φ using Formula (5). To this end, we need to estimate the
Fourier transform Fφ(s) for s in the lattice set

{
kπ
a : k = 0, 1, · · · , K− 1

}
. As in [18], suppose

that we can observe the aggregate claims process X at a sequence of discrete timepoints so that the
following dataset is available,

{Xk∆ : k = 0, 1, · · · , n},

where ∆ = ∆n > 0 is a sampling interval and X0 = 0. For convenience, we put

Zk = Xk∆ − X(k−1)∆, k = 1, 2, · · · , n.

The following assumption is useful for constructing the estimator and studying its
consistency property.

Assumption 3. Suppose that

lim
n→∞

∆ = 0, lim
n→∞

n∆ = ∞.

Assumption 3 implies that the dataset {Xk∆} is obtained at a high-frequency observation for a long
time interval. As noted by [18], Assumption 3 would be admissible when the insurance company
has a long-term surplus data for several years. In Section 4, we shall present some simulation results
to show that our estimator performs well even when ∆ is not very small.

Let φ̂emp(s) =
1
n

n

∑
k=1

eisZk be the empirical characteristic function of Z and define

Ψ̂(s) =
φ̂emp(s)− 1

∆
,

which is an estimate of the characteristic exponent Ψ. The estimate of ρ denoted by ρ̂ is
defined as the nonnegative root of the following equation

cs + Ψ̂(is) = δ,

we put ρ̂ = 0 as δ = 0. By Formulaes (11) and (A7) in [18], we estimate N and D by

N̂(s) =
1

n∆

n

∑
k=1

a(s; Zk, ρ̂), D̂(s) =
1
∆

φ̂emp(s)− φ̂emp(iρ̂)
ρ̂ + is

.

Thus, the Fourier transform Fφ is estimated by

F̂φ(s) =
N̂(s)

c− D̂(s)
.

Finally, replacing Fφ with its estimate F̂φ in (5) we establish the estimator for the Gerber–
Shiu function,

φ̂K,a(u) =
K−1

∑
k=0

′ 2
a

Re
{
F̂φ

(
kπ

a

)}
cos
(

kπ
u
a

)
, 0 ≤ u ≤ a. (8)

3. Consistency Property

In this section, we study the consistency property of the estimate φ̂K,a when the sample
size is large. Let C denote a positive generic constant that may have different values at
different steps. For any no-nnegative functions f1(x), f2(x), let f1(x) . f2(x) denote
f1(x) ≤ C · f2(x) uniformly in x ∈ R. Let L2(R) denote the class of square integrable

functions. For any f ∈ L2(R), its L2-norm is defined by ‖ f ‖ =
(∫

f 2(x)dx
) 1

2 .



Mathematics 2021, 9, 1402 5 of 18

We put φK,a(u) = φ̂K,a(u) = 0 for u > a. The error of φ̂K,a is measured by ‖φ− φ̂K,a‖.
Using the triangle inequality, we obtain

‖φ− φ̂K,a‖ ≤ ‖φ− φK,a‖+ ‖φK,a − φ̂K,a‖, (9)

where the first term ‖φ− φK,a‖ is the bias due to Fourier cosine series approximation and
the second term ‖φK,a − φ̂K,a‖ is the statistical estimation error.

Proposition 1. Under Assumptions 1 and 2, regarding the bias ‖φ− φK,a‖, we have

‖φ− φK,a‖2 ≤
∫ ∞

a
φ2(u)du +

2a
K− 1

{∫ ∞

0

∣∣φ′(u)∣∣du
}2

+
2K
a

{∫ ∞

a
φ(u)du

}2
. (10)

Proof. See Appendix A.

Next, we study the square of statistical error
∥∥φ̂K,a − φK,a

∥∥2. Before dicussing the
consistency property of the estimate φ̂K,a, the following assumptions and lemmas are useful.

Assumption 4. For some positive integer k,

µk :=
∫ ∞

0
xkv(x)dx < ∞.

Assumption 5. For any y ≥ 0 and s ∈ R, the function a(s; z, y) is differentiable w.r.t. z.
Moreover, there are some constant Ca such that∣∣∣∣ ∂m

∂zm a(s; z, y)
∣∣∣∣ ≤ Ca

zkm + zkm+1

1∨ |s| , m = 0, 1,

where 1∨ |s| = max(1, |s|).

