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Abstract: We consider the orbital stability of solitary waves to the double dispersion equation
utt − uxx + h1uxxxx − h2uttxx + f (u)xx = 0, h1 > 0, h2 > 0 with combined power-type nonlinearity
f (u) = a|u|pu + b|u|2pu, p > 0, a ∈ R, b ∈ R, b 6= 0. The stability of solitary waves with velocity
c, c2 < 1 is proved by means of the Grillakis, Shatah, and Strauss abstract theory and the convexity
of the function d(c), related to some conservation laws. We derive explicit analytical formulas for
the function d(c) and its second derivative for quadratic-cubic nonlinearity f (u) = au2 + bu3 and
parameters b > 0, c2 ∈

[
0, min

(
1, h1

h2

))
. As a consequence, the orbital stability of solitary waves is

analyzed depending on the parameters of the problem. Well-known results are generalized in the
case of a single cubic nonlinearity f (u) = bu3.

Keywords: double dispersion equation; combined power-type nonlinearity; solitary waves;
orbital stability

MSC: 35L35; 35L75; 35B35; 74J35

1. Introduction

In the present paper, we study orbital stability of the solitary waves to the double
dispersion equation

utt − uxx + h1uxxxx − h2uttxx + f (u)xx = 0, h1 > 0, h2 > 0, x ∈ R, t ∈ R+ (1)

with initial data

u(0, x) = u0(x), ut(0, x) = u1(x),
u0(x) ∈ H1(R), u1(x) ∈ L2(R), (−∆)−

1
2 u1(x) ∈ L2(R).

(2)

Throughout this paper, we denote by F (u) and F−1(u) the Fourier and the inverse
Fourier transforms, respectively, and define (−∆)−su = F−1(|ξ|−2sF (u)

)
for s > 0. We

assume the nonlinear function f (u) in (1) is of a combined power-type,

f (u) = a|u|pu + b|u|2pu, p > 0, a ∈ R, b ∈ R, b 6= 0. (3)

Special cases of (3) appear in many physical models. For example, the quadratic-cubic
nonlinearity

f (u) = au2 + bu3 (4)

models the propagation of longitudinal strain waves in an isotropic cylindrical compressible
elastic rod in [1–3]. The cubic-quintic nonlinearity f (u) = u3 + u5 appears in the theory of
atomic chains in [4] and in shape memory alloys in [5].
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The double dispersion Equation (1) is closely related to the theory of nonlinear waves.
The derivation of (1) from the full Boussinesq model can be found, e.g., in [6], where
Equation (1) is also called “Boussinesq paradigm equation”. Recently, problem (1) with
combined power-type nonlinearity has been extensively studied theoretically and numeri-
cally. The global existence or finite time blow up of the solutions is treated, e.g., in [7,8].
For some numerical methods for solving the double dispersion equations, see Remark 2.

Let us recall that the well-known generalized Boussinesq equation

utt − uxx + h1uxxxx + f (u)xx = 0, h1 > 0, x ∈ R, t ∈ R+ (5)

with nonlinearity (4) is proposed in [9–11] as a model of pulse propagation in biomembranes
and nerves. Model (5) with (4) is revised in [12] from the viewpoint of solid mechanics.
More precisely, a higher-order term h2uttxx with a small positive constant h2, h2 < h1 is
added to (5). Thus, Equation (5) is transformed into the double dispersion Equation (1).
Nonlinearity (4) with a > 0, b < 0 is derived experimentally (see in [9]). For more details
about the discussed models, see in [9,10,12,13] and the references therein. Recently in [14]
the authors propose a joint coupled model, which is able to describe the electric, mechanical
and thermal effects of propagation of axons. In this model, an additional coupling force is
included in Equation (1).

There is a large number of papers in which the stability/instability for nonlocal
nonlinear equations and Boussinesq type equations is investigated, see, e.g., in [15–22].
In [21], Grillakis, Shatah, and Strauss obtain sharp conditions for stability/instability of
solitary waves for a class of abstract Hamiltonian systems. Further on, similar results are
proved by Bona, Souganidis and Strauss in [22] for Korteweg-de Vries type equations.

In [23], the abstract theory for stability from [21] is applied to the generalized Boussi-
nesq Equation (5) with a single nonlinearity

f (u) = |u|p−1u, p > 1 (6)

and h1 = 1. The authors obtain orbital stability of solitary waves for 1 < p < 5 and
p−1

4 < c2 < 1. Later on, in [24] the author proves instability results for the same problem
for c2 < p−1

4 and 1 < p < 5 or c2 < 1 and p ≥ 5. The orbital instability in the degenerate
case c2 = p−1

4 , 1 < p < 5 is established in [25]. Strong instability to (5) with (6), i.e.,
instability by means of blow up of the solutions, is obtained in [26] for c = 0 and in [27] for
0 < c2 < p−1

2(p+1) .
The orbital stability/instability of solitary waves to (5) with nonlinearity (4) is studied

in [28,29] for all possible combinations of parameters h1, a, b and c, for which the solitary
waves to (5) exist. Similar results for the orbital stability/instability of solitary waves
to (5) with nonlinearity (3) are formulated in [30]. However, for p ∈ (0, 2] the analysis in
Section 4.1 in [30] is not correct.

The double dispersion Equation (1) with h1 ≥ h2 > 0 and a single nonlinearity (6) is
considered in [15,31,32]. In [31], the authors find conditions on c and on the parameters
h1, h2, and p, for which the solitary waves are orbitally stable. Strong instability is proved
in [15] for c = 0 and in [31,32] for c2 < c2

0. The constant c0 is explicitly given in [32] for
h1 = h2 = 1, and in [31] for every h1 > h2 > 0.

The orbital stability/instability of solitary waves to double dispersion Equation (1)
with quadratic-cubic nonlinearity (4) is investigated for the first time in our previous
paper [28]. In this paper, we work under the restrictions b < 0, a > 0, h1 > h2 > 0, and
c2 < 1—a choice, inspired by the improved Heimburg–Jackson model [9]. However, in
some applications (for example, in the propagation of a longitudinal strain wave in an
isotropic compressible elastic rod, see in [1–3]) the coefficients a and b may have different
signs, depending on the material of the rod. This motivates us to study the stability
of solitary waves for other sign conditions of the coefficients a, b in the quadratic-cubic
nonlinearity (4).
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In the first part of the present paper, we investigate orbital stability of solitary waves
to double dispersion Equation (1) with combined power-type nonlinearity (3) and velocity
c2 < 1. Our stability result (see Theorem 2) is based on the Grillakis, Shatah, and Strauss
abstract theory for stability of solitary waves. More precisely, the stability is proved by
means of the convexity of the function d(c) connected to some invariants (the energy and
the momentum) of the double dispersion equation.

In the second part of this article, we focus on the case of the quadratic-cubic nonlinear-
ity (4) and parameters b > 0, c2 ∈ I, I :=

(
0, min

(
1, h1

h2

))
as it has a number of applications.

