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Abstract: In this paper, a new approach is proposed to analyze the behavior of a nonlinear two-degree-
of-freedom vibro-impact oscillator subject to a harmonic perturbing force, based on a combination
of analytical and numerical approaches. The nonlinear governing equations are analytically solved
by means of a new analytical technique, namely the Optimal Auxiliary Functions Method (OAFM),
which provided highly accurate explicit analytical solutions. Benefiting from these results, the
application of Schur principle made it possible to analyze the stability conditions for the considered
system. Various types of possible motions were emphasized, taking into account possible initial
conditions and different parameters, and the explicit analytical solutions were found to be very useful
to analyze the kinetic energy loss, the contact force, and the stability of periodic motions.

Keywords: vibro-impact; Optimal Auxiliary Functions Method; stability

1. Introduction

Vibro-impact processes are widely used in mechanical-engineering applications and
devices such as hammer-like devices, rotor-casing dynamical systems, wheel–rail inter-
action of high-speed railway couches, heat exchangers, fuel elements of nuclear reactors,
gears, piping systems [1], stiction and electric short circuits of MEMS [2], noise and wear-
producing processes, grinding, foraging, drilling, punching, tamping, pile cutting a variety
of objects, and vibrating machinery or structures with stops or clearance [3].

Dynamics of vibro-impact systems has received great attention in the last decades.
Some numerical or experimental results were obtained, but adequate analytical predictions
need to be further studied. For the first time, Masri [4] analyzed the stability of the impact
damper by using the perturbation method. The finite-difference method was used by
Kobrinski [5], Babitsky [6], Brîndeu [7], and Okolewska et al. [8]. The nonlinear equation of
a single-degree-of-freedom oscillator with an impact damper was analyzed approximately
using the method of Kryloff and Bogoliuboff by Cronin and Van [9]. Shaw [10] studied
the symmetric double-impact motion, both harmonic and subharmonic, by means of a
mapping that related conditions at subsequent impacts. A mechanical system with one
degree of freedom was investigated by Ivanov [11] using standard Poincare-Bendixon
theory, Lyapunov’s second method, and Zhuravlev transformations. The exact solutions
of the vibro-impact oscillator with two degrees of freedom, including localized states and
their bifurcation structure, were obtained by Aziz et al. [12]. Stability and bifurcation for
the unsymmetrical, periodic motion of a horizontal impact oscillator under a periodic
excitation were employed through four mappings based on two switch planes by Luo [13].
De Souza and Caldas [14] implemented the Ott–Grebogi–Yorke (OGY) method to stabilize
desired unstable periodic orbits by applying a small perturbation on an available control
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parameter and introducing an impact map for the dynamical variables. Chaos and periodic
motion of a cantilever beam system with impacts was found readily by Emans et al. [15].
In addition, nonlinear behavior such as coexistence of attractors was found even at modest
oscillation levels during investigations with realistic parameters.

The dynamics of an impact oscillator with viscoelastic and Hertzian contact was
examined by Mann et al. [16] using the presence of multiple periodic attractors, subhar-
monics, quasi-periodic motions, and chaotic oscillations. Avramov [17] considered the
forced vibrations of an impact Duffing oscillator using Zhuravlev’s transformation and the
multiple-scale method. The stability and bifurcations of periodic vibrations were explored.
The control of vibro-impact dynamics of a single-sided Hertzian contact forced oscillator
was considered by Bichri et al. [18]. The multiple-scale technique was applied to study the
slow dynamic and the frequency-response curves near the primary resonance. Based on
Zhuravlev and Ivanov transformations, Grace et al. [19] developed an analytical model of
a ship’s roll motion interacting with ice. Extensive numerical simulations were carried out
for all initial conditions covered by the ship’s grazing orbit for different values of excitation
amplitude and frequency of the external wave roll moment.

Jovic et al. [20] considered the motion trajectory of a vibro-impact system based on
the oscillator moving along a rough parabolic line in the vertical plane, under the action of
extreme force with nonlinearity of the bond originates of sliding Coulomb’s type friction
force. The study of Askari and Tahani [2] was focused on the effect of mechanical shock
on dynamic pull-in instability of electrically actuated microbeams through an alternative
reduced-order model and using the fourth-order Runge–Kutta method. By setting up a
Poincaré map and using a shooting method, Lin et al. [21] obtained a fixed point of periodic
motion in the system, period doubling bifurcation, and Hopf bifurcation. The existing
and stability conditions of period-1 motion in a single-degree-of-freedom oscillator with
double-side constraints were studied by Wang et al. [22]. A smaller shock gap than impact
gap could make the periodic motion more stable.

Reboucas et al. [23] examined limitations of the coefficient of restitution model using
experimental observations from a simple vibro-impact setup, and the effect of the magni-
tude response of gap deviation during an experimental sweep. Numerical simulation using
Zhuravlev and Ivanov transformations was obtained. A triboelectric energy harvester on
a three-degree-of-freedom vibro-impact oscillator was investigated by Fu et al. [24]. The
symmetric mass configurations of the oscillator were more beneficial to energy harvesting
than the asymmetric cases. Zukovic et al. [25] explored a vibro-impact system consisting
of a crank-slider mechanism with one attached oscillator. The cases with an ideal and a
non-ideal excitation were analyzed, and analytical and numerical solutions were obtained
for the vibrating system with the ideal excitation. For the system with non-ideal excitation,
the average value of the frequency was obtained.

The present paper analyzes the motion of a horizontal vibro-impact system with two
degrees of freedom in the case when the external coercive force and viscous damping
force are known and a periodic vibro-impact model is realized in the system. A variety
of possible cases of motion of the vibro-impact system is presented. This process is very
complex, and a nonlinear differential equation for one of the masses and a linear differential
equation for the other mass is needed in the analysis. It is very difficult to obtain an exact
solution for these types of equations, but an analytical approximate solution with a high
accuracy will be given by means of OAFM [26–31]. The condition for periodic motion is
obtained and the stability of periodic motion is studied.

