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Abstract: Natural disasters represent a latent threat for every country in the world. Due to climate
change and other factors, statistics show that they continue to be on the rise. This situation presents
a challenge for the communities and the humanitarian organizations to be better prepared and
react faster to natural disasters. In some countries, in-kind donations represent a high percentage
of the supply for the operations, which presents additional challenges. This research proposes a
Markov Decision Process (MDP) model to resemble operations in collection centers, where in-kind
donations are received, sorted, packed, and sent to the affected areas. The decision addressed is
when to send a shipment considering the uncertainty of the donations’ supply and the demand,
as well as the logistics costs and the penalty of unsatisfied demand. As a result of the MDP a
Monotone Optimal Non-Decreasing Policy (MONDP) is proposed, which provides valuable insights
for decision-makers within this field. Moreover, the necessary conditions to prove the existence of
such MONDP are presented.

Keywords: disaster relief; humanitarian logistics; collection centers; donations management; Markov
decision process

1. Introduction

In a world where natural and man-made disasters are on the rise in both number
and intensity, the efficiency of humanitarian operations gains importance in order to be
prepared and respond efficiently to the communities’ needs. An estimated 80% of disaster
relief operations involves making aid, food, and other resources available to the affected
people in a timely and adequate manner [1], the very definition of logistics in the context
of disaster relief supply chain.

An essential part of success in any supply chain is the policies and adequate manage-
ment of the inventories at every echelon. In the case of disaster relief supply chains, proper
inventory control ranges from the collecting centers to on-site distribution centers and the
last mile distribution points and it can make a significant difference in attending to the
affected communities in a timely and adequate fashion.

Classic inventory strategies and decision-making policies hardly adjust to the diverse
conditions faced in a crisis such as properly responding to a natural disaster. This in turn
challenges the researchers in the field of humanitarian logistics to develop customized
policies, strategies, and models to efficiently manage the inventories of supplies in the
specific case of emergency and disaster response [2,3].

In many countries, during the immediate aftermath of a disaster, some key inventory
items are positioned at the origin of the relief supply chain through donations to the
collection centers. For example, in Mexico, the percentage of in-kind donations received
in the aftermath of a disaster can go up to 80% [4]. These donations range from human
resources, housing, and medical supplies to food, clothing, and personal hygiene items, etc.
They can also come through donations made by governments, the private sector or citizens.
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Therefore, in-kind donations, can be the backbone of relief operations since they
constitute a large percentage of the available resources to work with. However, they also
create a high variable starting point for the disaster relief supply chain due to their arbitrary
nature. Most of the research done in disaster relief operations assumes that the resources to
be sent to the affected areas are in the quantity and nature required. Additionally, despite
the importance of in-kind donations in some countries, little research has been conducted
to address their efficient management and distribution. Donations that are addressed in
the body of research on disaster relief operations are mostly financial.

Some researchers consider in-kind donations in disaster relief operations with an ap-
proach of material convergence problem [5,6], others research on the psychological drivers
towards donating in cash or in-kind [7,8]. Only few authors such as Cook and Lodree [9]
address this problem with the uncertainty of in-kind donations and the uncertainty in
the demand. However, the research proposed by these authors, focuses solely on the
minimization of the unsatisfied demand. For this research, we seek to integrate the goal of
the minimization of the unsatisfied demand with the logistics costs that it entails.

Collection centers are usually installed by public organizations and private sectors
to receive donations, and they can also function as a place of preparation, packaging, and
transit of shipments. They may be located outside or within the affected region [10].

In this work, the operation of such collection centers was developed with the aim of
developing efficient policies for their decision-making process. Depending on the strength
and impact of the disaster, organizations may evaluate the suitability of opening and
running collection centers for a certain period of time. In the case of this research, we
attempt to address those events with a large enough impact to call for the necessity of
nationwide aid collection. Hence, we assume that relief operations are being held at a
national level and collection centers are positioned throughout the country.

Collection centers are confronted by the uncertainty in the quantity and nature of
the in-kind donations that will be received daily and similarly, the quantity and nature
of the aid that will be required in the affected areas. These two variables directly impact
the operations conducted in the collection centers, and the decisions made regarding the
size and frequency of the shipments, i.e., the dispatching policy of the donations to the
affected areas. The research presented in this document addresses the creation of efficient
decision-making policies to this end.

Making such a decision can become especially complicated when the costs of shipping
and distribution are also added to the decision process. This decision is currently addressed
by the stakeholders based mostly on their experience. They may send a shipment once the
vehicle is full, which could take from one to several days to get to its destination, therefore,
creating a lag in satisfying the demand. In other cases, the decision is made considering the
demand alone, which can lead to making smaller shipments and ignoring the long-term
cost implications.

The goal of this research was to develop a Markov Decision Process Model (MDP) to
model the daily operations in collection centers. In addition, to make the decision of sending
a shipment to the affected areas based on the available inventory and current accumulated
demand, while considering the tradeoff between the implications of unsatisfied demand
and the cost of frequent shipments. Such a model provides valuable insights to facilitate
the analysis and, most importantly, decision-making among the key stakeholders involved
in these operations.