We derive explicit analytical formulas for the functions d(c) and d′′(c). The advantage of
the explicit expression for d′′(c) is the possibility to obtain the stability of solitary waves
directly, evaluating the sign of d′′(c) for every fixed value of the input parameters a, b,
h1, h2, and c. Based on the formula of d′′(c), we analyze theoretically the stability at a
neighborhood of the end points of I and give stability intervals of the velocity c2 in terms
of a, b, h1, and h2. For the case of a single cubic nonlinearity, i.e., a = 0, b > 0 in (4), we
investigate in depth the sign of d′′(c) and obtain precise intervals of orbital stability. When
h1 > h2 our results confirm and generalize the well-known results in [31]. We emphasize
that, for the first time, we prove orbital stability to (1) with h1 ≤ h2 and a = 0 in (4).

Note that in our previous paper [28], as well as in the second part of the present
one, we thoroughly investigate the quadratic-cubic nonlinearity and the velocities c of
the solitary waves satisfying c2 < 1 (see conditions (A) and (B) in Theorem 1). However,
Equation (1) admits solitary waves with velocities c2 > 1 (see assumptions (C) and (D) in
Theorem 1). The orbital stability of solitary waves with velocities c2 > 1 is an open problem.

The paper is organized in the following way. In Section 2, we review some preliminary
results, including the Hamiltonian form of problem (1)–(3) and a formula for the solitary
waves. The orbital stability result is proved in Section 3 for the general combined power-
type nonlinearity (3) and c2 < 1. Sections 4 and 5 and the Appendix A are devoted to
stability of solitary waves for problem (1), (2) with quadratic-cubic nonlinearity (4). First,
an explicit formula for d′′(c) is derived for parameters b > 0, a ∈ R, h1 > 0, h2 > 0,
c2 ∈

[
0, min

(
1, h1

h2

))
. Then, the main results for stability of solitary waves for (1) and

quadratic-cubic nonlinearity (4) are formulated in Section 4 and discussed in Section 5. The
proofs of stability results are given in the Appendix A.

2. Preliminaries

By a solitary wave to (1) and (3) we mean a solution of the form u(x, t) = ϕc(x− ct),
where c represents the velocity of the wave. Inserting this into (1) and integrating twice,
we see that ϕc must satisfy

(h1 − h2c2)ϕ′′c (ζ)− (1− c2)ϕc(ζ) + f (ϕ) = 0, ϕc(ζ)→ 0 for |ζ| → ∞. (7)

In [28], we give precise conditions on parameters h1, h2, a, b, and c providing existence
of positive solitary waves ϕc(x− ct) for quadratic-cubic nonlinearity (4). For the combined
power-type nonlinearity (3) these conditions are generalized as follows (see also in [8]).

Theorem 1. There exists a unique (up to translation of the coordinate system) solitary wave ϕc(ζ),
ζ = x− ct, to (1)–(3) with velocity c

ϕc(ζ) = (p + 2)
1
p |1− c2|

1
p×(

a sgn(1− c2) +
√

a2 + (p+2)2

p+1 b(1− c2) cosh
(

p
√

1−c2

h1−h2c2 ζ
))− 1

p
,

(8)

when one of the following assumptions is fulfilled:
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(A) b < 0, a > 0, h1 > 0, h2 > 0, h1
h2

>
(

1 + a2

b
p+1

(p+2)2

)
+

, c2 ∈
[(

1 + a2

b
p+1

(p+2)2

)
+

,

min
(

1, h1
h2

))
;

(B) b > 0, a ∈ R, h1 > 0, h2 > 0, c2 ∈
[
0, min

(
1, h1

h2

))
, or more precisely

(B1) b > 0, a ∈ R, h1 > h2 > 0, c2 ∈ [0, 1);
(B2) b > 0, a ∈ R, 0 < h1 ≤ h2, c2 ∈ [0, h1

h2
);

(C) b > 0, a < 0, 0 < h1
h2

< 1 + a2

b
p+1

(p+2)2 , c2 ∈
(

max
(

1, h1
h2

)
, 1 + a2

b
p+1

(p+2)2

)
;

(D) b < 0, a ∈ R, h1 > 0, h2 > 0, c2 ∈
(

max
(

1, h1
h2

)
, ∞
)

.

Moreover, ϕc is a positive even function for all x ∈ R, ϕc(x) tends to zero exponentially as
x → ∞, and ϕ′c(x) 6= 0 everywhere except x = 0.

Note that by x+ we denote the first truncated power function: x+ = 0, if x ≤ 0, and
x+ = x, if x > 0.

Remark 1. The double dispersion Equation (1) with nonlinearity (3) admits both solitary waves
with velocities c2 < 1 (when one of conditions (A) or (B) in Theorem 1 is satisfied), and solitary
waves with velocities c2 > 1 (when one of cases (C) or (D) is fulfilled). By comparison, the
generalized Boussinesq Equation (5) has only solitary waves with velocity c2 < 1.

Remark 2. In the particular case of quadratic nonlinearity (b = 0 and p = 1 in (3)) the solitary
waves to (1) are given in [6,33]. These papers also contain numerical simulations of the collision of
two solitary waves. Other papers with numerical methods and computations are those in [34,35].

Using the auxiliary function w = w(x, t) defined by wx = ut, we rewrite problem
(1)–(3) as a system of PDE’s and consider the Cauchy problem:

ut = wx,

wt =
(
E− h2∂2

x
)−1

∂x
((

E− h1∂2
x
)
u− f (u)

)
,

u(0, x) = u0(x), w(0, x) = w0(x).

(9)

Here, f (u) is defined in (3), E is the identity, and the second initial datum w0 of (9)
is defined in the following way: w0(x) = F−1((iξ)−1F (u1)(ξ)

)
∈ L2(R), (w0(x))x =

u1(x) ∈ L2(R), i.e., w0(x) ∈ H1(R).
For ~u = (u, w), we introduce the space X = H1(R)× H1(R) equipped with the norm

||~u||2X := ||(u, w)||2X = ||u||2H1(R) + ||w||
2
H1(R). (10)

We recall that system (9) is a generalized Hamiltonian system (or Poisson system)

[
ut

wt

]
= J

 δH
δu
δH
δw

, (11)

where J is a skew-symmetric operator

J :=
(

E− h2∂2
x

)−1
[

0 ∂x

∂x 0

]
,

H is the Hamiltonian (namely, the energy)

H(~u) := H(u, w) =
1
2

∫
R

(
u2 + h1u2

x + w2 + h2w2
x − 2

∫ u

0
f (s)ds

)
dx
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and δH
δu , δH

δw are variational derivatives of H with respect to u and w, respectively. We define
the momentum

M(~u) := M(u, w) =
∫
R
(uw + h2uxwx)dx.

The following theorem states that problem (9) has a local solution and that the func-
tionals H(~u(t)) and M(~u(t)) are conserved in time.