2. Dynamical Model of the Vibro-Impact System

The considered dynamical model of the vibro-impact system under investigation is
depicted in Figure 1, which details the two-degree-of-freedom system with gaps.
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Figure 1. The model of the vibro-impact oscillator.

The system under investigation is composed of a horizontal direction periodical force
F = Acosωt and two oscillators of mass M1 and M2, which also move in the horizontal
direction. These two masses are initially separated by three gaps: δ1 between the wall W1
and the mass M1, δ2 between the masses M1 and M2, and δ3 between the mass M2 and
the wall W2. The mass M1 is connected to a linear spring K1, nonlinear spring K*, and the
damper c1, and the mass M2 is connected to linear spring K2 and damper c2. The oscillator
M2 collides with the rigid wall W2 and with the mass M1. The coefficient of restitution
between M1 and M2 is R, and R2 is the coefficient of restitution between M1 and W1 and
M2 and W2. The displacement between the mass M1 and vertical wall W1 is x1, and the
displacement between the mass M2 and the wall W1 is x2.

The equations of motion between any two successive collisions are given as:

M1x′′ 1 + c1(x′1 − F′) + K1(x1 − F) + K∗(x1 − F)3 = 0, (1)

M2x′′ 2 + c2(x′2 − F′) + K2(x2 − F) = 0, (2)

where the prime denotes the derivative with respect to time t.
By means of the following transformations:

ωt = Ωτ ; Ω1 = (K1/M1)
1/2 ; Ω2 = (K2/M2)

1/2 ; τ = Ω1t ; x1 = δ1X ; x2 = δ1Y ; α1 = c1/(2M1Ω1),
α2 = c2/(2M2Ω1);β = K∗δ2

1/K1 ; a = A/δ1 ; k = Ω2
Ω1

,
(3)

Equations (1) and (2) can be rewritten in the dimensionless variables, after some
simple manipulations:

..
X + 2α1

.
X +

(
1 + 3

2 a2)X + βX3 = −2α1aΩ sin(Ωτ) + (a + 3aβX2 + 3
4βa3) cos(Ωτ)− 3

2 a2βX cos(2Ωτ) + β
4 a3 cos(3Ωτ), (4)

..
Y + 2α2k

.
Y + k2Y = ak2 cos(Ωτ)− 2α2kaΩ sin(Ωτ), (5)

where the dot denotes the derivative with respect to variable τ.
Between two successive collisions, the initial conditions of Equations (4) and (5) are:

X(0) = 1 ,
.

X (0) = V1 , Y (0) = 1 +
δ2

δ1
,

.
Y (0) = V2, (6)

where V1 and V2 are known parameters.
Equations (4)–(6) are second-order nonlinear differential equations, and therefore

are very difficult to be analytically solved. In the following, we present a relatively new
approach, namely the Optimal Auxiliary Functions Method, to obtain an approximate
analytical solution in an efficient manner.



Mathematics 2021, 9, 1374 4 of 17

3. Basics of the Optimal Auxiliary Functions Method (OAFM)

Following basic concepts of OAFM presented in [26–31], in this work, we consider a
general nonlinear equation in the form:

L[U(τ)] + N[U(τ)] = 0, (7)

where L and N are the linear differential and nonlinear differential operators, τ is the inde-
pendent variable, and U(τ) is an unknown function. The initial or boundary conditions are:

B
(

U,
dU(τ)

dτ

)
= 0. (8)

In order to obtain an approximate solution U(τ), we consider that this approximate
solution can be expressed in the form:

U(τ) = U0(τ) + U1(τ, C1, C2, . . . , Cn), (9)

in which U0 (initial approximation) and U1 (the first approximation) will be determined
as described below, and with C1, C2, . . . ,Cn being the unknown parameters whose values
will be optimally determined.

Substituting Equation (9) into Equation (7), one obtains:

L[U0(τ)] + L[U1(τ)] + N[U0(τ) + U1(τ, C1, C2, . . . , Cn)] = 0. (10)

The initial approximation U0(τ) can be obtained from the linear equation:

L[U0(τ)] = 0 , B
(

U0(τ),
dU0(τ)

dτ

)
= 0 , (11)

and therefore, the first approximation is obtained from Equations (10) and (11):

L[U1(τ, C1, C2, . . . , Cn)] + N[U0(τ) + U1(τ, C1, C2, . . . , Cn)] = 0 , B
(

U1(τ),
dU1(τ)

dτ

)
= 0 . (12)

The nonlinear term from Equation (12) can be expanded in the form:

N[U0(τ) + U1(τ, Ci)] = N[U0(τ)] +
p

∑
k=1

Uk
1(τ, Ci)

k!
N(k)[U0(τ)]. (13)

To accelerate the convergence of the first approximation U1(τ,Ci) and therefore of
the approximate solution as well, and also to avoid the difficulties that can appear in
solving the nonlinear differential Equation (12), we propose another expression, such that
Equation (12) can be written as follows:

U1(τ, C1, C2, . . . , Cn) +
n

∑
k=1

Ci fi(τ) = 0 , B
(

U1, ∂U1
∂τ

)
= 0, (14)

where Ci are arbitrary unknown parameters and f i(τ) are auxiliary functions depending on
the initial approximation U0(τ), on the functions which appear in N[U(τ)] or N[U0(τ)] or
are combinations of such expressions. These auxiliary functions fi(τ) are very important
and are not unique. It should be emphasized that we have much freedom to choose such
auxiliary functions, because it is known that the nonlinear differential equation does not
have a unique solution. The parameters Ci, which appear into Equations (9) and (14), can
be optimally identified via rigorous methods such as the Galerkin method, the least square
method, the Ritz method, the collocation method, or by minimizing the square residual
error. In this last case, if:

R(τ, Ci) = L[U(τ)] + N[U(τ)] , τ ∈ D , (15)
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where U(τ) is given by Equations (9), (11), and (14), then

J(C1, C2, . . . , Cn) =
∫
(D)

R2(τ, Ci)dτ. (16)

The values of the parameters Ci are obtained from the following system:

∂J
∂C1

=
∂J

∂C2
= . . . =

∂J
∂Cn

= 0. (17)

It is clear that in this way, the approximate solution U(τ) is well determined after
the identification of the optimal values of the initially unknown convergence-control
parameters Ci.