Assumption 6. There are some integers α1, α2 > 0 and constant Cw, such that

w(x, y) ≤ Cw(1 + x)α1(1 + y)α2 .

Assumption 7. For some 0 < α < 1, lim
∆→∞

∆2−αv(∆) = 0.

Assumptions 4, 5 and 7 are also used in [18], Assumption 6 is also used in [20].

Lemma 1 (Theorem 3.3 in [18]). Suppose that Assumptions 1, 3 and 4(k = 2) hold, then for
δ > 0, we have

ρ̂− ρ = Op((n∆)−
1
2 + ∆).

Lemma 2 (Proposition 2.2 in [40]). Let k ≥ 1 be an integer. If µk < ∞, then EZ1
k < ∞ and for

1 ≤ l ≤ k, EZ1
l = ∆µl + o(∆). In particular, if µ2 < ∞, then

EZ1 = ∆µ1, EZ1
2 = ∆µ2 + ∆2µ2

1.

Lemma 3. Under Assumptions 1, 3, 4(k = 2(α1 + α2 + 3)), 4(k = 2(k0 + 1)), 5–7, we have

sup
s∈[0,kπ/a]

∣∣∣N(s)− N̂(s)
∣∣∣ = O(∆α) + Op

(
(n∆)−

1
2

∣∣∣∣log
(

K
a

)∣∣∣∣ 1
2
+ (n∆)−

1
2 + ∆

)
. (11)

Proof. See Appendix B.
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Lemma 4. Under Assumptions 1, 3 and 4(k = 4), we have

sup
s∈[0,kπ/a]

∣∣∣D(s)− D̂(s)
∣∣∣ = O

((
1 +

K
a

)
∆
)
+ Op

(
(n∆)−

1
2 |log(K/a)|

1
2 + (n∆)−

1
2 + ∆

)
.

Proof. See Appendix C.

The following Theorem elucidates the consistency property of the estimate φ̂K,a.

Theorem 1. Suppose that (n∆)−
1
2

∣∣∣∣log
(

K
a

)∣∣∣∣ 1
2
= o(1), and

K∆
a

= o(1). Then, under Assump-

tions 1–3, 4(k = (2(α1 + α2 + 2))), 4(k = (2(k0 + 1))) and 5–7, we have

∥∥φK,a − φ̂K,a
∥∥2

=O

(
K∆2α

a
+

(
K
a

)3
∆2

)

+ Op

((
K
a

)
(n∆)−1

∣∣∣∣log
(

K
a

)∣∣∣∣+(K
a

)(
(n∆)−1 + ∆2

))
. (12)

Proof. First, the consistency property of the estimate is

∥∥φK,a − φ̂K,a
∥∥2

=
∫ a

0

∣∣φK,a(u)− φ̂K,a(u)
∣∣2du

≤
K−1

∑
k=0

′ 4
a2

(
Re
{
Fφ

(
kπ

a

)
− F̂φ

(
kπ

a

)})2 ∫ a

0

(
cos
(

kπ

a
u
))2

du

≤ 2
a

K−1

∑
k=0

∣∣∣∣Fφ

(
kπ

a

)
− F̂φ

(
kπ

a

)∣∣∣∣2
≤ 2K

a
sup

s∈[0,Kπ/a]

∣∣∣Fφ(s)− F̂φ(s)
∣∣∣2. (13)

Next, we study sup
s∈[0,Kπ/a]

∣∣∣Fφ(s)− F̂φ(s)
∣∣∣2 to complete the proof. Recall that |C− D(s)| ≥

C− µ1 > 0, due to Assumption 1, it follows from Lemma 4 that

sup
s∈[0,Kπ/a]

∣∣∣∣∣ 1
c− D(s)

− 1
c− D̂(s)

∣∣∣∣∣ = O
((

1 +
K
a

)
∆
)
+ Op

(
(n∆)−

1
2

∣∣∣∣log
(

K
a

)∣∣∣∣ 1
2
+ (n∆)−

1
2 + ∆

)
.

By the above convergence rate and Lemma 3, we obtain

sup
s∈[0,Kπ/a]

∣∣∣Fφ(s)− F̂φ(s)
∣∣∣ = sup

s∈[0,Kπ/a]

∣∣∣∣∣ N(s)
c− D(s)

− N̂(s)
c− D̂(s)

∣∣∣∣∣
=O(∆α + K∆/a) + Op

(
(n∆)−

1
2

∣∣∣∣log
(

K
a

)∣∣∣∣ 1
2
+ (n∆)−

1
2 + ∆

)
.