Lemma 1 (local well-posedness [32]). There exists time T such that for all ~u(0) ∈ X the
system (9) has a solution ~u(t) defined in [0, T) satisfying the conservation laws

H(~u(t)) = H(~u(0)), M(~u(t)) = M(~u(0)) for all t ∈ [0, T).

The invariants H and M are essential to the stability analysis of solitary waves.
Let us consider the solitary waves (Uc(x − ct), Wc(x − ct)) of the system (9) with

velocity c. Substituting u(x, t) = Uc(x− ct) and w(x, t) = Wc(x− ct) into (9), we obtain
the following system:{

−cU′c = W ′c,
−c(W ′c − h2W ′′′c ) = U′c − h1U′′′c − f (Uc)′.

(12)

Direct computation shows that the pair (ϕc,−cϕc) is the unique (up to translation
of the coordinate system) solution to system (12). Here, ϕc is the specified in Theorem 1
solitary wave of Equation (1) with nonlinearity (3). Therefore, the solitary wave (Uc, Wc)
of system (9) is given by (ϕc,−cϕc). We denote by ~ϕc the pair ~ϕc = (ϕc,−cϕc). Thus, we
have the following result.

Lemma 2 (existence of solitary waves). The solitary waves ~ϕc = (ϕc,−cϕc) to (9) exist when
parameters h1, h2, a, b and the velocity c satisfy one of the assumptions (A), (B), (C), or (D) of
Theorem 1.

3. Orbital Stability for Combined Power-Type Nonlinearity f (u) = a|u|pu + b|u|2pu,
p > 0

In this section, we investigate the orbital stability of solitary waves ~ϕc to (9) with
nonlinearity (3) and velocity c2 < 1. Roughly speaking, the solitary wave is orbitally
stable if the solution of the problem with initial data sufficiently close to the solitary wave,
remains always close to a suitable translation of the solitary wave during the time evolution.
A precise definition of orbital stability is as follows (see, e.g., in [27]).

Definition 1. We say that a solitary wave ~ϕc is an orbitally stable solution to (9) in the norm (10)
of X, if for any ε > 0, there exists δ > 0 such that for ~u0 = (u0, w0) ∈ X with ||~u0 − ~ϕc||X < δ,
the solution ~u(t) = (u(t), w(t)) of (9) with initial value ~u(0) = ~u0 satisfies

sup
0≤t<∞

inf
y∈R
||~u(t)− ~ϕc(·+ y)||X < ε.

Otherwise, ~ϕc is orbitally unstable.

We study the stability of solitary waves ~ϕc using the techniques developed in [21–23].
For this purpose, let us define the functional

F(~u) := H(~u) + cM(~u)

and the function d(c) of the velocity c

d(c) := F(~ϕc) = H(~ϕc) + cM(~ϕc), (13)
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where d(c) is known as “moment of instability” (see in [23]). According to the work in [21],
the stability of solitary waves relies on the identification of the spectrum of the linearized
around ~ϕc operator F′′(~u) and the convexity of the function d(c) in a neighborhood of c.

Let us consider the operators Hi, i = 1, 2 as Hi := E− hi∂
2
x. Using equalities

H′u(u, w) = H1(u)− f (u), H′w(u, w) = H2(w),

H
′′
uu(u, w) = H1 − f ′(u), H

′′
ww(u, w) = H2,

M′u(u, w) = H2(w), M′w(u, w) = H2(u),

M
′′
uu(u, w) = M

′′
ww(u, w) = 0, M

′′
uw(u, w) = H2,

we evaluate the first and second derivatives of F(~u)

F′(u, w) =

(
H1(u)− f (u)+cH2(w)

H2(w) + cH2(u)

)
, F′′(u, w) =

(
H1− f ′(u) cH2

cH2 H2

)
. (14)

Lemma 3 (Spectrum of the Hessian). Suppose one of the assumptions (A) or (B) of Theorem 1 is
fulfilled. Then, the following assertions are true:

(i) the solitary wave ~ϕc of (9) is a critical point of the functional F, i.e.

F′(~ϕc) = 0; (15)

(ii) for each c the operator F′′, linearized around ~ϕc, has exactly one negative eigenvalue, which is
simple, the second eigenvalue is zero and is simple with corresponding eigenfunction ~ϕ′c. The
rest of the spectrum is positive and bounded away from zero.

Proof. Equality (15) follows easy from (7) and (14). We study the spectrum of the operator
F′′, linearized around ~ϕc. For this purpose, we define operator D by

D =

(
E 0
−cE E

)
.

It is not hard to show that D is a bounded linear operator with bounded inverse D−1.
Let us consider the operator Lc,

Lc := DT F′′(~ϕc)D =

(
H1 − f ′(ϕc)− c2H2 0

0 H2

)
. (16)

As F′′(~ϕc) is a symmetric operator, from (16) it follows that the spectral analysis of
F′′(~ϕc) is reduced to the analysis of the spectrum to Lc (see, e.g., in [18]).

The spectrum of the operator Lc is formed by the spectrum of the differential operators
H2 and L1, where

L1(ψ) := H1(ψ)− f ′(ϕc)ψ− c2H2(ψ) = −(h1 − c2h2)ψ
′′ + (1− c2)ψ− f ′(ϕc)ψ.

Operator L1 is related to Equation (7). Indeed, if we differentiate (7) with respect to
the spatial variable x, we get that L1(ϕ′c) = 0. Therefore, L1 has a zero eigenvalue with a
corresponding eigenfunction ϕ′c. Note that under assumptions (A) or (B) of Theorem 1 we

have
1− c2

h1 − c2h2
> 0 and ϕc is the solution to (7), i.e.,

−ϕ′′c +
1− c2

h1 − c2h2
ϕc −

f (ϕc)

h1 − c2h2
= 0,

with ϕ′c having exactly one zero.
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Thus, the assumptions of Theorem B.61 in [36] are satisfied. From this theorem, we
deduce that the operator L1 has exactly one simple negative eigenvalue, and a simple zero
eigenvalue with associated eigenfunction ϕ′c. The rest of the spectrum of L1 is positive and
lies in

[
1−c2

h1−c2h2
, ∞
)

. Thus, the operator L1 is strictly positive, except for two directions.
The eigenfunctions of the second operator H2 in Lc, corresponding to the eigenvalues

of L1, are identically equal to zero. In this way, we proved the assertion (ii) of Lemma 3.

We conclude our analysis of orbital stability with the following main theorem.

Theorem 2. Suppose ~ϕc = (ϕc,−cϕc) is the solitary wave to (9) corresponding to parameters h1,
h2, a, b, and c, satisfying one of the assumptions (A) or (B) of Theorem 1. Let function d(c) defined
in (13) be twice differentiable and strictly convex in an interval (ξ1, ξ2), contained in the existence
interval of the solitary waves. Then, for every c2 ∈ (ξ1, ξ2), the solitary wave ~ϕc is orbitally stable
in the norm of X.