The output of the MDP developed through this research is a policy or a sequence
of decision rules where the decision, at any period of time, may depend on the available
information on the system at the time [11]. This policy is derived for the developed MDP
as a Monotone Optimal Non-Decreasing Policy (MONDP) after validating the necessary
conditions for its existence. These conditions provide useful and valuable insights for
decision makers in this field.

The remainder of this paper is organized as follows. Section 2 describes the details of
the addressed problem. Section 3 presents the elements of the proposed Markov Decision
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Process Model. Section 4 states the conditions for the existence of a MONDP. In Section 5,
these conditions are mathematically verified. Finally, Section 6 presents the conclusions as
well as some future research.

2. Problem Description

This section presents the setting of the mathematical model including the problem
statement, the notation used in the MDP model, and the sequence of events occurring in
each period of time.

2.1. Problem Statement

When a natural disaster strikes, and national assistance is required, different disaster
relief protocols are put into place to respond to the emergency. One of them is to enable
collection centers to receive in-kind donations. Figure 1 presents an example of a national
disaster relief supply chain, based on our field observations working with the Mexican Red
Cross operations.

Figure 1. Mapping of Mexican Red Cross supply chain for disaster relief operations (Source:
Own elaboration).

The dotted lines going from right lo left represent the information flow along the
supply chain from the affected areas to the donors. Information regarding the required
good is initially assessed and constantly updated by the onsite team and travels up to
potential donors. Donors (presented on the left of Figure 1) receive the requirements
and seek to provide the different products to cover the assessed needs. The products are
received through the collection centers, consolidated, sorted, and packed to be shipped to
the onsite distribution center to eventually be distributed to smaller warehouses or directly
to the points of distribution.

The Mexican Red Cross requires specific items to be packaged into predesigned aid
kits such as food, hygiene, house cleaning or baby care kits. These aid kits have been
predefined to work for one standard family and last for a specific period of time.

Therefore, in our model, we assume that in each decision epoch a random number
of donations is received in the form of aid kits, increasing the available inventory, while
the accumulated demand is updated when a request is received for a certain number of
aid kits from the affected areas. The key decision is whether a shipment should be sent in
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the current period or not, while the size of the shipment is naturally defined based on the
current available inventory and the accumulated demand.

2.2. Notation

This section presents the notation to be used in the formulation and validation of the
MDP. Details of this notation are presented in Table 1.

Table 1. Notation.

Notation Definition Type

t Current decision epoch Sub index
dt Number of kits demanded during period t Random variable
it Number of kits received during period t Random variable
at Action chosen at the beginning of decision epoch t Actions

Qt

Size of a shipment sent to the affected area at the beginning of
decision epoch t. It is defined by the available inventory and

the accumulated demand.
Variable

Dt
Cumulative unsatisfied demand (in number of kits) in the

affected area at the beginning of decision epoch t State Variable

It Inventory on hand at the beginning of decision epoch t State Variable
I f
t Inventory on hand at the beginning period t is at level f
T Length of the decision-making time horizon Parameter
N Total number of families located in the affected area Parameter

W Maximum number of kits that can be managed at the
collection center at any given period Parameter

st
Proportion of the families that will demand a kit at the

beginning of period t Parameter

µ Average number of donors that donate each period Parameter
λ Average amount of kits donated per donor Parameter
c1 Penalty cost for each unit (kit) of unmet demand per period. Parameter

c2
Fixed shipping cost that will be paid independently of the size

of the shipment Parameter

c3
Variable shipping cost that depends on the number of

kits sent. Parameter

c4
Cost for holding inventory at the collection center for

one stage. Parameter

c5
Salvage value of the kits left in the collection center on the

last period. Parameter

D∗t
Optimal level of demand to send a shipment at the beginning

of period t Variable

pt(It+1|(It, Dt), at)
Probability of arriving to state It+1 given that there is

currently (It, Dt). and action at was chosen Transition Probability Function

qt(Dt+1|(It, Dt), at)
Probability of arriving to state Dt+1 given that there is

currently (It, Dt) and action at was chosen Transition Probability Function

Pt((It+1, Dt+1)| (It, Dt), at)
The joint probability of arriving to state (It+1, Dt+1) given the

current state (It, Dt) and action at was chosen Joint transition probability

rt((It, Dt), at)
Total cost incurred in period t when inventory and demand

are (It, Dt) respectively and action at chosen Cost Function

rT(IT , DT) Cost incurred in final period when no decision is made Cost Function for final period

ut(It, Dt)
Accumulated Value of having certain inventory and demand

up to time t Value Function

2.3. Sequence of Events

Figure 2 presents the graphical description in each discrete period of time, with a
number of the sequence of events occurring throughout the decision process, and the
description of each event follows.

1. The tth period starts with the information of the inventory on hand and the accumu-
lated demand (It, Dt).
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2. The size of the possible shipment is calculated by the available inventory and the
accumulated demand up to period t. The shipment size is computed as follows:

Qt = min{It, Dt + E[dt]} (1)

3. Once the size of the shipment is determined, the decision maker can choose an action
(at), which consists of whether to send a shipment of size Qt or not to send a shipment
at that period.