Finally, plugging the above result into (13) yields (12).

4. Simulations

In this part, we display some simulation examples to illustrate the performance of the
proposed estimator when the sample size is finite. Following [18], we consider two classes
of Lévy risk models.

(1) The compound Poisson risk model with exponential claims: premium rate c = 8, the
Lévy density ν(x) = 20e−2x, x > 0, the Poisson intensity λ = 20 and exponentially
distributed jumps with mean µ = 1/2;
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(2) The Lévy-Gamma risk model: premium rate c = 1, and Gamma-type density ν(x) =
15x−1e−20x, x > 0.

Furthermore, we consider the following three specific Gerber-Shiu functions:

• Ruin probability (RP): φ(u) = P(τ < ∞|U0 = u) with δ = 0 and w(x, y) ≡ 1;

• Expected claim size causing ruin (ECS): φ(u) = E
[
(Uτ− + |Uτ |)I(τ<∞)|U0 = u

]
with

δ = 0 and w(x, y) = x + y;
• Laplace transform of ruin time (LT): φ(u) = E

[
e−δτ I(τ<∞)|U0 = u

]
with δ = 0.1 and

w(x, y) ≡ 1.

For the compound Poisson model with exponential claims, the explicit formulae for
these Gerber–Shiu functions are available, and given by:

• Ruin probability (RP): φ(u) = λµ
c e−(1/µ−λ/c)u;

• Expected claim size causing ruin (ECS): φ(u) = µ(1 + 2 λµ
c )e−(1/µ−λ/c)u − µe−u/µ;

• Laplace transform of ruin time (LT): φ(u) = λµ
c(1+ρµ)

e−(ρ+1/µ−(λ+δ)/c)u.

As for the Lévy-Gamma risk model, explicit Gerber–Shiu formulae are hard to com-
pute. Instead, we adapt the Fourier–Cosine series method to approximate them based
on Formula (5). Throughout this section, we set K = 212 and a = 100 for the Fourier–
Cosine method. Furthermore, those formulae can be approximated via FFT method by
Formula (4.1) in [18] with parameters m = 50 and K = 213. In Figure 1, we compare these
two methods by approximating different Gerber–Shiu functions. It can be noticed that
approximated curves almost coincide, but the FFT method has larger amplitudes than
the Fourier–Cosine method. It is worth mentioning that our proposed estimator is more
efficient to compute values of given types of Gerber -Shiu functions in the Lévy-Gamma
risk model. The proposed estimator is later used to plot the reference value curve.
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Figure 1. For the Lévy-Gamma risk model, we compare Fourier–Cosine method with FFT method. (a) Ruin probability;
(b) Expected claim size causing ruin; (c) Laplace transform of ruin time.

In the sequel, we consider the following cases,

(n, ∆) = (400, 0.05), (1000, 0.02), (2500, 0.01), (5000, 0.01),

with n∆ = 20, 20, 25, 50, respectively. To illustrate the performance of proposed estimator,
1000 sample paths of the risk process are generated and we use mean value and the
integrated mean-square errors (IMSEs) for assessment purpose, which are computed by

φ̂(u) :=
1

1000

1000

∑
j=1

φ̂j(u), IMSE :=
1

1000

1000

∑
j=1

∫ 20

0
|φ̂j(u)− φ(u)|2du,

where φ̂j(u) denotes the estimate in the j-th experiment. Since φ(u) and φ̂j(u) are close to
zero when u > 20, we calculate the integral in IMSEs on a finite domain [0, 20].



Mathematics 2021, 9, 1402 8 of 18

First, we consider the case (n, ∆) = (2500, 0.01). To show variability bands and
illustrate the stability of the procedures, we plot 25 consecutive estimate value curves
and true value curves in Figure 2 for the compound Poisson risk model. It is clear that
the estimates are very close to each other and close to the true value curves. Similarly,
for the Lévy-Gamma risk model, we plot the estimate value curves and reference value
curves in Figure 3 and we can obtain the same conclusion. Next, we present the mean
value curves w.r.t. different pairs (n, ∆) under both models in Figures 4 and 5, respectively,
and compare them with true/reference value curves. We find that our estimator performs
very well and they converge to the true/reference value curves as n∆ increases. Let sd
denote the standard derivation, which is computed by

sd =

√√√√ 1
1000− 1

1000

∑
j=1

(φ̂j(u)− φ̂(u))2.