Proof. The proof is based on Theorem 2 of [21]. The assumptions of this theorem are
verified in Lemma 1 (local well-posedness of the solutions), Lemma 2 (existence of solitary
waves), and Lemma 3 (spectrum of the Hessian). Therefore, the stability theory in [21,22] is
applicable to the cases (A) and (B) of Theorem 1 and the stability of the solitary wave ~ϕc is
a consequence of the convexity of the function d(c) = F(~ϕc). Theorem 2 is proved.

Remark 3. The operator J in (11) contains the operator ∂x, which is not onto L2(R). We can
still apply the theory of [21,22] because this assumption on J is essential only for proving an
instability result, see, e.g., Theorem* in [16]; Theorem 7.1 in [36]; Theorem 4.6 in [37]). Our result
in Theorem 2 shows only the stability of the solitary wave ~ϕc.

From the orbital stability of the solitary wave ~ϕc to system (9) we get the following
stability result for solitary waves ϕc to problem (1).

Corollary 1. Suppose u(t, x) is the solution of (1)–(3) and the solitary wave ~ϕc for the correspond-
ing system (9) is orbitally stable. Then, for every ε > 0, there exists δ > 0 such that

sup
0≤t<∞

inf
y∈R

{
||u(t, ·)− ϕc(·+ y− ct)||2H1(R) + ||ut(t, ·) + cϕ′c(·+ y− ct)||2L2(R)

+||∂−1
x ut(t, ·) + cϕc(·+ y− ct)||2L2(R)

}
< ε2

whenever

||u0(·)− ϕc(·)||2H1(R) + ||u1(·) + cϕ′c(·)||2L2(R) + ||∂
−1
x u1(·) + cϕc(·)||2L2(R) < δ2,

where ∂−1
x u1(x) = F−1((iξ)−1F (u1)(ξ)

)
, ∂−1

x ut(t, x) = F−1((iξ)−1F (ut(t, ·))(ξ)
)
.

A similar result for orbital stability of the solitary waves to other fourth order equations
is given in [38].

4. Orbital Stability for Quadratic-Cubic Nonlinearity f (u) = au2 + bu3

In the remaining part of the paper, we continue our investigation of the quadratic-
cubic nonlinearity (4). As mentioned in the introduction, it has a number of practical
applications. The solitary wave stability for this nonlinearity in case (A) of Theorem 1
and h1 > h2 is already studied in [28]. Here, we complete the stability study under the
assumption (B). Functions d(c) and d′′(c) are evaluated explicitly in Theorem 3, while the
solitary wave’s stability is proved in Theorem 4 whenever d′′(c) > 0.
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Theorem 3. If f (u) = au2 + bu3, b > 0, a ∈ R, and c2 ∈
[
0, min

(
1, h1

h2

))
, then functions d(c)

and d′′(c) are given by the closed-form expressions as follows:

d(c) = 4
√

h2
9b2

√
(1− c2)

(
h1
h2
− c2

){
a2 + 3b(1− c2)−

√
2a(2a2+9b(1−c2))

6
√

b(1−c2)
d3(c)

}
,

d′′(c) = 2a3√h2

27b2
√

b
(

h1
h2
−c2

) 3
2

{
6a
√

b(1−c2)

2a2+9b(1−c2)
d1(c) +

√
2d2(c)d3(c)

}
.

(17)

Here, functions d1(c), d2(c), and d3(c) are defined as

d1(c) =
1
a4

{
−2a4 h1

h2
− 15a2b

h1

h2
− 27b2 h1

h2
− 18a2b

h2
1

h2
2
− 81b2 h2

1
h2

2

+

(
87a2b

h1

h2
+ 378b2 h1

h2
+ 162b2 h2

1
h2

2

)
c2

+

(
−54a2b− 243b2 − 513b2 h1

h2

)
c4 + 324b2c6

}
,

d2(c) =
1
a2

{
2a2 h1

h2
+ 9b

h1

h2
+ 18b

h2
1

h2
2
− 81b

h1

h2
c2 + 54bc4

}
,

d3(c) =
π

2
− arctan

√
2a

3
√

b(1− c2)
.

Proof. We substitute function ~ϕc into (13) and get

d(c) =
1
2

∫
R

(
(h1 − h2c2)(ϕ′c)

2 + (1− c2)ϕ2
c −

2a
3

ϕ3
c −

2b
4

ϕ4
c

)
dx. (18)

Multiplying (7) by ϕc and integrating over R, we obtain the equality∫
R

(
−(h1 − h2c2)(ϕ′c)

2 − (1− c2)ϕ2
c + aϕ3

c + bϕ4
c

)
dx = 0. (19)

Combining (18) and (19), we have

d(c) =
1
6

a
∫
R

ϕ3
c (x) dx +

1
4

b
∫
R

ϕ4
c (x) dx. (20)

After tedious calculations, we obtain the following expression for d(c),

d(c) =
4
√

h2

9b2 (1− c2)

√
h1
h2
− c2

1− c2

(
a2 + 3b(1− c2)

−
√

2
2

a sgn(1− c2)
√

2a2 + 9b(1− c2)Q1

)
, (21)

where

Q1 =
∫ ∞

0

ds
s2 − 2νs + 1

=
1√

1− ν2

(
π

2
+ arctan

ν√
1− ν2

)
,

ν = − a√
a2 + 9

2 b(1− c2)
, ν2 < 1.

Finally, substituting Q1 in (21), we obtain a formula for d(c). Differentiating twice d(c)
with respect to c, we derive expression (17) for the second derivative d′′(c). The proof of
Theorem 3 is completed.
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For every particular values of parameters a, b, h1, h2, and c, one can find the sign of
d′′(c) using representation (17) and conclude stability in view of Theorem 2. A theoretical
study of the sign of d′′(c) in the entire domain of c for a quadratic-cubic nonlinearity with
general coefficients is a non-trivial task, as Figures 1–4 below demonstrate. Therefore,
in Theorem 4, we investigate the stability only in a neighborhood of the end points of
the intervals for the velocity of the solitary waves. For the special case of pure cubic
nonlinearity, i.e., a = 0, b > 0 in (4), Theorem 5 gives a complete investigation of the orbital
stability. Now, we formulate one of the main results of this paper.

Figure 1. The region of orbital stability (d′′ > 0) for h1/h2 = 1.3, a|a|
b ∈ (−4, 4) and c2 ∈ (0, 1):

left half-plane is for a < 0; right half-plane is for a > 0.

Figure 2. The region of orbital stability (d′′ > 0) for h1/h2 = 1, a|a|
b ∈ (−4, 4) and c2 ∈ (0, 1):

left half-plane is for a < 0; right half-plane is for a > 0.
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Figure 3. The region of orbital stability (d′′ > 0) for h1/h2 = 0.8, a|a|
b ∈ (−4, 4) and c2 ∈ (0, 0.8):

left half-plane is for a < 0; right half-plane is for a > 0.