4. After making the decision, up to the end of the current period new donations (it) are
received and the demand of that period (dt) also arrives.

5. By the end of the day, the collection center closes and opens the next day, starting a
new period t+1.

6. Starting a new period t+1 the available inventory (It+1) and accumulated demand
(Dt+1) are updated with the information of the previous period, adding the new
donations and demand and subtracting the sent donations. In the case that the action
taken was not to send, Qt will be zero. This update is computed as follows:

It+1 = It + it −Qt (2)

Dt+1 = Dt + dt −Qt (3)

7. With this updated information, as in period t, the shipment decision is made for any t.

Figure 2. Sequence of events in each period in the collection center (Source: Own elaboration).

3. Markov Decision Process Model

This section presents the Markov Decision Process Model proposed for the collection
center operations. It starts with the assumptions under which the model was developed
and continues with the five elements of the MDP model, as well as the value function to
be minimized.

3.1. Assumptions

1. In the addressed problem, we are looking at a finite horizon, discrete time setting with
length T. The value of T is determined by the decision-maker based on several factors
such as the type of disaster, the scope of the impact on the affected population, etc.

2. Time is discrete and each of the time epochs or stages (t) can represent one working
day or any period that fits the scenario.

3. It is assumed that the random variable of the available inventory (It) and accumulated
demand (Dt) are Markovian and their values only depend on the previous inventory,
previous demand, and the action (at) taken in the previous period. This is a reasonable
assumption, given the nature and dynamics of inventory management and shipments
made under these kinds of events. New inventory levels will depend on random
donations and shipments that took place in the previous period.

4. The total number of families in the affected area (N) is known at the beginning of the
emergency, although not all of them are necessarily in need of rescue or response.
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This can be known by the population census owned by the government and is a free
access for organizations.

5. The affected population that generates the demand of the collection center can be
modelled as a binomial random variable (qt), since each family demands a kit, inde-
pendently of the situation faced by the other affected families [12,13]. This implies
having a certain probability of families out of N that will demand a kit in period t (st).

dt ∼ Bin(N, st)

6. The average number of donors (µ) and the average amount of donations per donor (λ)
are defined based on the type of disaster that took place and the specific characteristics
of the affected population.

7. The approximate proportion of the families that will demand a kit in period t (st)
and the behavior of this proportion throughout the time horizon can be estimated
by the organization. This value depends mostly on two factors: The socioeconomic
status of the affected region (i.e., if the socioeconomic level is low the demand will be
higher) and the second factor is the impact of the disaster, according to the Florida
Post-Disaster Redevelopment Planning Guidebook (2010).

8. The number of kits received during a period t (it) is modeled as a Compound Poisson
Process, since the number of donors arriving in each period is random, as well as the
amount of donations they will provide.

it ∼ DCP(µλ)

9. The initial inventory is zero since all the prepositioned products are assumed to be
sent in the initial response phase.

10. The shipments are made for national disasters, therefore, the shipping time is consid-
ered to be one day, and it is assumed that the shipment arrives complete.

11. The transition probability function for demand qt(dt|(It, Dt), at) is the increasing
failure rate (IFR). In the context of our problem, this means that the higher the
demand, the more probable that the demand will keep increasing.

12. For this model, it is considered that the shipment cannot be much larger than the cur-
rent demand. This is due to the fact that having a surplus of supplies can compromise
their integrity since they are exposed to theft and damage.

Limitations in transport capacity are not considered in this MDP. This is due to the
fact that during the interviews carried out with the leader of the Mexican Red Cross, it has
not been a core boundary since they not only have their own truck fleet, but they have an
agreement with the government and some multinationals such as Walmart to assist with
their infrastructure, if necessary.

It is also worth mentioning that, considering the operations of the Mexican Red Cross,
standard kits are designed according to the population’s basic needs, considering the
average family size and eating habits of the country. The design and use of kits happens
also at an international level with the International Federation of the Red Cross. There may
be other items demanded beyond these kits, in which supply, including donations, and
demand may be handled by other organizations supporting the affected population.

3.2. Decision Epochs

Our decision epochs are assumed to be discrete stages where the decision is made
at the beginning of each epoch t and T − 1 is the last epoch when a decision is made.
Therefore, the last shipment would be sent in T − 1 if the decision for that last epoch
dictates so.

t ∈ {0, 1, 2, . . . , T − 1}
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3.3. State Variables

The state of the system in each period t is defined by the tuple (It, Dt). It describes the
inventory on hand at stage t which is suitable to be sent to the affected area.

It ∈ {0, 1, . . . , W}

This variable carries the accumulated donations from period 1 minus the quantity
of kits sent in the previous periods and is computed as presented in Equation (4). This
equation is equivalent to the Equation (2) previously introduced.

It = ∑t−1
j=1

(
ij −Qj

)
(4)

The second variable Dt, describes the cumulative unsatisfied demand (in number of
kits) in the affected area at stage t. The ordered elements of Dt are represented as:

Dt ∈ {0, 1, . . . , N}

This variable carries the cumulative demand from the beginning minus the number of
kits that have already been shipped in the previous periods and is computed as follows:

Dt = ∑t−1
j=1(dj −Qj) (5)

The states of the system are grouped by the level of inventory and are partially ordered
according to the accumulated demand.