Thereby, the confidence bands are constructed by

mean value± sd.

Then, we present the confidence bands in Figure 6 with (n, ∆) = (2500, 0.01) for the L’evy-
Gamma risk model, and we can observe that the confidence bands cover the reference
value curves very well.

Finally, we compare the Fourier–Cosine method with FFT method in [18]. For the
compound Poisson risk model, we report IMSEs in Table 1 for these two methods. It can
be seen that Fourier–Cosine series expansion method has smaller IMSEs for each type
of Gerber–Shiu function considered in the experiment. For the Lévy-Gamma risk model,
corresponding IMSEs are displayed in Table 2 and we reach the same conclusion as for the
compound Poisson risk model.

Table 1. In the compound Poisson risk model, IMSEs for φ̂(u).

(n, ∆)
Fourier-Cosine FFT

RP ECS LT RP ECS LT

(400, 0.05) 0.03006 0.25305 0.02860 0.03374 0.26636 0.02896
(1000, 0.02) 0.02298 0.10008 0.01755 0.02312 0.10217 0.01978
(2500, 0.01) 0.01413 0.06423 0.01310 0.01803 0.06997 0.01567
(5000, 0.01) 0.00736 0.03321 0.00636 0.01014 0.03371 0.00819

Table 2. In the Lévy-Gamma risk model, IMSEs for φ̂(u).

(n, ∆)
Fourier-Cosine FFT

RP ECS LT RP ECS LT

(400, 0.05) 0.00854 0.00031 0.00678 0.00964 0.00033 0.00680
(1000, 0.02) 0.00215 0.00008 0.00253 0.00291 0.00009 0.00303
(2500, 0.01) 0.00157 0.00003 0.00134 0.00157 0.00004 0.00168
(5000, 0.01) 0.00091 0.00002 0.00076 0.00097 0.00003 0.00081
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Figure 2. For the compound Poisson risk model, we estimate the Gerber–Shiu functions by true value curves (red curves)
and 25 estimated value curves (green curves). (a) Ruin probability; (b) Expected claim size causing ruin; (c) Laplace
transform of ruin time.
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Figure 3. For the Lévy-Gamma risk model, we estimate the Gerber–Shiu functions by true value curves (red curves) and
25 estimated value curves (green curves). (a) Ruin probability; (b) Expected claim size causing ruin; (c) Laplace transform of
ruin time.
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Figure 4. For the compound Poisson risk model, we estimate the Gerber–Shiu functions by mean value curves. (a) Ruin
probability; (b) Expected claim size causing ruin; (c) Laplace transform of ruin time.
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Figure 5. For the Lévy-Gamma risk model, we estimate the Gerber–Shiu functions by mean value curves. (a) Ruin
probability; (b) Expected claim size causing ruin; (c) Laplace transform of ruin time.
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Figure 6. For the Lévy-Gamma risk model, we plot the confidence band curves (green curves), mean value curves (blue
curves) and reference value curves (red curves). (a) Ruin probability; (b) Expected claim size causing ruin; (c) Laplace
transform of ruin time.

5. Conclusions

In this paper, we estimate the Gerber–Shiu function under the Lévy risk model by
Fourier–Cosine series expansion. Based on the high-frequency, discretely observed infor-
mation, an estimator of the Gerber–Shiu function is constructed. We prove the consistency
of the proposed estimator and test the performance of the estimator by some simulation
examples when the sample size is finite. It is confirmed that our estimator is easy to
compute and has a fast convergence rate. Further research on the asymptotic normality
of the Fourier–Cosine series expansion remains open. The Fourier–Cosine method can
be further extended to other risk models (e.g., Dividends, Capital injections) as well as
economic models (e.g., Option pricing).
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Appendix A

Proof. For convenience, we define φa(u) = φ(u) · I(0 ≤ u ≤ a) and

φ̃K,a(u) =
K−1

∑
k=0

′ 2
a

{∫ a

0
φ(u) cos

(
kπ

u
a

)
du
}

cos
(

kπ
u
a

)
, 0 ≤ u ≤ a.