4. Application of the Optimal Auxiliary Functions Method to Equations (4)–(6)

The approximate solutions and exact solutions of Equations (4)–(6) are of the following
forms:

X(τ) = X0(τ) + X1(τ, Ci) , i = 1, 2, . . . , p , (18)

Y(τ) = Y0(τ) + Y1(τ, Ci + Cj) , j = 1, 2, . . . , q . (19)

For the nonlinear differential Equation (4) and for the linear Equation (5), the linear
operators are, respectively:

L(X) =
..
X + 2α1

.
X +

(
1 +

3
2

a2
)

X, (20)

L(Y) =
..
Y + 2α2k

.
Y + k2Y. (21)

The initial approximations X0(τ) and the exact solution Y0(τ) are obtained from the
linear equations:

..
X0 + 2α1

.
X0 +

(
1 +

3
2

a2
)

X0 = 0 , X0(0) = 1 ,
.

X0(0) = V1 , (22)

..
Y0 + 2α2k

.
Y0 + k2Y0 = 0 , Y0(0) = 1 + δ2

δ1
,

.
Y0(0) = V2 , (23)

and therefore:

X0(τ) = e−α1τ

(
C1 cos

√
Ω2 − α2

1τ+ C2 sin
√

Ω2 − α2
1

)
, Ω2

= 1 +
3
2

a2, (24)

Y0(τ) = e−α2kτ
[
C3 cos

√
k2 − kα2τ+ C4 sin

√
k2 − kα2τ

]
. (25)

The nonlinear operator for Equation (4) is obtained from Equations (7) and (20):

N(X) = βX3 + 2α1aΩ sin(Ωτ)− (a + 3aβX2 +
3
4
βa3) cos(Ωτ) +

3
2

a2βX cos(2Ωτ)− β
4

a3 cos(3Ωτ), (26)

and the corresponding nonlinear operator for Equation (5) is obtained from Equations (7) and (29)
as:

N(Y) = ak2 cos(Ωτ)− 2α2kaΩ sin(Ωτ). (27)

Taking into account the initial conditions (6) for the first variable X(τ) and the initial
conditions for (22) for the initial approximation X0(τ), one can write the initial conditions
for the first approximation X1(τ):

X1(0) =
.

X1(0) = 0. (28)
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The initial conditions for Y(τ) are:

Y1(0) = 1 +
δ2

δ1
,

.
Y1(0) = V2. (29)

From the Equations (26) and (28) and from the Equations (27) and (29), we can choose
the first approximation in the forms:

X1(τ) = Q1[cos(3Ωτ)− cos(Ωτ)] + Q2[sin(3Ωτ)− 3 sin(Ωτ)], (30)

Y1(τ) = Q3 cos(Ωτ) + Q4 sin(Ωτ). (31)

The approximate solution of Equations (4) and (6) and exact solution of Equations (5) and (6)
are respectively:

X(τ) = e−α1τ

(
cos

√
Ω2 − α2

1τ+
α1+V1√
Ω2−α2

1

sin
√

Ω2 − α2
1

)
+ Q1[cos(3Ωτ)− cos(Ωτ)] + Q2[sin(3Ωτ)− 3 sin(Ωτ)], (32)

Y(τ) = e−α2kτ
[
C3 cos

√
k2 − kα2τ+ C4 sin

√
k2 − kα2τ

]
+ Q3 cos(Ωτ) + Q4 sin(Ωτ). (33)

The parameters Q1 and Q2 can be determined by the Galerkin method, Q3, Q4
can be determined by identification of coefficients, and C3, C4 can be determined from
Equation (29):

Q1 = − 9a
8+12a2 , Q2 = (36a3−3a)Ωα1

8(2+3a2)
2 , C3 = 1 + δ2

δ1
− ak2(k2−Ω2)+2aα2

2k2Ω2

(Ω2−k2)
2
+4α2

2k2Ω2 ,

C4 = V2√
k2−kα2

− aα2kΩ4√
k2−kα2

(
(Ω2−k2)

2
+4α2

2k2Ω2
) + α2k

(
1 + δ2

δ1
− ak2(k2−Ω2)+2aα2

2k2Ω2

(Ω2−k2)
2
+4α2

2k2Ω2

)
Q3 =

(k2−Ω2)ak2+4α2
2ak2Ω2

(Ω2−k2)+4α2
2k2Ω2 , Q4 = 2α2akΩ3

(Ω2−k2)+4α2
2k2Ω2

(34)

The approximate solution of Equations (4)–(6) and exact solution are obtained using
Equations (32)–(34):

X(τ) = e−α1τ

(
cos

√
Ω2 − α2

1τ+
α1+V1√
Ω2−α2

1

sin
√

Ω2 − α2
1τ

)
+ 9a

8+12a2 [cos(Ωτ)− cos(3Ωτ)]+

+ (36a3−3a)Ωα1

8(2+3a2)
2 [sin(3Ωτ)− 3 sin(Ωτ)],

(35)

Y(τ) = e−α2kτ
[(

1 + δ2
δ1
− ak2(k2−Ω2)+2aα2

2k2Ω2

(Ω2−k2)
2
+4α2

2k2Ω2

)
cos

√
k2 − kα2τ+

(
V2√

k2−kα2
− aα2kΩ4√

k2−kα2

(
(Ω2−k2)

2
+4α2

2k2Ω2
)+

+α2 k
(

1 + δ2
δ1
− ak2(k2−Ω2)+2aα2

2k2Ω2

(Ω2−k2)
2
+4α2

2k2Ω2

))
sin
√

k2 − kα2τ

]
+

+
ak2(k2−Ω2)+2aα2

2k2Ω2

(k2−Ω2)
2
+4α2

2k2Ω2
cos Ωτ+ aα2kΩ3

(k2−Ω2)
2
+4α2

2k2Ω2
sin Ωτ,

(36)

Now, to prove the accuracy and the effectiveness of our method, we consider a set
of numerical values for the physical parameters involved in the governing equations;
i.e., M1 = 0.072, M2 = 0.086, K1 = 110, K2 = 141, a = 3.