3.4. Actions

The goal of the MDP is to decide whether to send a shipment in period t. This decision
is made at the beginning of the period and has the following two possible alternatives.

The action at = {0} represents the decision of not sending a shipment in the current
period. This implies that the available inventory will continue to be stocked in the collection
center for one more period and the demand will be accumulated for one more period,
as well.

The action at = {1} represents sending a shipment of size Qt in the current period.
The size of the shipment depends on the current available inventory and the current
demand. If the available inventory is less than the accumulated demand, the shipment will
be the size of the inventory trying to satisfy as much demand with what is available. On
the other hand, if the inventory is greater than the demand, the shipment will be the size
of the accumulated demand plus the expected demand of the next period. The size of the
shipment is previously presented in Equation (1).

3.5. Transition Probabilities

The transition probabilities for this model are composed of two independent proba-
bilities since the model includes two state variables: The available inventory (It) and the
accumulated demand (Dt). These two variables have different and independent behaviors,
therefore are modelled separately and then a joint probability function is presented.

3.5.1. Donations Probability Function

pt(It+1|(It, Dt), at) is the probability of reaching to the state of It+1 donations, given
that the current state is (It, Dt) and action at is taken.

As presented in assumption 8, the value of the received donations in period t (it) is
modeled as a Compound Poisson Process. The value of it directly impacts the state variable
of the available inventory for the next period (It+1). Therefore, the state space for the next
period depends on the current state, the action taken, and the donations received.

In the case of choosing action 0, not sending a shipment in that period, the possible
future states depend exclusively on the number of donations received (it). Hence, the future
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states will have the current amount plus the received donations (It + it). The possible
states can go from having no donations whatsoever and the inventory level stays in (It) to
receiving the necessary amount of donations to filling the collection’s center capacity (W).

For the case of choosing action 1, sending a shipment of size Qt, the possible future
states will depend on the size of the shipment made (Qt) and the quantity of donations
received (it). The future states could range from the remaining inventory after the shipment
(It −Qt), assuming there are no additional donations, to the full capacity of the collection
center, considering that they received W − (It −Qt).

Since in both cases there is a limited number of feasible states in the state space, the
traditional Compound Poisson Distribution is adjusted to its conditional probability by
dividing it by the probabilities of the feasible states.

The probability function is computed as follows:
For at = {0}:

pt(It + it|(It, Dt), 0) =

{
(µ ∗ λ)it × e−µ∗λ

it!

/
∑W−It

it=0 µ× λit × e−µ×λ

it!
i f W − It ≥ it ≥ 0

0 otherwise
(6)

For at = {1}:

pt(It + it −Qt|(It, Dt), 1) =

{
(µ ∗ λ)it × e−µ∗λ

it!

/
∑

W−(It−Qt)
it=0 µ× λ)it × e−µ×λ

it!
i f W − (It −Qt) ≥ it ≥ 0

0 otherwise
(7)

3.5.2. Demand Probability Function

qt(Dt|(It, Dt), at) is the probability of arriving at state Dt+1 kits demanded, given that
the current state is (It, Dt) and action at was chosen.

As presented in assumption 6, the value of the demanded kits in period t (dt) is
modeled as a binomial random variable, where st represents the probability of a family
requesting a kit at time t. The value of dt directly impacts the state variable of the available
inventory to be sent for the next period (It+1). Therefore, the state space for the next period
depends on the current state, the action taken, and the donations received.

Similar to the case of available inventory, the feasible future states are determined by
the current state, the action taken, and the demand in period t. For the case of choosing
action 0, the demand will continue increasing and the possible states will range from the
current demand (considering that no more kits were demanded during that period) to the
total number of families in the affected area (N), assuming each would need a kit.

In the case of action 1 (i.e., sending a shipment of size Qt), the possible future states
are divided in two categories that depend directly on the size of the shipment: (a) If the
shipment sent is greater than the accumulated demand in period t or (b) if the shipment is
less than or equal to the accumulated demand in period t.

In case (a), all the demand will be satisfied completely and there will be extra inventory
after satisfying the demand. Therefore, the possible future state can go from having zero
accumulated demand, considering that the demand in the next period is less than or equal
to the remaining shipment, to having the maximum demand possible. The maximum
demand possible is the total number of families N minus the number of families that have
been served with the shipment.

In case (b), the demand was not completely satisfied. Therefore, the future states will
be staying in the same level of demand, i.e., dt is equal to zero, to having all the families
that were not served with Qt demanding kits.