Then the triangle inequality gives

‖φ− φK,a‖ = ‖φ− φa + φa − φ̃K,a + φ̃K,a − φK,a‖
≤ ‖φ− φa‖+ ‖φa − φ̃K,a‖+ ‖φ̃K,a − φK,a‖. (A1)

For the first term on the right hand side of (A1), we have

‖φ− φa‖2 =
∫ ∞

0
(φ(u)− φa(u))2du =

∫ ∞

a
φ2(u)du. (A2)

Note that for 0 ≤ u ≤ a

φa(u)− φ̃K,a(u) =
∞

∑
k=0

′ 2
a

{∫ a

0
φ(u) cos

(
kπ

u
a

)
du
}

cos
(

kπ
u
a

)
−

K−1

∑
k=0

′ 2
a

{∫ a

0
φ(u) cos

(
kπ

u
a

)
du
}

cos
(

kπ
u
a

)
=

∞

∑
k=K

′ 2
a

{∫ a

0
φ(u) cos

(
kπ

u
a

)
du
}

cos
(

kπ
u
a

)
,

then for the second term ‖φa − φ̃K,a‖, we have

‖φa − φ̃K,a‖2 =
∫ a

0

(
φa(u)− φ̂K,a(u)

)2du

≤
∞

∑
k=K

4
a2

{∫ a

0
φ(u) cos

(
kπ

u
a

)
du
}2 ∫ a

0
cos2

(
kπ

u
a

)
du

≤ 2
a

∞

∑
k=K

{∫ a

0
φ(u) cos

(
kπ

u
a

)
du
}2

, (A3)

where we have used the following result,

∫ a

0
cos
(

k1π
u
a

)
cos
(

k2π
u
a

)
du =


a, k1 = k2 = 0,
a
2 , k1 = k2 6= 0,
0, k1 6= k2.

(A4)

Furthermore, using integration by parts, we have∣∣∣∣∫ a

0
φ(u) cos

(
kπ

u
a

)
du
∣∣∣∣ = ∣∣∣∣− a

kπ

∫ a

0
φ′(u) sin

(
kπ

u
a

)
du
∣∣∣∣

≤ a
kπ

∫ a

0

∣∣φ′(u)∣∣du ≤ a
kπ

∫ ∞

0

∣∣φ′(u)∣∣du.

As a result, (A3) gives

∥∥φa − φ̃K,a
∥∥2 ≤ 2

a

∞

∑
k=K

{
a

kπ

∫ ∞

0

∣∣φ′(u)∣∣du
}2
≤ 2a

(K− 1)π

{∫ ∞

0

∣∣φ′(u)∣∣du
}2

. (A5)

By (A4), the square of the third term on the right hand side of (A1) becomes
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∥∥φ̃K,a − φK,a
∥∥2

=
∫ a

0

(
φ̂K,a(u)− φK,a(u)

)2du

=
∫ a

0

(
K−1

∑
k=0

′ 2
a

(
Re
{
Fφ

(
kπ

a

)}
−
∫ a

0
φ(u) cos

(
kπ

u
a

)
du
)

cos
(

kπ
u
a

))2

du

=
4
a2

K−1

∑
k=0

′
(

Re
{
Fφ

(
kπ

a

)}
−
∫ a

0
φ(u) cos

(
kπ

u
a

)
du
)2 ∫ a

0

(
cos
(

kπ
u
a

))2
du

=
2
a

K−1

∑
k=0

(
Re
{
Fφ

(
kπ

a

)}
−
∫ a

0
φ(u) cos

(
kπ

u
a

)
du
)2

.

Since∣∣∣∣Re
{
Fφ

(
kπ

a

)}
−
∫ a

0
φ(u) cos

(
kπ

u
a

)
du
∣∣∣∣ = ∣∣∣∣∫ ∞

a
φ(u) cos

(
kπ

u
a

)
du
∣∣∣∣ ≤ ∫ ∞

a
φ(u)du,

we have ∥∥φ̃K,a − φK,a
∥∥2 ≤ 2K

a

{∫ ∞

a
φ(u)du

}2
. (A6)

Combining (A1), (A2), (A5) and (A6) yields the result in Proposition 1.