Figure 2 presents a comparison between the approximate solution (35) and correspond-
ing numerical integration results obtained by means of a fourth-order Runge–Kutta method.

This comparison emphasizes the high accuracy of the proposed analytical solution
obtained through OAFM. Figure 3 presents the corresponding phase portraits.
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5. Analysis of Non-Periodic Motion

In this section, we present some possible situations, depending on the motions of
the masses M1 and M2 of the dynamical system considered in Section 2. Depending on
the perturbing force F and initial conditions, we present the following possible cases of
non-periodic motions.

Case 5.1. The oscillator of mass M1 is moving from the static equilibrium position to
the position of the impact with the wall W1. If the moment of impact M1 with W1is τ1, then
this case takes place if X(τ) ≤ 1, X(τ1) = 0 and

.
X(τ1) ≤ 0. In particular, if

.
X(τ1) = 0, then

the oscillator M1 stops at the wall W1. The velocity of the mass M1 after the impact will
be

.
X(τ+1 ) = −R2

.
X(τ−1 ), where the symbols “+” and “−” indicate the moments after and

before the impact, respectively, and R2 is the coefficient of restitution. For the oscillator of
mass M2, the following situations are possible (types of movement):

(a) The oscillator M2 is moving between the oscillator of mass M1 and the wall W2
without impact and without sticking motion. The condition is equivalent to the
existence of the inequalities X(τ) < Y(τ) < 1 + δ2/δ1 + δ3/δ1 and τ < τ1. It follows
that there exists a moment of time τ∗1 when M2 stops,

.
Y(τ∗1) = 0.
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(b) The oscillator M2 impacts the oscillator M1 before the collision of the mass M1 with

the wall W1. In this case, there exists a moment τ2 < τ so that X(τ2) = Y(τ2),
.

X(τ2) <

0,
.

Y(τ2) < 0, and
.

X(τ2) 6=
.

Y(τ2). After this collision, the velocities can be written as:

.
X(τ+2 ) =

M1−RM2
M1+M2

.
X(τ−2 ) +

M2(1+R)
M1+M2

.
Y(τ−2 ),.

Y(τ+2 ) =
M1(1+R)
M1+M2

.
X(τ−2 ) +

M2−RM1
M1+M2

.
Y(τ−2 ) ;

.
X(τ−2 ) =

.
X(τ2) ;

.
Y(τ+2 ) =

.
Y(τ2) ,

(37)

(c) The oscillator of mass M1 is sticking to M2 (sticking motion). The condition is written

as X(τ2) = Y(τ2) and
.

X(τ2) =
.

Y(τ2). The contact force corresponding to masses M1
and M2 is obtained from Equations (4) and (5):

F12(τ) = 2aΩ(kα2 −Ωα1) sin Ωτ+ (a− ak2 + 3aβX2 + 3
4βa3) cos Ωτ− 3

2 a2βX cos 2Ωτ
+β

4 a3 cos 3Ωτ+ 2α2
.

Y− 2α1
.

X + k2Y− (1 + 3
2 a2)X− βX3.

(38)
The sticking takes place only if F12 > 0.

(d) The oscillator of mass M2 impacts the wall W2 at the moment τ = τ3. The conditions

are Y(τ3) = 1 + δ2/δ1 + δ3/δ1 and
.

Y(τ3) ≥ 0. If
.

Y(τ3) = 0, then the oscillator M2
stops without impacting the wall W2.

Case 5.2. The oscillator of mass M1 is moving without impact from the position of
static equilibrium between the wall W1 and the oscillator of mass M2. The oscillator of mass
M1 stops at the moment τ = τ′1 before reaching the wall W1, then stops at the moment
τ = τ′′ 1, before reaching the oscillator of mass M2, so that

.
X(τ′1) =

.
X(τ′′ 1) = 0. For the

oscillator of mass M2, one can identify two situations:

(a) The oscillator of mass M2 is moving without impact between the oscillator of mass
M1 and the wall W2, so that one can write X(τ) < Y(τ) < 1 + δ2/δ1 + δ3/δ1. It
results that there exist two moments: τ′2, when the oscillator of mass M2 stops before
the oscillator M2; and τ′′ 2, when the oscillator M2 stops before the wall W2, so that
.

Y(τ′2) =
.

Y(τ′′ 2) = 0.
(b) The oscillator of mass M2 moving between the oscillator of mass M1 without impact

and the wall W2 with impact, so that X(τ) < Y(τ) ≤ 1 + δ2/δ1 + δ3/δ1. The moment
of impact of the oscillator M2 with the wall W2 is τ4. It follows the condition Y(τ4) =

1 + δ2/δ1 + δ3/δ1 and
.

Y(τ−4 ) > 0. After the impact, the following expression takes

place:
.

Y(τ+4 ) = −R
.

Y(τ−4 ).

Case 5.3. In this last case, the oscillator of mass M1 is moving from the static equilib-
rium position toward the oscillator of mas M2, X(τ) ≥ 1. For the oscillator of mass M2, the
following five situations are possible:

(a) The oscillator of mass M2 is moving from the position of static equilibrium Y(0) =
1 + δ2/δ1 toward the oscillator of mass M1 without impact. The conditions are
X(τ) < Y(τ), Y(τ) < 1 + δ2/δ1, and

.
Y(0) ≤ 0. In this subcase, there exists a moment

τ5 so that
.

Y(τ5) = 0.
(b) The oscillator of mass M2 is moving from the position of static equilibrium toward

the oscillator of mass M1 with impact. The corresponding conditions for this subcase
are X(τ) ≤ Y(τ) < 1 + δ2/δ1, and there exists a moment τ6 when X(τ6) = Y(τ6) and
.