The probability distribution function is computed as:
For at = {0}:

qt(Dt + dt|(It, Dt), 0) =


(

N − Dt

dt

)
st

dt(1− st)
N−Dt−dt if N − Dt ≥ dt ≥ 0

0 otherwise

(8)



Mathematics 2021, 9, 1385 9 of 16

For at = {1}:

qt(Dt + dt −Qt|(It, Dt), 1) =
{

a) i f Qt > Dt
b) i f Qt ≤ Dt

For case a:

qt(Dt + dt −Qt|(It, Dt), 1)=


∑Qt−Dt

dt=0

 N − Dt

dt

sdt
t (1− st)

N−Dt−dt i f 0 ≤ dt < Qt − Dt N − Dt

dt − (Qt − Dt)

sdt−(Qt−Dt)
t (1− st)

N−Dt−dt−(Qt−Dt) i f Qt − Dt ≤ dt ≤ N −Qt

(9)

For case b:

qt(Dt + dt −Qt|(It, Dt), 1) =


(

N − Dt

dt

)
sdt

t (1− st)
N−Dt−dt i f 0 ≤ dt ≤ N − Dt

0 otherwise

(10)

3.5.3. Joint Transition Probability Function

Pt((It+1, Dt+1)| (It, Dt), at) represents the joint probability of having a certain amount
of demand and donations given the current state and the action taken. This is the product
of the independent probabilities pt(it|(It, Dt), at) and qt(dt|(It, Dt), at), as follows:

Pt((It+1, Dt+1)| (It, Dt), at) = pt(It|(It, Dt), at)× qt(Dt|(It, Dt), at) (11)

3.6. Cost Function

rt((It, Dt), at) is the total immediate cost incurred in period t when action at is taken.
The cost function for action 1 is formed by: The cost of the unsatisfied demand, in

case there is any, after the shipment is delivered in the first term, the fixed and variable
costs of sending a shipment in the second and third terms, finally the cost of holding the
rest of the inventory, if any, in the last term.

On the other hand, the cost function for action 0 is formed by the cost of unsatisfied
accumulated demand in the first term and the holding cost of the available inventory at
the collection center.

rt((It, Dt), at) =

{
c1(Dt −Qt)

+ + c2 + c3(Qt) + c4(It −Qt) f or a = 1
c1(Dt) + c4(It) f or a = 0

(12)

rT(IT , DT) is the immediate cost incurred in the final period, when no decision
is made.

rT(IT , DT) = c1(DT)− c5(IT) (13)

3.7. Value Function

This problem can be formulated as the following optimality equations:

ut(It, Dt) = mina∈A

{
rt((It, Dt), at) +

N

∑
j=0

Pt((It+1, Dt+1)| (It, Dt), at)× u∗t+1(It+1, Dt+1)

}
∀ It (14)

ut(It, Dt) = mina∈A{c1(Dt) + c4(It) +
N
∑

j=Dt−1

pt(It+1|(It, Dt), 0)× qt

(
Dt+1

j

∣∣∣(It, Dt), 0
)
× ut+1(It+1, Dt+1),

c1(Dt −Qt)
+ + c2 + c3(Qt) + c4(It −Qt) +

N
∑

j=0
pt(It+1, |(It, Dt), 1) ∗ qt

((
Dt+1

j

)∣∣∣(It, Dt), 1
)

×ut+1(It+1, Dt+1)}
For t = 1, 2, . . . T− 1 and ∀It

(15)
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uT(IT , DT) = rT(IT , DT) ∀It (16)

4. Monotone Optimal Non-Decreasing Policy

To establish the set of conditions to assure that a Monotone Optimal Nondecreasing
Policy (MONDP) exists, a physical interpretation and a natural ordering of the states is
necessary. In this case, the states are ordered by the accumulated unsatisfied demand (Dt),
i.e., a larger size of unsatisfied demand represents a higher level in the states of the system.
Figure 3 visually represents the behavior of the partially ordered groups.

Figure 3. Grouped and ordered states.

The groups are formed according to the current level of inventory, since the availability
of inventory determines the maximum shipment size to cover the demand. Therefore, it
depends on the level of the demand if the shipment is sent in that period.

Each group of states (It, Dt) is partially ordered according to the following criteria:

• At each period of time t, a group of states with different values of It is generated.

They are defined as I f
t , Ig

t , . . . according to the number of kits currently available in
the collection center at time t.

• Each group of states generated at time t, has a logical order according to the levels of
the accumulated non-satisfied demand Dt.

In the MONDP, the threshold where the action of “not sending” changes to “send”
is represented by a control limit with the following structure, where D∗t represents the
demand level from where it is optimal to start sending:

at =

{
0 (It, Dt) < (It, D∗t )
1 (It, Dt) ≥ (It, D∗t )

(17)

Theorem 4.7.4 of Puterman [14] provides conditions under which there exist monotone
nondecreasing optimal policies in all the states for t = 1, . . . ,T−1. These conditions
presented in the context of our problem are:
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1. ut((It, Dt), at) is non-decreasing in (Dt) for at = {0, 1}.
2. qt(Dt|(It, Dt), at) is non-decreasing in (Dt) ∀ It and at = {0, 1}.
3. ut((It, Dt), at) is a superadditive function in (It, Dt)× at.
4. qt(Dt|(It, Dt), at) is a superadditive function in (Dt)× at.
5. uT(IT , DT) is non decreasing in (IT , DT).

5. Mathematical Verification for the MOND Policy

For a setting to present this monotone behavior, it is necessary but not sufficient to
meet the conditions mentioned in the previous section. The setting of the problem must
meet the model parameters that fit the policy, as well.

The mathematical proof of the five conditions and the lemmas that sustain them are
presented in this section.