Appendix B

Proof. First, for s ∈ R, the triangle inequality gives∣∣∣N(s)− N̂(s)
∣∣∣ ≤∣∣∣∣∫ ∞

0
a(s; z, ρ)v(z)dz− 1

∆
E[a(s; z, ρ)]

∣∣∣∣
+

∣∣∣∣∣ 1
n∆

n

∑
k=1
{E[a(s; Zk, ρ)]− a(s; Zk, ρ)}

∣∣∣∣∣
+

∣∣∣∣∣ 1
n∆

n

∑
k=1
{a(s; Zk, ρ)− a(s; Zk, ρ̂)}

∣∣∣∣∣
:=I1(s) + I2(s) + I3(s). (A7)

For I1(s), it follows from Lemma A.3 in [18] that

I1(s) .
∆α

1∨ |s| ,

which yields
sup
s≥0

I1(s) . ∆α. (A8)

For I2(s), we introduce two classes of real-valued functions,

G1 =

{
g : g(α) = Re

{
a(s; z, ρ)/

√
∆
}

, s ∈
[

0,
Kπ

a

]
, z ≥ 0

}
,

G2 =

{
g : g(α) = Im

{
a(s; z, ρ)/

√
∆
}

, s ∈
[

0,
Kπ

a

]
, z ≥ 0

}
,
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where Im(·) means taking imaginary part of a complex number. For any g ∈ G1, we have

|g(α)| ≤ sup
s∈[0,kπ/a]

∣∣∣Re
{

a(s; z, ρ)/
√

∆
}∣∣∣ ≤ sup

s∈[0,kπ/a]

1√
∆
|a(s; z, ρ)|

≤ sup
s∈[0,kπ/a]

Ca√
∆

zk0 + zk0+1

1∨ |s| ≤ Ca√
∆

[
zk0 + zk0+1

]
:= H1(z),

which implies that G1 is contained jn the single bracket [−H1, H1]. Further, for two
functions

g1(z) = Re
{

a(s1; z, ρ)/
√

∆
}

, g2(z) = Re
{

a(s2; z, ρ)/
√

∆
}

,

with s1, s2 ∈ [0, Kπ/a], we have

|g1(z)− g2(z)| =
∣∣∣∣Re
{

a(s1; z, ρ)√
∆

− a(s2; z, ρ)√
∆

}∣∣∣∣
≤ 1√

∆
|a(s1; z, ρ)− a(s2; z, ρ)| ≤ 1√

∆

∫ ∞

0
e−ρy|ϕ(s1; y, z)− ϕ(s2; y, z)|dy

=
1√
∆

∫ ∞

0
e−ρy

∣∣∣∣∫ ∞

0

[
eis1(x−y) − eis2(x−y)

]
w(x, z− x)I(y < x < z)dx

∣∣∣∣dy

≤ 1√
∆

∫ z

0

∫ z

y

∣∣∣eis1(x−y) − eis2(x−y)
∣∣∣w(x, z− x)dxdy. (A9)

By the mean value theory, we have

eis1(x−y) − eis2(x−y) = (s1 − s2)eis∗(x−y)i(x− y),

where s∗ is a number between s1 and s2. Then, inequality (A9) together with Assumption
6, gives

|g1(z)− g2(z)| ≤ |s1 − s2|
1√
∆

∫ z

0

∫ z

y
(x− y)w(x, z− x)dxdy

≤ |s1 − s2|
Cw√

∆
z3(1 + z)α1+α2 = |s1 − s2|H2(z)

where H2(z) = Cw√
∆

z3(1 + z)α1+α2 . Under the Assumption 4(k = (2(α1 + α2 + 2))), we have

E
[
|H2(Z1)|2

]
=

Cw
2

∆
E
[

Z1
6(1 + Z1)

2(α1+α2)
]
.

1
∆
E
[

Z1
6 + Z1

2(α1+α2+3)
]

due to Lemma 2. Hence, it follows from Example 19.7 in [41] that for every 0 < ε <
Kπ

a

√
E
[
|H2(Z1)|2

]
, the bracketing number N�(ε,G1) satisfies

N�(ε,G1) ≤
Kπ

εa

√
E
[
|H2(Z1)|2

]
.

For every δ > 0, the bracketing integral

J�(δ,G1) =
∫ δ

0

√
log[N�(ε,G1)]dε .

∫ δ

0

√∣∣∣∣log
(

K
εa

)∣∣∣∣dε .

√∣∣∣∣log
(

K
a

)∣∣∣∣.
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Since under Assumption 4 (k = (2(k0 + 1))),

E
[
|H1(Z1)|2

]
.

1
∆
E
[(

Z1
k0 + Z1

k0+1
)2
]
.

1
∆
E
[(

Z1
2k0 + Z1

2(k0+1)
)]

due to Lemma 2, then, by Corollary 19.35 in [41], we have

E
(

1√
n sup

g∈G1

∣∣∣∣ n
∑

k=1
(g(Zk)−E[g(Zk)])

∣∣∣∣
)
≤ J�

(√
E
[
|H1(Z1)|2

]
,G1

)
.