Y(τ6) < 0. After the impact, the velocities of the oscillators will be:

.
X(τ+6 ) =

M1−RM2
M1+M2

.
X(τ6) +

M2(1+R)
M1+M2

.
Y(τ6),.

Y(τ+6 ) =
M1(1+R)
M1+M2

.
X(τ6) +

M2−RM1
M1+M2

.
Y(τ6).

(39)

(c) The oscillator of mass M2 is moving from the position of static equilibrium toward
the wall W2 without impact with the oscillator of mass M1 or with the wall W2. This
subcase takes place if X(τ) ≥ 1, Y(τ) ≥ 1 + δ2/δ1, and X(τ) < Y(τ). It is clear that
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there exist two moments τ′7 and τ′′ 7 when
.

X(τ′7) = 0, which means the oscillator of
mass M1 stops; and

.
Y(τ′′ 7) = 0, which means the oscillator of mass M2 stops.

(d) The oscillator of mass M2 is moving from the position of static equilibrium toward the
wall W2, but with impact between the two oscillators. The impact takes place before
the oscillator of mass M2 to reach at the wall W2 and without sticking. The conditions
will be X(τ) ≥ 1, Y(τ) ≥ 1 + δ2/δ1, and there exists a moment τ7 when X(τ7) =

Y(τ7),
.

X(τ′7) > 0,
.

Y(τ7) ≥ 0, and
.

X(τ7) >
.

Y(τ7). If the impact of the oscillators
takes place with sticking, then the condition is similar to (38), F12(τ) > 0, τ > τ7.

(e) The oscillator of mass M2 is moving toward the wall W2, and the impact with W2
takes place at the moment τ8, but there is no impact between the two oscillators.
Therefore, the following conditions should be satisfied:

X(τ) < Y(τ) ≤ 1 +
δ2

δ1
+
δ3

δ1
; Y( τ8) = 1 +

δ2

δ1
+
δ3

δ1
;

.
Y (τ8) > 0. (40)

After the impact, the velocity of the oscillator of mass M2 is
.

Y(τ+8 ) = −R
.

Y(τ−8 ).
It should be stated that after the two oscillators undergo one of the movements

studied before, the movement of each oscillator should be studied by taking into account
the conditions mentioned for the corresponding case. For example, after Case 5.1a takes
place, therefore in the condition

.
X(τ1) < 0 (the oscillator of mass M1 does not stop),

.
X(τ+1 ) = −R

.
X(τ−1 ), and

.
Y(τ∗1) = 0, then the approximate solutions (35) and (36) will be

written as:

X(τ) = e−α1(τ−τ1) R2
.

X(τ−1 )√
Ω2−α2

1

sin
√

Ω2 − α2
1(τ− τ1) +

9a
8+12a2 [cos Ω(τ− τ1)− cos 3Ω(τ− τ1)]+

+ (36a3−3a)Ωα1

8(2+3a2)
2 [sin 3Ω(τ− τ1)− 3 sin Ω(τ− τ1)] , τ ≥ τ1 ,

(41)

Y(τ) = e−α2k(τ−τ∗1)
[
(γ−Q3) cos

√
k2 − kα2(τ− τ∗1) +

α2k(γ−Q3)−ΩQ4√
k2−kα2

sin
√

k2 − kα2(τ− τ∗1)
]
+

+Q3 cos Ω(τ− τ∗1) + Q4 sin Ω(τ− τ∗1),
(42)

where τ∗1 is obtained from the equation
.

Y(τ∗1) = 0; γ = Y(τ∗1), Y(τ∗1) is given by Equation (36);
and Q3 and Q4 are given by Equation (34).

Figure 4 shows the contact force of (38).
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It can be seen that the contact force has two maximum points at τ = 0.8 and τ = 2.4,
and is null for four points: τ = 0.4, τ = 1.3, τ = 1.9, and τ = 2.9.
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Another specific element for the impact phenomenon is the kinetic energy loss. At the
moment of impact, the kinetic energy is transformed into work, caloric energy, etc. The
kinetic energy loss is given by the difference between the kinetic energy at the beginning
and at the end of impact:

∆T =
1
2

M1
.

X
2
(τ−) +

1
2

M2
.

Y
2
(τ−)− 1

2
M1

.
X

2
(τ+)− 1

2
M2

.
Y

2
(τ+). (43)

In Case 5.1b, the kinetic energy loss becomes:

∆T =
M1M2

2(M1 + M2)

[ .
X(τ)−

.
Y(τ)

]2
(1− R2). (44)

Figure 5 presents the kinetic energy loss for Case 5.1b.
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6. Analysis of Periodic Motion

The solutions (35) and (36) are written for the initial conditions in (6), in the absence
of impact. After some time, the free vibration described by (35) and (36) disappear, so that
the movement becomes periodic with the same period of the perturbing force F, which is
T = 2π/Ω.

The problem of the stability of periodic motion is of interest only in the case of the
impact between the two oscillators, since the impact with the walls W1 and W2 is assumed
to be elastic. In the general case, instead of the conditions in (6), we consider that the
approximate solution X(τ) and the exact solution Y(τ) are:

X(τ) = e−α1τ

(
C1 cos

√
Ω2 − α2

1τ+ C2 sin
√

Ω2 − α2
1τ

)
+ 9a2

8+12a2 [cos(Ωτ+ φ)− cos(3Ωτ+ 3φ)]+

+ (36a3−3a)Ωα1

8(2+3a2)
2 [sin(3Ωτ+ 3φ)− sin(Ωτ+ φ)],

(45)

Y(τ) = e−α2kτ
[
C3 cos

√
k2 − kα2τ+ C4 sin

√
k2 − kα2τ

]
+ Q3 cos(Ωτ+ φ) + Q4 sin(Ωτ+ φ). (46)

where Q3 and Q4 are given by Equation (34), and C1–C4 and φ are determined from
initial conditions.