Figure 4. The region of orbital stability (d′′ > 0) for h1/h2 = 0.5, a|a|
b ∈ (-4, 4) and c2 ∈ (0, 0.5):

left half-plane is for a < 0; right half-plane is for a > 0.

Theorem 4. Suppose f (u) = au2 + bu3, a 6= 0, b > 0, h1 > 0 and h2 > 0. Then, the solitary
wave ~ϕc is defined for every c2 ∈ I, I :=

(
0, min

(
1, h1

h2

))
. Moreover, we have the following

behavior of d′′(c) when c2 approaches end points of I:

(a) for c2 → 0:
there exists a constant θ1 ∈ (0, 1) such that d′′(c) < 0 whenever c2 ∈ (0, θ1).

(b) for c2 → min
(

1, h1
h2

)
, c2 < min

(
1, h1

h2

)
:

(b1) if h1 > h2, then there exist constants θ2 ∈ (0, 1) and θ3 ∈ (0, 1) such that:

* if a > 0, then d′′(c) > 0 whenever c2 ∈ (θ2, 1). The solitary wave ~ϕc with velocity
c2 ∈ (θ2, 1) is orbitally stable.

* if a < 0 and h1 ≥ 3h2, then d′′(c) < 0 whenever c2 ∈ (θ2, 1).

* if a < 0, h2 < h1 < 3h2 and 9(h1−h2)(3h2−h1)
h1h2

< a2

b , then d′′(c) < 0 whenever
c2 ∈ (θ2, 1).
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* if a < 0, h2 < h1 < 3h2 and a2

b < 9(h1−h2)(3h2−h1)
h1h2

, then d′′(c) > 0 whenever
c2 ∈ (θ3, 1). The solitary wave ~ϕc with velocity c2 ∈ (θ3, 1) is orbitally stable.

(b2) if h1 = h2, then

* if a < 0, then there exists a constant θ5 ∈ (0, 1) such that d′′(c) < 0 whenever
c2 ∈ (1− θ5, 1);

* if a > 0, then there exists a constant θ6 ∈ (0, 1) such that d′′(c) > 0 whenever c2 ∈
(1− θ6, 1). The solitary wave ~ϕc with velocity c2 ∈ (1− θ6, 1) is orbitally stable.

(b3) if h1 < h2, then there exists a constant θ4 ∈
(

0, h1
h2

)
such that d′′(c) < 0 whenever

c2 ∈
(

h1
h2
− θ4, h1

h2

)
.

Moreover, all constants θi, i = 1, 2, 3, 4, 5, 6 depend on a√
b

and h1
h2

.

For completeness, in the following theorem we consider the remaining conditions
a = 0, b > 0 in (B). In this case, we study a single cubic nonlinearity instead of a combined
quadratic-cubic nonlinearity (4).

Theorem 5. Suppose f (u) = bu3, b > 0. Then, the solitary wave ~ϕc is defined for c2 ∈(
0, min( h1

h2
, 1)
)

. Moreover,

(i) if h1 ≥ h2, then there exists a constant σ1 ∈ (0, 1) defined in (A12), such that d′′(c) < 0
whenever c2 ∈ (0, σ1) and d′′(c) > 0 whenever c2 ∈ (σ1, 1). The solitary wave ~ϕc is orbitally
stable for c2 ∈ (σ1, 1). For h1 = h2, we have σ1 = 1

3 .
(ii) if h1 < h2, then there exists a constant h∗ ∈ (0, 1) defined in (A13), h∗ ≈ 0.538759214, such

that for h1
h2

< h∗ and c2 ∈
(

0, h1
h2

)
the inequality d′′(c) < 0 holds.

If 1 > h1
h2

> h∗, then there exist constants σ2 and σ3, 0 < σ2 < σ3 < h1
h2

defined in (A15) such

that d′′(c) < 0 whenever c2 ∈ (0, σ2) ∪ (σ3, h1
h2
), and d′′(c) > 0 whenever c2 ∈ (σ2, σ3).

The solitary wave ~ϕc with velocity c2 ∈ (σ2, σ3) is orbitally stable.
If h1

h2
= h∗, then there exists a constant σ4 ∈ (0, h∗) defined in (A16), σ4 ≈ 0.368121369,

such that d′′(c) < 0 whenever c2 ∈ (0, σ4) ∪ (σ4, h∗).

Moreover, all constants σi, i = 1, 2, 3, 4 depend on h1
h2

only.

The proofs of Theorem 4 and Theorem 5 are given in the Appendix A.
Let us discuss some implications of our results for solitary wave orbital stability.

Remark 4. Let us recall that for h1 > h2 > 0 and an arbitrary single nonlinearity f (u) =
|u|p−1u, p > 1 the orbital stability of solitary waves is analytically and numerically studied in [31].
In Theorem 5(i), we exhaustively investigate the orbital stability of solitary waves for single cubic
nonlinearity (p = 3), generalizing the result in [31]. We note that the function d(c) in (A10)
coincides with formula (4.1) in [31] for p = 3 with d(0) = 4

√
h2

3b , see in [39]. Moreover, in
Theorem 5(ii), we prove for the first time the orbital stability of the solitary wave ~ϕc in the case
h1 < h2.

Remark 5. We establish here only the stability result of solitary waves (see Theorem 2), not the
instability result. For a quadratic-cubic nonlinearity, we prove that in some regions function d(c) is
concave, which is a necessary condition for instability. Therefore, we hypothesize that solitary waves
are unstable in that region and in the following call these solitary waves “expected unstable” there.

Remark 6. We study here and in [28] the stability of solitary waves with small values of velocities,
i.e., c2 < 1. The investigation of stability/instability of solitary waves for double dispersion equation
with large values of velocities c2 > 1 remains an open problem.
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5. Discussion

In this section, we analyze the dynamics of the stability regions with respect to the
changes of the problem parameters.

In Figures 1–4, we show the dependence of the sign of d′′ on the parameters h1
h2

, a√
b
,

and c2, see (A3) and (A4). We fix parameters h1, h2, a, and b and compute the values of
d′′(c) by formula (17). In the plane { a|a|

b , c2} with the abscissa a|a|
b and ordinate c2, we

find the regions with different signs of d′′(c). When a|a|
b is fixed, the vertical line defines

the intervals of c, where the solitary wave is stable or possibly unstable. The color blue
depicts the regionR+ of orbital stability of solitary waves where d′′(c) > 0. The color pink
represents the regionR−, where d′′(c) < 0 and instability of solitary waves is expected.

Similarly to the investigation in [40], we discuss the influence of the dispersion pa-
rameters h1, h2 and the nonlinearity parameters a and b on the stability of solitary waves.
In Figures 1–4, we demonstrate the regions of stability/expected instability for typical
parameters of the problem. According to the assumptions of Theorem 4, further on we
suppose that b > 0.

We observe that for every admissible combination of parameters h1
h2

and a|a|
b function

d′′(c) is negative in a small neighborhood of c = 0, i.e., the solitary waves are expected to
be unstable for velocities close to c = 0.