5.1. Condition 1

Equation (8) a is non-decreasing in (Dt) for each level of inventory It and action a = 0.
This implies that the cost incurred in the collection center will increase with the increase of
the accumulated unsatisfied demand for any fixed level of inventory.

For a = 0 and for all It

ut[(It, Dt), 0] ≤ ut[(It, Dt + 1), 0] (18)

c1(Dt) + c4(It) + ∑N
j=Dt

Pt+1

((
It+1, Dt+1

j

)∣∣∣(It, Dt), 0
)
× rt+1

((
It+1, Dt+1

j

)
, 0
)

≤ c1(Dt + 1) + c4(It) + ∑N
j=Dt+1 Pt+1

((
It+1, Dt+1

j

)∣∣∣(It, Dt + 1), 0
)
× rt+1

((
It+1, Dt+1

j

)
, 0
)

This condition implies that the larger the accumulated demand Dt (in number of kits),
under the decision of not sending, the higher the costs will be.

c1((Dt + 1)− Dt) +
N
∑

j=Dt+1
Pt+1

((
It+1, Dt+1

j

)∣∣∣(It, Dt + 1), 0
)
× rt+1

((
It+1, Dt+1

j

)
, 0
)

−∑N
j=Dt

Pt+1

((
It+1, Dt+1

j

)∣∣∣(It, Dt), 0
)
× rt+1

((
It+1, Dt+1

j

)
, 0
)
] ≥ 0

This reduces to:

c1(1) +
N
∑

j=Dt+1
Pt+1

((
It+1, Dt+1

j

)∣∣∣(It, Dt + 1), 0
)
× rt+1

((
It+1, Dt+1

j

)
, 0
)

−∑N
j=Dt

Pt+1

((
It+1, Dt+1

j

)∣∣∣(It, Dt), 0
)
× rt+1

((
It+1, Dt+1

j

)
, 0
)
] ≥ 0

This inequality stands since rt(It, Dt) < rt(It, Dt + 1).

5.2. Condition 2

Condition 2 states that qt[(Dt+1 = Dl)|[(It, Dt), at] is a non-decreasing function in
(Dt) ∀ Dl and at = {0, 1}. In the context of the problem, this implies that the probability
of having a higher accumulated demand in the next period is more when the current
accumulated demand is high.

This condition is stated as follows:

qt[(It, Dt+1 = Dl)|[(It, Dt), at] ≤ qt[(It, Dt+1 = Dl)|[(It, Dt + i), at]
where 1 ≤ i ≤ N − Dt

(19)

In this instance, there are three possible cases:
Case 1: Dl < Dt for at = 0.
Case 2: Dt ≤ Dl ≤ Dt + i for at = 0.
Case 3: Dt + i < Dl for at = 0.
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Case 1
In the first case, the accumulated unsatisfied demand in t−1 is greater than Dl for

both sides of the inequality. The probability of the accumulated unsatisfied demand being
higher than or equal to Dt is 1. Therefore, the inequality is satisfied as an equality.

Case 2
In the second case, the accumulated unsatisfied demand is higher than Dl in the

right-hand side of the inequality so, the probability of having at least Dl in the next period
is 1. Therefore, the inequality corresponding to case 2 is satisfied independently of the
value of the probability term on the left-hand side since the maximum value is 1.

Case 3
The condition can be stated as:

N−Dt

∑
dt=Dl−Dt

(
N − Dt

dt

)
sdt

t (1− st)
N−Dt−dt ≤

N−(Dt+i)

∑
dt=Dl−(Dt+i)

(
N − (Dt + i)

dt

)
sdt

t (1− st)
N−(Dt+i)−dt (20)

It can be rewritten as:

1−
Dl−Dt−1

∑
dt=0

(
N − Dt

dt

)
sdt

t (1− st)
N−Dt−dt ≤ 1−

Dl−(Dt+i)−1

∑
dt=0

(
N − (Dt + i)

dt

)
sdt

t (1− st)
N−(Dt+i)−dt

Dl−Dt−1

∑
dt=0

(
N − Dt

dt

)
sdt

t (1− st)
N−Dt−dt ≥

Dl−(Dt+i)−1

∑
dt=0

(
N − (Dt + i)

dt

)
sdt

t (1− st)
N−(Dt+i)−dt

Equation (11) represents the comparison between two random variables X and Y as
defined in Lemma 1 as:

P(X ≤ Dl − Dt − 1) ≥ P(Y ≤ Dl − Dt − 1− i) (21)

This inequality is proved through Lemma 1. With this, Condition 2 is verified as one
of the conditions of the existence of a Monotone Optimal Nondecreasing Policy.

5.3. Proof of Lemma 1

Recall that Xn is a binomial random variable with parameters n and p, where n = 1,2,
. . . and 0 < p < 1. Its expected value is µn = E[Xn] = np. Therefore, for any n, m = 1,2, . . . ,
n−1 and for any integer there is:

P(Xn > l) ≥ P(Xm > l)
f or 0 ≤ l ≤ m

(22)

Proof:
Consider P(Xn > l)− P(Xn−1 > l) where l is an integer. Therefore:

P(Xn > l)− P(Xn−1 > l) = [P(Xn−1 > l) + P(Xn−1 = l)× P(U = 1)]− P(Xn−1 > l)(
n− 1

l

)
pl+1(1− p)n−1−l > 0

where Xn = Xn−1 + U

This implies that the probability to experience more than l successes is greater when
an additional experiment is added to the sequence of Bernoulli trials.