Solutions (45) and (46) are stable if a negligible change of a small perturbation takes
place in the initial conditions and delay at any time interval. If the change is significant,
then the solutions become unstable.

In this section, we consider small perturbations for τ, C1–C4, and delay φ: ∆τ, ∆C1,
. . . , ∆C4, ∆φ, so that ([4–7,32]):
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X(τ+ ∆τ) = e−α1(τ+∆τ)

[
(C1 + ∆C1) cos

√
Ω2 − α2

1(τ+ ∆τ) + (C2 + ∆C2) sin
√

Ω2 − α2
1(τ+ ∆τ)

]
+

+ 9a2

8+12a2 [cos(Ωτ+ Ω∆τ+ φ + ∆φ)− cos(3Ωτ+ 3Ω∆τ+ 3φ + 3∆φ)]+

+ (36a3−3a)Ωα1

8(2+3a2)
2 [sin(3Ωτ+ 3Ω∆τ+ 3φ + 3∆φ)− sin(Ωτ+ Ω∆τ+ φ + ∆φ)],

(47)

Y(τ+ ∆τ) = e−α2k(τ+∆τ)
[
(C3 + ∆C3) cos

√
k2 − kα2(τ+ ∆τ) + (C4 + ∆C4) sin

√
k2 − kα2(τ+ ∆τ)

]
+

+Q3 cos(Ωτ+ Ω∆τ+ φ + ∆φ) + Q4 sin(Ωτ+ Ω∆τ+ φ + ∆φ),
(48)

Taking into account the approximations:

e−α∆τ ≈ 1− α∆τ ; cos(ατ+ ∆τ) = cosατ− ∆τ sinατ ; sin (ατ+ ∆τ) = sinατ+ ∆τ cosατ, (49)

and the modifications of the solutions X and Y:

∆X(τ) = X(τ+ ∆τ)− X(τ) ; ∆Y(τ) = Y(τ+ ∆τ)−Y(τ) , (50)

after linearization of Equations (47) and (48) can be written as:

∆X(τ) = e−α1τ

[
−∆τ(α1C1 cos

√
Ω2 − α2

1τ+ C1

√
Ω2 − α2

1 sin
√

Ω2 − α2
1τ+ α1C2 sin

√
Ω2 − α2

1τ−

−C2

√
Ω2 − α2

1 cos
√

Ω2 − α2
1τ) + ∆C1 cos

√
Ω2 − α2

1τ+ ∆C 2 sin
√

Ω2 − α2
1τ

]
+ 9a2

8+12a2 [(Ω∆τ+ ∆φ)(3 sin(3Ωτ+ 3φ)−

− sin(Ωτ+ φ)] + (108a3−9a)Ωα1

8(2+3a2)
2 (Ω∆τ+ ∆φ)[3 cos(3Ωτ+ 3φ)− cos(Ωτ+ φ)],

(51)

∆Y(τ) = e−α2kτ
[
−∆τ(α2kC3 cos

√
k2 − kα2τ+ C3

√
k2 − kα2 sin

√
k2 − kα2τ− C4

√
k2 − kα2 cos

√
k2 − kα2τ+

+α2kC4 sin
√

k2 − kα2τ) + ∆C3 cos
√

k2 − kα2τ+ ∆C4 sin
√

k2 − kα2τ
]
+

+Q4(Ω∆τ+ ∆φ) cos(Ωτ+ φ)−Q3(Ω∆τ+ ∆φ) sin(Ωτ+ φ),

(52)

After differentiating Equations (51) and (52), one obtains:

∆
.

X(τ) = e−α1τ

[
∆τ(Ω2C1 cos

√
Ω2 − α2

1τ+ 2α1C1

√
Ω2 − α2

1 sin
√

Ω2 − α2
1τ+ Ω2C2 sin

√
Ω2 − α2

1τ−

−2α1C2 cos
√

Ω2 − α2
1τ)− ∆C1(α1 cos

√
Ω2 − α2

1τ+
√

Ω2 − α2
1 sin

√
Ω2 − α2

1τ)+

+∆C2(
√

Ω2 − α2
1 cos

√
Ω2 − α2

1τ− α1 sin
√

Ω2 − α2
1τ

]
+ 9aΩ

8+12a2 (Ω∆τ+ ∆φ)[(9 cos(3Ωτ+ 3φ)− cos(Ωτ+ φ)]+

+ (108a3−9a)Ω2α1

8(2+3a2)
2 (Ω∆τ+ ∆φ)[sin(Ωτ+ φ)− 9 sin(3Ωτ+ 3φ)],

(53)

∆
.

Y(τ) = e−α2kτ
[
∆τ(k2C3 cos

√
k2 − kα2τ+ 2α2kC3

√
k2 − kα2 sin

√
k2 − kα2τ+ k2C4 sin

√
k2 − kα2τ−

−2α2kC3 cos
√

k2 − kα2τ)− ∆C3(α2k cos
√

k2 − kα2τ+
√

k2 − kα2 sin
√

k2 − kα2τ) + ∆C4(
√

k2 − kα2 cos
√

k2 − kα2τ−
−α2k sin

√
k2 − kα2τ

]
−ΩQ3(Ω∆τ+ ∆φ) cos(Ωτ+ φ)−ΩQ4(Ω∆τ+ ∆φ) sin(Ωτ+ φ).

(54)

For the perturbed motion described by Equations (51) and (52), the initial conditions
at two moments—after the n-th impact and before the (n + 1)-th impact—are written as:

n : τ = 0 , ∆τn = 0 , ∆Xn = ∆Yn = 0 , ∆
.

Xn = ∆
.

X
+

n , ∆
.

Yn = ∆
.

Y
+

n , (55)

n + 1 : τ = 2nπ
Ω + ∆τn , ∆τn = ∆Tn = ∆φn+1−∆φn

Ω , ∆Xn = ∆Yn = 0 , ∆
.

Xn = ∆
.