Case a > 0. First, let a > 0 (see the right half-planes of Figures 1–4). Let us consider
the case h1 > h2, which is called an “anomalous dispersion case” in [40]. Then, for every
fixed value of a|a|

b , the function d′′(c) changes its sign exactly one time in the interval c2 < 1,

see the right half-plane of Figure 1. Let c∗ = c∗( a|a|
b ) be such that d′′(c∗) = 0. Then, the

solitary waves are stable for every c2 > c∗ and expected to be unstable for every c2 < c∗.
In the “balanced dispersion case” h1 = h2 the situation is the same as in the case h1 > h2,
see Figure 2.

In the “normal dispersion case” h1 < h2 (see in [40]) the situation changes (see right
half-planes of Figures 3 and 4): for every fixed value of a|a|

b the function d′′(c) may change
its sign two, one, or zero times depending on c2. Close to the end points of the velocity
interval (c = 0 and c2 = h1

h2
) we have d′′(c) < 0, i.e., in the plane { a|a|

b , c2} the region

R− is disconnected for h1
h2

> h∗ and becomes connected for h1
h2

< h∗. We recall that
h∗ ≈ 0.538759214 is defined in Theorem 5 (ii).

Let us analyze the dynamics of the regionsR+ andR− for fixed positive a > 0, and
h1
h2

changing from values greater than one to values smaller than h∗ < 1. In this case, the

solitary waves with velocities c2 close to min{ h1
h2

, 1} are stable for h1
h2

> 1 and are possibly

unstable for h1
h2

< 1. Moreover, when h1
h2

< h∗ the region of stability goes away from the

line a|a|
b = 0.

Case a < 0. We assume a < 0 (see the left half-planes of Figures 1–4). We observe
that the regions of orbital stability and expected instability depend on the value of ratio
a|a|

b as in the case a > 0. Moreover, when the ratio of nonlinearity parameters a|a|
b is

sufficiently small, all waves with high velocities are possibly unstable.
We analyze the dynamics ofR+ for a < 0 and h1

h2
in the intervals (1, 3) (see Figure 1

for h1
h2

= 1.3), (h∗, 1) (see Figure 3 for h1
h2

= 0.8) and (0, h∗) (see Figure 4 for h1
h2

= 0.5,
respectively). We observe that the region of stability R+ shrinks and disappears for
h1
h2

< h∗. For parameters h1
h2

< h∗, all solitary waves are expected to be unstable.
In conclusion, the behavior of stability/expected instability regions is quite com-

plicated; it depends on the values of h1
h2

and a|a|
b (equivalently on a√

b
). That is why in

Theorem 4, we prove orbital stability at the end points of the existence interval of the
velocity of solitary waves.
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In the case a = 0, i.e., a2

b = 0, the plots on Figures 1–4 confirm the results in
Theorem 5(i) and Theorem 5(ii). For example, when h1

h2
= 0.8 > h∗ ≈ 0.538759214, the

interval of orbital stability σ2 < c2 < σ3 is illustrated on the vertical axis a = 0 of Figure 3.

6. Conclusions

In this paper we investigate the orbital stability of solitary waves to system (9) with
velocities c2 < 1 , as well as the stability of solitary waves to problem (1) –(3). The proof of
the orbital stability is based on the convexity of function d(c) connected to some conserved
quantities of the problem.

We derive an explicit expression of d′′(c) for quadratic-cubic nonlinearity (4) and
parameters b > 0, a ∈ R, c2 ∈

[
0, min

(
1, h1

h2

))
. In Theorem 4, we analyze the sign of

d′′(c) for values of c sufficiently close to end points 0 and min
(

1, h1
h2

)
of the existence

interval for c and a 6= 0. Additionally, in Theorem 5, we study exhaustively the sign of
d′′(c) and orbital stability of solitary waves in the particular case of cubic nonlinearity, i.e.,
a = 0, b > 0 in (4).

The results in Theorem 5(i) in the present paper generalize those in [31] for the double
dispersion equation with a single cubic nonlinearity. In Theorem 5(ii), we prove for the
first time orbital stability of solitary waves~ϕc in the case h1 < h2.

Our investigation shows that the orbital stability of solitary waves depends on the
parameters a, b, h1, and h2 of the problem through the quantities a√

b
and h1

h2
. The orbital

stability of solitary waves~ϕc is sensitive to the changes of the values of a√
b

and h1
h2

. More

precisely, for fixed parameters a√
b

and h1
h2

, the function d′′(c) may change its sign zero,

one, or two times in the interval c2 ∈
(

0, min
(

1, h1
h2

))
.
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Appendix A

We conclude this paper with the proofs of stability theorems formulated in Section 4,
i.e., Theorems 4 and 5.
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Proof of Theorem 4. After the change of variable

ψ = 1− c2, µ =
h1

h2
− 1, k =

√
b

a
,

we rewrite cases (B1) and (B2) in the new variables ψ and µ as follows:

(B1) µ > 0, ψ ∈ (0, 1), (A1)

(B2) µ ∈ (−1, 0], ψ ∈ (−µ, 1). (A2)

For d′′(c) we obtain the following expression:

d′′(c)
27b2

2a2
√

h2
(ψ + µ)

3
2
(
9 ψ k2 + 2

)
:= P(ψ, µ, k), (A3)

where P(ψ, µ, k) is defined as

P(ψ, µ, k)
= 6
√

ψ
(
−324 k4 ψ3− 513 k4 ψ2 µ + 216 k4 ψ2− 54 k2 ψ2− 162 k4 ψ µ2

+324 k4 ψ µ− 87 k2 ψ µ + 21 k2 ψ + 81 k4 µ2− 18 k2 µ2 + 36 k2 µ− 2 µ− 2
)

+
√

2(9 ψ k2+2)
k

(
π
2 − arctan

( √
2

3 k
√

ψ

))
×
(
54k2ψ2 + 81k2ψµ− 27k2ψ + 18k2µ2− 36k2µ + 2µ + 2

)
.

(A4)
The domain of both formulas (A3) and (A4) is ψ and µ satisfying (A1), (A2), and

k ∈ (−∞, 0)∪ (0, ∞). The sign of P(ψ, µ, k) coincides with the sign of d′′(c).
In the investigation of P we assume that it is defined by continuity from (A4) to some

end points of ψ and µ satisfying (A1), (A2) and k ∈ (−∞, 0)∪ (0, ∞).
Determination of the sign of d′′(c) for velocities c2 close to 0, equivalently ψ close

to 1.
We prove that the function P(ψ, µ, k) is negative in a neighborhood of ψ = 1. Indeed,

we have

P(1, µ, k) =
√

2
k

(2 + 9k2)(1 + µ)(2 + 27k2 + 18k2µ)P1(µ, k), (A5)

where P1(µ, k) =− 6k√
2
(1 + 12k2 + 9k2µ)

(2 + 27k2 + 18k2µ)
+

(
π

2
− arctan

(√
2

3 k

))
.