P(Xn > l)− P(Xn−1 > l) > 0
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This relation can be scaled with a random value of n as:

P(Xn−1 > k)− P(Xn−2 > k) > 0
P(Xn−2 > k)− P(Xn−3 > k) > 0

. . .

By transitivity we have:

P(Xn > k)− P(Xm > k) > 0 f or l = 1, 2, . . . , n− 1 �

5.4. Condition 3

Condition 3 requires Equation 8.a to be a superadditive function. Puterman states
that this happens when we have partially ordered sets X and Y and g(x, y) is a real valued
function on X×Y. A superadditive function then holds the following inequality:

g
(

x+, y+
)
+ g
(
x−, y−

)
≥ g

(
x+, y−

)
+ g
(
x−, y+

)
(23)

Condition 3, following Puterman’s definition, for Equation 8.a can be expressed
as follows:

ut[(It, Dt), 1] + ut[(It, Dt + 1), 0] ≤ ut[(It, Dt), 0] + ut[(It, Dt + 1), 1] (24)

To demonstrate that Equation (8) a is superadditive it is be shown that both Equation (7)
a and ∑N

j=0 Pt+1

((
It+1, Dt+1

j )
∣∣∣ (It, Dt

)
, at

)
× u∗t+1(It+1, Dt+1) are superadditive. Proposi-

tion 1 demonstrates that it is superadditive.
Proposition 1
The function rt((It, Dt), at) is superadditive. This is represented as:

rt((It, Dt), 1) + rt((It, Dt + 1), 0) ≥ rt((It, Dt), 0) + rt((It, Dt + 1), 1) (25)

Proof:

c1(Dt −Qt)
+ + c2 + c3(Qt) + c4(It −Qt) + c1(Dt + 1) + c4(It)

≥ c1(Dt) + c4(It) + c1(Dt + 1−Qt)
+ + c2 + c3(Qt) + c4(It −Qt)

c1(Dt −Qt)
+ + c1(Dt + 1) ≥ c1(Dt) + c1(Dt + 1−Qt)

+

This instance presents two possible cases:

Case 1:
(Dt −Qt)

+ ≤ 0
c1(0) + c1(Dt + 1) ≥ c1(Dt) + c1(0)

c1(Dt + 1) ≥ c1(Dt)

This statement is true, therefore, the condition is met.
Case 2:

(Dt −Qt)
+ > 0

c1(Dt −Qt) + c1(Dt + 1) ≥ c1(Dt) + c1(Dt + 1−Qt)
c1Dt − c1Qt + c1Dt + c1 ≥ c1Dt + c1Dt + c1 − c1Qt

0 = 0

Proposition 2

Function
N
∑

j=0
Pt+1

((
It+1, Dt+1

j )
∣∣∣ (It, Dt

)
, at

)
× u∗t+1(It+1, Dt+1) is superadditive.

N

∑
j=0

Pt+1

((
It+1, Dt+1

j )
∣∣∣ (It, Dt + 1

)
, 0
)
× u∗t+1

(
It+1, Dt+1

j

)
≥

N

∑
j=0

Pt+1

((
It+1, Dt+1

j )
∣∣∣ (It, Dt

)
, 0
)
× u∗t+1

(
It+1, Dt+1

j

)
(26)
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N

∑
j=0

Pt+1

((
It+1, Dt+1

j )
∣∣∣ (It, Dt

)
, 1
)
× u∗t+1

(
It+1, Dt+1

j

)
≥

N

∑
j=0

Pt+1

((
It+1, Dt+1

j )
∣∣∣ (It, Dt + 1

)
, 1
)

For A and B.
Proof by Lemma 2

N
∑

j=0
Pt+1

((
It+1, Dt+1

j )
∣∣∣ (It, Dt + 1

)
, 0
)
× u∗t+1

(
It+1, Dt+1

j

)
+

N
∑

j=0
Pt+1

((
It+1, Dt+1

j )
∣∣∣ (It, Dt

)
, 1
)
× u∗t+1

(
It+1, Dt+1

j

)
≥

N
∑

j=0
Pt+1

((
It+1, Dt+1

j )
∣∣∣ (It, Dt

)
, 0
)
∗ u∗t+1

(
It+1, Dt+1

j

)
+

N
∑

j=0
Pt+1

((
It+1, Dt+1

j )
∣∣∣ (It, Dt + 1

)
, 1
)

×u∗t+1

(
It+1, Dt+1

j

)
which is superadditive by the previously stated definition and the assumed grouping and
ordering of states and actions, thus completing the proof.

Proof of Lemma 2 (Adopted from [15]):
LetH be an IFR transition probability matrix and V(h) be a nondecreasing function.