X
−
n , ∆

.
Yn = ∆

.
Y
−
n , (56)

where

∆Xn = ∆X
(

2nπ
Ω

+ ∆τ
)

, ∆Yn = ∆Y
( 2nπ

Ω + ∆τ∗
)

. (57)
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Then, the velocities after the impact become:

∆
.

X
+

n (0) =
M1−RM2
M1+M2

∆
.

X
−
n
( 2nπ

Ω + ∆Tn
)
+ M2(1+R)

M1+M2
∆

.
Y
−
n
( 2nπ

Ω + ∆T∗n
)
,

∆
.

Y
+

n (0) =
M1(1+R)
M1+M2

∆
.

X
−
n
( 2nπ

Ω + ∆Tn
)
+ M2−RM1

M1+M2
∆

.
Y
−
n
( 2nπ

Ω + ∆T∗n
)
.

(58)

From Equations (51)–(53), one obtains:

∆Xn(0) = ∆C1n +

[
9a(3 sin 3φ− sin φ)

8 + 12a2 +
(108a3 − 9a)Ωα1(3 cos 3φ− cos φ)

8(2 + 3a2)2

]
∆φn, (59)

∆Yn(0) = ∆C3n + (Q4 cos φ−Q3 sin φ)∆φ∗n. (60)

From Equations (53)–(55), one obtains:

∆
.

X
+

n (0) = −α1∆C1n +

√
Ω2 − α2

1∆C2n +

[
9aΩ(9 cos 3φ− cos φ)

8 + 12a2 +
(108a3 − 9a)Ω2α1(sin φ− 9 sin 3φ)

8(2 + 3a2)2

]
∆φn, (61)

∆
.

Y
+

n (0) = −α2k∆C3n +
√

k2 − kα2∆C4n − (ΩQ3 cos φ + ΩQ4 sin φ)∆φ∗n. (62)

Analogously, from Equations (51), (52), and (56), one obtains:

∆Xn(
2nπ
Ω + ∆τn) = e−

2nπα1
Ω

{
−
[(
α1C1 − C2

√
Ω2 − α2

1

)
cos

2nπ
√

Ω2−α2
1

Ω +

(
C1

√
Ω2 − α2

1 +

+α1C2) sin
2nπ

√
Ω2−α2

1
Ω

]
∆φn+1−∆φn

Ω + ∆C1 cos
2nπ

√
Ω2−α2

1
Ω + ∆C2 sin

2nπ
√

Ω2−α2
1

Ω

}
+

+

[
9a

8+12a2 (3 sin 3φ− sin φ) + (108a3−9a)Ωα1

8(2+3a2)
2 (3 cos 3φ− cos φ)

]
∆φn+1,

∆Yn(
2nπ
Ω + ∆τn) = e−

2nπα2k
Ω

{
−
[(
α2kC3 − C4

√
k2 − kα2

)
cos 2nπ

√
k2−kα2
Ω +

(
C3
√

k2 − kα2 +

+α2kC4) sin 2nπ
√

k2−kα2
Ω

]
∆φ∗n+1−∆φ∗n

Ω + ∆C3 cos 2nπ
√

k2−kα2
Ω + ∆C4 sin 2nπ

√
k2−kα2
Ω

}
+

+[Q4 cos φ−Q3 sin φ]∆φ∗n+1.

From Equations (53), (54), and (56), the results are:

∆
.

X
−
n (

2nπ
Ω + ∆Tn) = e−

2nπα1
Ω

{[(
Ω2C1 − 2α1C2

)
cos

2nπ
√

Ω2−α2
1

Ω + (2α1C1 + Ω2 C2) sin
2nπ

√
Ω2−α2

1
Ω

]
∆φn+1−∆φn

Ω −

−∆C1

(
α1 cos

2nπ
√

Ω2−α2
1

Ω +
√

Ω2 − α2
1 sin

2nπ
√

Ω2−α2
1

Ω

)
+ ∆C2

(√
Ω2 − α2

1 cos
2nπ

√
Ω2−α2

1
Ω −

−α1 sin
2nπ

√
Ω2−α2

1
Ω

)}
+

[
9aΩ

8+12a2 (9 cos 3φ− cos φ) + (108a3−9a)Ω2α1

8(2+3a2)
2 (sin φ− 9 sin 3φ)

]
∆φn+1,

(63)

∆
.

Y
−
n (

2nπ
Ω + ∆T∗n ) = e−

2nπkα2
Ω

{[(
k2C3 − 2α2kC4

)
cos 2nπ

√
k2−kα2
Ω + (2α2kC3 + k2 C4) sin 2nπ

√
k2−kα2
Ω

]
∆φ∗

n+1
−∆φ∗n

Ω −

−∆C3

(
α2k cos 2nπ

√
k2−kα2
Ω +

√
k2 − kα2 sin 2nπ

√
k2−kα2
Ω

)
+ ∆C4

(√
k2 − kα2 cos 2nπ

√
k2−kα2
Ω −

−α2k sin 2nπ
√

k2−kα2
Ω

)}
−Ω[Q3 cos φ + Q4 sin φ]∆φ∗

n+1
.