√∣∣∣log
(

K
a

)∣∣∣. (A10)

Similarly, we can obtain

E
(

1√
n

sup
g∈G2

∣∣∣∣∣ n

∑
k=1

(g(Zk)−E[g(Zk)])

∣∣∣∣∣
)

.

√∣∣∣∣log
(

K
a

)∣∣∣∣. (A11)

Now we have

sup
s∈[0,Kπ/a]

I2(s) ≤
1√
n∆

1√
n

sup
g∈G1

∣∣∣∣∣ n

∑
k=1

(g(Zk)−E[g(Zk)])

∣∣∣∣∣
+

1√
n∆

1√
n

sup
g∈G2

∣∣∣∣∣ n

∑
k=1

(g(Zk)−E[g(Zk)])

∣∣∣∣∣
=Op

(
(n∆)−

1
2 |log(K/a)|

1
2
)

, (A12)

where the second step follows from (A10), (A11) and Markov’s inequality.
For I3(s), it follows from the proof of Lemma A.3 in [18] that

I3(s) ≤
1

n∆

n

∑
k=1

∫ ∞

0
ye−δy/c|ϕ(s; y, Zk)|dy · |ρ̂− ρ|

≤ 1
n∆

n

∑
k=1

∫ ∞

0
ye−δy/c

∣∣∣∣∫ ∞

0
eis(x−y)w(x, Zk − x)I(y < x < Zk)dx

∣∣∣∣dy · |ρ̂− ρ|

.
1

n∆

n

∑
k=1

∫ Zk

0

∫ Zk

y
yw(x, Zk − x)dxdy · |ρ̂− ρ|

.
1

n∆

n

∑
k=1

∫ Zk

0

∫ Zk

y
y(1 + x)α1(1 + Zk − x)α2 dxdy · |ρ̂− ρ|

.
1

n∆

n

∑
k=1

Zk
3(1 + Zk)

α1+α2 · |ρ̂− ρ|. (A13)

Under Assumption 4 (k = (2(α1 + α2 + 3))), we have

1
n∆

n

∑
k=1

Zk
3(1 + Zk)

α1+α2 = Op(1).

Due to Markov’s inequality, above equality together with Lemma 1 and (A13) gives

sup
s∈[0,Kπ/a]

I3(s) = Op

(
(n∆)−

1
2 + ∆

)
. (A14)

Finally, by (A7), (A8), (A12) and (A14) we obtain

sup
s∈[0,Kπ/a]

∣∣∣N(s)− N̂(s)
∣∣∣ ≤ sup

s∈[0,Kπ/a]
I1(s) + sup

s∈[0,Kπ/a]
I2(s) + sup

s∈[0,Kπ/a]
I3(s)

= O(∆α) + Op

(
(n∆)−

1
2 |log(K/a)|

1
2 + (n∆)−

1
2 + ∆

)
,
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which completes the proof.

Appendix C

Proof. By lemma A.5 in [18], we know that

D(s)− D̂(s) =
(

D(s)− 1
∆
E[G(s; Z1, ρ)]

)
+

1
n∆

n

∑
k=1

(E[G(s; Zk, ρ)]− G(s; Zk, ρ))

+
1

n∆

n

∑
k=1

(G(s; Zk, ρ)− G(s; Zk, ρ̂))

:=II1(s) + II2(s) + II3(s), (A15)

where G(s; z, y) := eisz
∫ z

0
e−(y+is)xdx, z, y ≥ 0.

First, by (A.13) in [18] we have

sup
s∈[0,Kπ/a]

|II1(s)| . sup
s∈[0,Kπ/a]

(1 + s)∆ .
(

1 +
K
a

)
∆. (A16)

To study II2(s), we introduce the following classes of real-valued functions,

G3 =
{

g : g(z) = Re
{

G(s; z, ρ)/
√

∆
}

, s ∈ [0, Kπ/a], z ≥ 0
}

,

G4 =
{

g : g(z) = Im
{

G(s; z, ρ)/
√

∆
}

, s ∈ [0, Kπ/a], z ≥ 0
}

.