Then, the following holds:

a) ∑
h′≤h

[
H
(
h′
∣∣h)−H(h′∣∣h + 1

)]
V
(
h′
)
≤ ∑

h′≤h

[
H
(
h′
∣∣h)−H(h′∣∣h + 1

)]
V(h) (27)

b) ∑
h′′>h

[H(h′′ |h)−H(h′′ |h + 1)]V(h′′ ) ≤ ∑
h′≤h

[H(h′′ |h)−H(h′′ |h + 1)]V(h + 1) (28)

Proof for (a). The IFR assumption implies that ∑h′
i=1H(i|h) ≥ ∑h′

i=1H(i|h + 1) for any
h′ ∈ SH . Now,

∑
h′≤h

[
H
(
h′
∣∣h)−H(h′∣∣h + 1

)]
V
(
h′
)
≥ 0

[H(1|h)−H(1|h + 1)]V(1) +
h
∑

h′=2
[H(h′|h)−H(h′|h + 1)]V(h′)

≤ [H(1|h)−H(1|h + 1)]V(2) +
h
∑

h′=2
[H(h′|h)−H(h′|h + 1)]V(h′)

(29)

[H(1|h) +H(2|h)−H(1|h + 1)−H(2|h + 1)]V(2) +
h
∑

h′=3
[H(h′|h)−H(h′|h + 1)]V(h′)

≤ [H(1|h) +H(2|h)−H(1|h + 1)−H(2|h + 1)]V(3) +
h
∑

h′=2
[H(h′|h)−H(h′|h + 1)]V(h′)

where this equation follows due to H(1|h) ≥ H(1|h + 1) and V(1) ≤ V(2). We obtain
the second inequality by restating the first, and the last inequality holds due toH(1|h) +
H(2|h) ≥ H(1|h + 1) +H(2|h + 1) and V(2) ≤ V(3). The result follows if we apply the
same procedure to states 3 through h.

Proof for (b). The proof is similar to the proof of Part (a) and is omitted.

5.5. Condition 4

This condition states that Equation (5) a is a superadditive function in (It, Dt) ∀ Dl × at,
which implies that the difference between the probability of having a given number of
demand when not sending and sending a certain shipment, does not decrease when the
cumulative demand increases.

This can be written as:

qt+1[(Dl)
∣∣(It, D+

t
)
, 1)]−qt+1[(Dl)

∣∣(It, D+
t
)
, 0)]≤ qt+1[(Dl)

∣∣(It, D−t
)
, 1)]−qt+1[(Dl)

∣∣(It, D−t
)
, 0)] (30)

where D+
t > D−t .
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Since the value of the demand does not depend on the on-hand inventory and it does
not change for each inventory group, this condition is satisfied as an equality.

5.6. Condition 5

Equation (7) c is non-decreasing in (IT , DT). This implies that the final cost is greater
when the accumulated demand in T is greater.

uT(IT , DT) = rT(IT , DT) (31)

rT(IT , DT) ≤ rT(IT , DT + i)
Where 1 ≤ i ≤ n

c1(DT)− c5(IT) ≤ c1(DT + i)− c5(IT)
0 ≤ i

As presented in this section, the five conditions Puterman states for the existence of
a Monotone Optimal Non-Decreasing Policy are mathematically validated, proving the
existence of such policy for the shipment decision in collection centers.

6. Conclusions

Natural disasters present a latent threat for every country in the world, challenging
the communities and the humanitarian organizations to be better prepared and react faster
to the situation. Along with the government and the humanitarian organizations, citizens
also either volunteer or are asked to help with their donations.

In many countries, including emerging economies such as Mexico, around 80% are in-
kind. Therefore, the efficient management of in-kind donations has become a key element
of disaster relief operations in such countries. Other countries, especially in develop-
ing economies, present a similar donations behavior and, in consequence, suitability for
implementation of the insights and recommendations presented through this research.

With the importance of in-kind donations, comes the importance of collection centers,
where these donations are received, sorted, packed, and shipped to the affected areas. An
important decision made is when to make the shipment, considering the tradeoff between
resources limitations and the urgency of aids. This tradeoff is addressed by developing a
decision process model.

Within their operations, collection centers face a high level of demand uncertainty,
as well as the supply side since it mainly depends on the donations of companies or
the community. This complex problem was modeled with a Markov Decision Process
to address the uncertainty and complexity of the decision-making process. A Monotone
Optimal Non-Decreasing Policy is developed for the use of decision makers.

The existence of such a policy is mathematically proved by five conditions and the
verification of such conditions is presented throughout this paper. The proof of these con-
ditions and the MONDP represents a valuable insight for decision makers in humanitarian
operations since it helps in making better decisions in times of crisis.

Among the limitations of this work, which present useful avenues for future research,
are the parameters and assumptions considered to estimate the number of donors and the
average amount of donations per donor. Moreover, the proportion of families that may
demand a kit at a particular point in time can be further improved by considering other
factors beyond the socioeconomic status of the impacted region. In a similar manner, the
number of kits received during a particular period can be modeled beyond a Compound
Poisson Process to explore the system dynamics under such conditions.

This research can motivate further research in inventory management for disaster
relief situations, especially considering the particularities and considerations that need to
be taken for in-kind donations, such as variability and variety. Moreover, the link with
humanitarian organizations and using real-time data, presents an important line of research
for future applications of this model.
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