• For k < 0 (i.e., a < 0) from (A5) it follows that P(1, µ, k) < 0 for every µ satisfying
(A1) or (A2) Indeed, we have 1 + 12k2 + 9k2µ = 1 + 9k2(1 + µ) + 3k2 > 0 and
2 + 27k2 + 18k2µ = 2 + 18k2(1 + µ) + 9k2 > 0.

• For k > 0 (i.e., a > 0) we evaluate the derivative of P1(µ, k) with respect to k.
Straightforward computations give us

∂P1(µ, k)
∂k

= −81
√

2k4 2 + 9k2µ2 + (1 + µ)[10 + 45k2(1 + µ) + 63k2]

(2 + 9k2)(2 + 27k2 + 18k2µ)2 .

It is obvious that ∂P1(µ,k)
∂k < 0 for µ > −1. As P1(µ, 0) = 0 it follows that P1(µ, k) < 0

for every k > 0. Therefore, P(1, µ, k) < 0 for µ satisfying either (A1) or (A2).

Thus, for every k we have P(1, µ, k) < 0. From the continuity of P(ψ, µ, k) with
respect to ψ, there exists a small positive constant θ1 such that for ψ ∈ (1− θ1, 1] we get
P(ψ, µ, k) < 0, i.e., d′′(c) < 0 for c2 ∈ (0, θ1). Therefore, we proved statement (a) of this
theorem, corresponding to the behavior of d′′(c) for c2 close to 0.

Determination of the sign of d′′(c) in case h1 > h2 for velocities c2 close to 1,
equivalently ψ close to 0.

For ψ close to 0, we consider the following two cases with respect to the sign of k:
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• k > 0 (i.e., a > 0) By means of L’Hopital’s rule we obtain

lim
ψ→0+

P(ψ, µ, k)√
ψ

=6(81 k4 µ2− 18 k2 µ2 + 36 k2 µ− 2 µ− 2)

+
2
√

2
k

(18 k2 µ2− 36 k2 µ + 2 µ + 2)

+ lim
ψ→0+

(
π
2 − arctan

( √
2

3 k
√

ψ

))
√

ψ
= 486k4µ2 > 0

for every µ > 0. Therefore, there exists a small positive constant θ2 such that
P(ψ, µ, k) > 0 for ψ ∈ (0, θ2) and consequently d′′(c) > 0 for c2 ∈ (1− θ2, 1).

• k < 0 (i.e., a < 0) In this case, we have

P(0, µ, k) =
4
√

2π

k
P2(µ, k), P2(µ, k) = 9k2µ(µ− 2) + (1 + µ). (A6)

We consider the following three subcases:

µ ≥ 2, k < 0, (A7)

0 <µ < 2, k < 0, k2 <
1 + µ

9(2− µ)µ
, (A8)

0 <µ < 2, k < 0, k2 >
1 + µ

9(2− µ)µ
. (A9)

It is obvious that P2(µ, k) > 0 whenever (A7) or (A8) is fulfilled and P2(µ, k) < 0
whenever (A9) holds. Thus, from (A6), it follows that P(0, µ, k) < 0 in cases (A7),
(A8), and P(0, µ, k) > 0 in case (A9). Consequently, from the continuity of P(ψ, µ, k),

there exist small positive constants θ2 and θ3 such that P(ψ, µ, k) < 0 for ψ ∈ (0, θ2)
whenever either (A7) or (A8) hold, and P(ψ, µ, k) > 0 for ψ ∈ (0, θ3) whenever (A9)
holds.

We rewrite the conditions for k and µ in terms of the original parameters h1, h2,
a and b. Therefore, in case (A7), i.e., h1 ≥ 3h2, and (A8), i.e., 0 < h2 < h1 < 3h2,
9(h1−h2)(3h2−h1)

h1h2
< a2

b , we conclude that d′′(c) < 0 for c2 ∈ (1− θ2, 1). In case (A9), i.e.,

0 < h2 < h1 < 3h2, a2

b < 9(h1−h2)(3h2−h1)
h1h2

, we obtain d′′(c) > 0 for c2 ∈ (1− θ3, 1).
Thus, we proved the result in case (b1) in Theorem 4.

Determination of the sign of d′′(c) in case h1 < h2 for velocities c2 close to h1
h2

,
equivalently ψ close to−µ.

We show that P(ψ, µ, k) is negative for ψ close to−µ through investigating the sign
of P(−µ, µ, k),

P(−µ, µ, k) =(1 + µ)
(
9 µ k2− 2

)2
P3(µ, k),

P3(µ, k) =− 6
√−µ(3k2µ− 1)
(9k2µ− 2)

+

√
2

k

(
π

2
− arctan

( √
2

3 k
√−µ

))
.

In case k < 0 and µ ∈ (−1, 0], it is obvious that P3(µ, k) < 0, i.e., P(−µ, µ, k) < 0.
For k > 0 and µ ∈ (−1, 0) we evaluate the first derivative of P3(µ, k) with respect to µ.

As
∂P3(µ, k)

∂µ
=

81k4(−µ)−3/2

(2− 9k2µ)2 > 0

for every µ ∈ (−1, 0) and P3(0, k) = 0 we obtain that P(−µ, µ, k) < 0.
Thus, for every k 6= 0 and µ ∈ (−1, 0) it follows that P(−µ, µ, k) < 0. There-

fore, from the continuity of P(ψ, µ, k) there exists a small positive constant θ4 such that
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P(ψ, µ, k) < 0 for ψ ∈ (−µ,−µ + θ4). Thus, d′′(c) < 0 for c2 ∈ ( h1
h2
− θ4, h1

h2
), and

therefore statement (b3) in Theorem 4 is proved.
Determination of the sign of d′′(c) in case h1 = h2 for velocities c2 close to 1,

equivalently µ = 0 and ψ close to 0.
For k < 0 it follows from (A4) that P(0, 0, k) = 4

√
2π

k = 4
√

2πa√
b

< 0. From the
continuity of P(ψ, µ, k) there exists a constant 0 < θ5 < 1 such that P(ψ, 0, k) < 0 for
ψ ∈ (0, θ5). Thus, d′′(c) < 0 for h1 = h2, k < 0, and c2 ∈ (1− θ5, 1).

For k > 0 we apply the Taylor series expansion of P(ψ, 0, k) in a neighborhood of
ψ = 0 and obtain that P(ψ, 0, k) = 729k4ψ5/2 + O(ψ7/2) > 0. Therefore, there exists a
constant 0 < θ6 < 1 such that P(ψ, 0, k) > 0 for ψ ∈ (0, θ6), i.e., d′′(c) > 0 for h1 = h2,
k > 0 and c2 ∈ (1− θ6, 1). Thus, statement (b2) in Theorem 4 is proved, which concludes
the proof of Theorem 4.