For any g ∈ G3, we have

|g(z)| ≤ sup
s∈[0,Kπ/a]

∣∣∣Re
{

G(s; z, ρ)/
√

∆
}∣∣∣

≤ sup
s∈[0,Kπ/a]

1√
∆

∣∣∣∣eisz
∫ z

0
e−(ρ+is)xdx

∣∣∣∣
≤ z√

∆
:= H3(z),

which implies that G3 is contained in the single bracket [−H3, H3]. For two functions

g3(z) = Re
{

G(s1; z, ρ)/
√

∆
}

, g4(z) = Re
{

G(s2; z, ρ)/
√

∆
}

with s1, s2 ∈ [0, Kπ/a], by the mean value theory we have

|g3(z)− g4(z)| =
∣∣∣Re
{

G(s1; z, ρ)/
√

∆
}
−Re

{
G(s2; z, ρ)/

√
∆
}∣∣∣

≤ 1√
∆
|G(s1; z, ρ)− G(s2; z, ρ)| = 1√

∆

∣∣∣∣∫ z

0
e−ρx

[
eis1(z−x) − eis2(z−x)

]
dx
∣∣∣∣

≤ |s1 − s2|
1√
∆

∫ z

0
e−ρx(z− x)dx ≤ |s1 − s2| ·

z2
√

∆
:=

1√
∆

H4(z).

Under Assumption 4 (k = 4), it follows from Lemma 2 that

E
[
|H3(Z1)|2

]
=

1
∆
E
[

Z1
2
]

and
E
[
|H4(Z1)|2

]
=

1
∆
E
[

Z1
4
]
.
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Hence, by exactly the same arguments in Lemma 3, we obtain

E
{

1√
n

sup
g∈G3

∣∣∣∣∣ n

∑
k=1

(g(Zk)−E[g(Zk)])

∣∣∣∣∣
}

.

√∣∣∣∣log
(

K
a

)∣∣∣∣
and

E
{

1√
n

sup
g∈G4

∣∣∣∣∣ n

∑
k=1

(g(Zk)−E[g(Zk)])

∣∣∣∣∣
}

.

√∣∣∣∣log
(

K
a

)∣∣∣∣.
Further, together with Markov’s inequality, we have

sup
s∈[0,Kπ/a]

|II2(s)| ≤
1√
n∆

1√
n

sup
g∈G3

∣∣∣∣∣ n

∑
k=1

(g(Zk)−E[g(Zk)])

∣∣∣∣∣+ 1√
n∆

1√
n

sup
g∈G4

∣∣∣∣∣ n

∑
k=1

(g(Zk)−E[g(Zk)])

∣∣∣∣∣
= Op

(
(n∆)−

1
2 ·
∣∣∣∣log

(
K
a

)∣∣∣∣ 1
2
)

. (A17)

Regarding II3(s), we have

|II3(s)| =
∣∣∣∣∣ 1
n∆

n

∑
k=1

eisZk

∫ Zk

0
e−isx

(
e−ρ̂x − e−ρx

)
dx

∣∣∣∣∣ ≤ 1
n∆

n

∑
k=1

∫ Zk

0

∣∣∣e−ρ̂x − e−ρx
∣∣∣dx. (A18)

By (A.2) in [18], we have ∣∣∣e−ρ̂x − e−ρx
∣∣∣ ≤ xe−δx/c · |ρ̂− ρ|.

Then (A18) gives

|II3(s)| ≤
1

n∆

n

∑
k=1

∫ Zk

0
xe−δx/cdx · |ρ̂− ρ| ≤ 1

n∆

n

∑
k=1

Zk
2 · |ρ̂− ρ|.

Under Assumption 4 (k = 2), we have
1

n∆

n

∑
k=1

Zk
2 = Op(1) due to Markov’s inequality,

which, together with Lemma 1, gives

sup
s≥0
|II3(s)| = Op

(
(n∆)−

1
2 + ∆

)
. (A19)

Finally, by (A15), (A16), (A17) and (A19) we obtain

sup
s∈[0,Kπ/a]

∣∣∣D(s)− D̂(s)
∣∣∣ ≤ sup

s∈[0,Kπ/a]
|II1(s)|+ sup

s∈[0,Kπ/a]
|II2(s)|+ sup

s∈[0,Kπ/a]
|II3(s)|

= O
((

1 +
K
a

)
∆
)
+ Op

(
(n∆)−

1
2

∣∣∣∣log
(

K
a

)∣∣∣∣ 1
2
+ (n∆)−

1
2 + ∆

)
.
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