Proof of Theorem 5(i). Substituting a = 0 into (20) we obtain

d(c) =
4
√

h2

3b
(1− c2)

√
(1− c2)

(
h1

h2
− c2

)
. (A10)

Direct computations lead to

d′′(c) =
4
√

h2

3b

(
h1

h2
− c2

)−1{
(1− c2)

(
h1

h2
− c2

)}− 1
2
T(c),

where T(c) = 12c6−
(

9 + 19
h1

h2

)
c4 + 2

h1

h2

(
7 + 3

h1

h2

)
c2− h1

h2

(
1 + 3

h1

h2

)
.

After the change of variable z = c2, we rewrite T(c) as a third order polynomial
T1(z)

T1(z) = 12z3−
(

9 + 19
h1

h2

)
z2 + 2

h1

h2

(
7 + 3

h1

h2

)
z− h1

h2

(
1 + 3

h1

h2

)
. (A11)

The sign of d′′(c) coincides with the sign of the polynomial T1(z). Therefore, the
sign of T1(z) is of high importance for our study. We apply the Budan–Fourier theorem
(see page 246 in [41]): the number of the roots of T1(z) = 0 in the interval α, β is equal
to W(α)−W(β), or smaller by an even non-negative number. Here, W(γ) denotes the
number of sign changes in the sequence T1(γ), T ′1(γ), T ′′1 (γ), T ′′′1 (γ).

Let h1 > h2, then the solitary waves exist for c2 ∈ (0, 1), i.e., z ∈ (0, 1). We evaluate
the number of roots of the equation T1(z) = 0 in the interval (0, 1). As

T1(0) = −h1

h2

(
1 + 3

h1

h2

)
, T ′1(0) = 2

h1

h2

(
7 + 3

h1

h2

)
,

T ′′1 (0) = −2
(

9 + 19
h1

h2

)
, T ′′′1 (0) = 72,

T1(1) = 3
(

h1

h2
− 1

)2
, T ′1(1) = 6

(
h1

h2
− 1

)(
h1

h2
− 3

)
,

T ′′1 (1) = 2
(

27− 19
h1

h2

)
, T ′′′1 (1) = 72,

we have W(0) = 3, W(1) = 2. Thus, equation T1(z) = 0 has one root σ1 in (0, 1), i.e.,

T1(σ1) = 0, σ1 ∈ (0, 1). (A12)

As T1(0) < 0 and T1(1) > 0, we get d′′(c) < 0 for c2 ∈ (0, σ1) and d′′(c) > 0 for
c2 ∈ (σ1, 1), which proves statement (i) in Theorem 5 for h1 > h2.
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In the particular case h1
h2

= 1, equation (A11) is reduced to

T1(z) = 4(3z3− 7z2 + 5z− 1) = 4(3z− 1)(z− 1)2,

thus T1(z) < 0 for z < 1
3 and T1(z) > 0 for z > 1

3 , i.e., the statement (i) in Theorem 5 is
valid for σ1 = 1

3 .
Now, we consider the case h1 < h2. Then, the solitary waves are defined for c2 ∈

(0, h1
h2
) and we study the roots of the equation T1(z) = 0 in the interval (0, h1

h2
). As

T1

(
h1

h2

)
< 0, T ′1

(
h1

h2

)
< 0, T ′′1

(
h1

h2

)
= 2

(
17

h1

h2
− 9

)
, T ′′′1

(
h1

h2

)
> 0,

we have W
(

h1
h2

)
= 1. However, W(0) = 3, thus the number of the roots of T1(z) = 0 in

z ∈ (0, h1
h2
) is zero or two. To study the exact number of the roots in this case we evaluate

the discriminant D of the polynomial T1(z) (see [41]), obtaining

D

(
h1

h2

)
= 12

h1

h2

(
h1

h2
− 1

)2
(

219
(

h1

h2

)3
− 233

(
h1

h2

)2
+ 513

h1

h2
− 243

)
.

The sign of D
(

h1
h2

)
in the interval (−∞, ∞) coincides with the sign of the polynomial

D1

(
h1

h2

)
= 219

(
h1

h2

)3
− 233

(
h1

h2

)2
+ 513

h1

h2
− 243.

As D1

(
h1
h2

)
is a monotone function of h1

h2
, i.e., the first derivative of D1

(
h1
h2

)
is always

strictly positive, and D1(−∞) = −∞, D1(∞) = ∞, it follows that D1

(
h1
h2

)
= 0 has one

real root h∗, i.e.,
D1(h∗) = 0, (A13)

and h∗ ≈ 0.538759214. Moreover, D1

(
h1
h2

)
< 0 whenever h1

h2
< h∗ and D1

(
h1
h2

)
> 0

whenever h1
h2

> h∗.
For 0 < h1 < h2, we have the following number of sign changes for T1(z):

W(−∞) = 3, W(0) = 3, W
(

h1

h2

)
= 1, W(∞) = 0. (A14)

Therefore, from the Budan–Fourier theorem, the equation T1(z) = 0 has zero roots in
(−∞, 0) and one root in ( h1

h2
, ∞).

For h1
h2

< h∗, the discriminant of T1 is negative and according to theorems in page 246
in [41], the equation T1(z) = 0 has one real and two complex roots in (−∞, ∞). From (
A14), we obtain that T1(z) = 0 has zero real roots in (0, h1

h2
). Since T1(0) < 0, we conclude

that for h1
h2

< h∗ we have T1(z) < 0 for all z ∈ (0, h1
h2
), i.e., d′′(c) < 0 for 0 < c2 < h1

h2
.

In the case h1
h2

> h∗, the discriminant of T1 is positive. Therefore, from the work
in [41], the equation T1(z) = 0 has three real distinct roots in (−∞, ∞). But T1(z) has one
root in

(
h1
h2

, ∞
)

and no roots in (−∞, 0), thus T1(z) has two real roots in (0, h1
h2
), i.e., there

exist σ2 and σ3 such that

T1(σ2) = 0, T1(σ3) = 0, 0 < σ2 < σ3 <
h1

h2
. (A15)
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Since T1(0) < 0, we have T1(z) < 0 for 0 < z < σ2 and z > σ3, while T1(z) > 0
for σ2 < z < σ3. Thus for 1 > h1

h2
> h∗ we have d′′(c) < 0 for 0 < c2 < σ2 and

σ3 < c2 < h1
h2

; and d′′(c) > 0 for c2 ∈ (σ2, σ3).

In the remaining case h1
h2

= h∗, the discriminant of T1 is zero; thus, equation T1(z) = 0
has three real roots and two of them are equal, see page 229 in [41]. As T1(z) has one root
in
(

h1
h2

, ∞
)

and no roots in (−∞, 0), then the two equal roots are in (0, h1
h2
). Therefore,

there exists σ4 ∈ (0, h∗), σ4 ≈ 0.368121369 such that

T1(σ4) = 0, T ′1(σ4) = 0. (A16)

As T1(0) < 0 and T1

(
h1
h2

)
< 0, then T1(z) < 0 for z ∈ (0, σ4)∪ (σ4, h∗).

Statement (ii) in Theorem 5 is proved.
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