(64)

After the elimination of ∆C1n from Equations (55) and (59), as well as of ∆C3n from
Equations (55) and (60), and using the notations:

F(a, φ) = − 9a
8 + 12a2 (3 sin 3φ− sin φ)− (108a3 − 9a)Ωα1

8(2 + 3a2)2 (cos 3φ− cos φ),
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G(a, φ) =
ak2(k2 −Ω2) + 2α2

2k2Ω2a

(k2 −Ω2)
2
+ 4α2

2k2Ω2
sin φ− α2akΩ3

(k2 −Ω2)
2
+ 4α2

2k2Ω2
cos φ,

H(a, φ) =
9aΩ

8 + 12a2 (9 cos 3φ− cos φ) +
(108a3 − 9a)Ω2α1

8(2 + 3a2)2 (sin φ− 9 sin 3φ),

K(a, φ) =
α2akΩ3

(k2 −Ω2)
2
+ 4α2

2k2Ω2
sin φ−

ak2(k2 −Ω2) + 2α2
2k2Ω2a

(k2 −Ω2)
2
+ 4α2

2k2Ω2
cos φ,

C(n) = cos
2nπ

√
Ω2 − α2

1

Ω
; S(n) = sin

2nπ
√

Ω2 − α2
1

Ω ; C∗(n) = cos 2nπ
√

k2−kα2
Ω ; S∗(n) = sin 2nπ

√
k2−kα2
Ω

,

L1 =
1
Ω

e−
2nπα1

Ω

[(
α1C1 −

√
Ω2 − α2

1C2

)
C(n) +

(
C1

√
Ω2 − α2

1 + α1C2

)
S(n)

]
,

L2 =
1
Ω

e−
2nπkα2

Ω

[(
α2kC3 −

√
k2 − kα2C4

)
C∗(n) +

(
C3
√

k2 − kα2 + α2kC4

)
S∗(n)

]
,

L3 = 1
Ω e−

2nπα1
Ω

[(
Ω2C1 − 2α1C2

)
C(n) +

(
2α1C1 + Ω2C2

)
S(n)

]
,

L4 = 1
Ω e−

2nπkα2
Ω
[(

k2C3 − 2α2kC4
)
C∗(n) +

(
2α2kC3 + k2C4

)
S∗(n)

]
,

(65)

A =
M1 −M2R
M1 + M2

; B =
M1(1 + R)
M1 + M2

,

D1 =

√
Ω2 − α2

1[AC(n)− 1]− α1 AS(n) ; D2 = B
[√

Ω2 − α2
1C(n)− α1S(n)

]
,

D3 = (1 + R− B)
[√

k2 − kα2C∗(n)− α2kS∗(n)
]

; D4 = (1− R− A)
(√

k2 − kα2C∗(n)− α2kS∗(n)
)
−
√

k2 − kα2,

D5 = α1F(a, φ)− H(a, φ)− AF(a, φ)

[
α1C(n) +

√
Ω2 − α2

1S(n)
]
− AL3,

D6 = AH(a, φ) + AL3 ; D7 = α2kG(a, φ)− K(a, φ)− BF(a, φ)

[
α1C(n) +

√
Ω2 − α2

1S(n)
]
− L3,

D8 = BH(a, φ) + L3 ; D9 = −(1 + R− B)G(a, φ)
[
α2kC∗(n) +

√
k2 − kα2S∗(n)

]
− (1 + R− B)L4,

D10 = (1 + R− B)H(a, φ) + L4(1 + R− B) ; D11 = −(1− R− A)G(a, φ) − L4 ; D12 = (1− R− A)H(a, φ) + L4,

E1 = L1 + C(n)F(a, φ) ; E2 = L1 − F(a, φ) ; E3 = C∗(n)G(a, φ) ; E4 = L2 + G(a, φ) ,

one obtains a linear system of four equations with the unknowns ∆C2n, ∆C4n, ∆φn, and
∆φ*n. Introducing the notations:

C2n = θ1λn ; ∆C4n = θ2λn ; ∆φn = θ3λn ; ∆φ∗n = θ4λn , (66)

one obtains the characteristic equation:

a0λ2 + a1λ + a2 = 0, (67)

where

a0 = S(n)S∗(n)(D6D12 − D7D10) + S(n)(D4D6E4 − D3D8E4) + S∗(n)(D1D12E2 − D2D10E2) + E2E4D1D4,
a1 = S(n)S∗(n)(D6D11 + D5D12 − D7D10 − D8D9) + S(n)(D3D8E3 − D4D6E3 − D3D7E4 + D4D5E4)+

+S∗(n)(D1D11E2 − D2D5E2 − D1D2E1 + D2D10E1) + (D2D3 − D1D4)(E2E3 + E1E4),
a2 = S(n)S∗(n)(D5D11 − D7D9) + S(n)(D3D7E3 − D4D5E3) + S∗(n)(D2D9E1 − D1D11E1) + E1E3(D1D4 − D2D3).

(68)



Mathematics 2021, 9, 1374 14 of 17

The analyzed motion is asymptotically stable if the roots of the characteristic Equation (67)
verify the conditions:

|λ1,2| < 1. (69)

According to the Schur criterion, the conditions in (69) are satisfied if the following
inequalities take place:

− 1 <
a2

a0
< 1 ; −1 < a1

a0+a2
< 1. (70)

In order to study the stability conditions in (7), the parameters C1–C4 and the delay φ
should be determined. In this respect, the periodicity conditions will be used:

X(0) = Y(0) = X
( 2nπ

Ω
)
= Y

( 2nπ
Ω
)

,
.

X(0) = A
.

X
( 2nπ

Ω
)
+ (1 + R− B)

.
Y
( 2nπ

Ω
)
,

.
Y(0)+ = B

.
X
( 2nπ

Ω
)
+ (1− R− A)

.
Y
−( 2nπ

Ω
)
.

(71)

where A and B were defined in Equation (65).
From Equations (45), (46), and (71), one obtains the system of equations:

.
X(0) = A

.
X
( 2nπ

Ω
)
+ (1 + R− B)

.
Y
( 2nπ

Ω
)

;
.

Y(0) = B
.

X
( 2nπ

Ω
)
+ (1− R− A)

.
Y
( 2nπ

Ω
) ,

C1 = e−
2nπα1

Ω [C1C(n) + C2S(n)] ; C3 = e−
2nπα2k

Ω [C3C∗(n) + C4S∗(n)] ,

C1 +
9a2

8+12a2 (cos φ− cos 3φ) + (36a3−3a)Ωα1

8(2+3a2)
2 (sin 3φ− sin φ) = C3 + Q3 cos φ + Q4 sin φ,

(72)

where
.

X(0) = −α1C1 +
√

Ω2 − α2
1C2 +

9a2Ω
8+12a2 (3 sin 3φ− sin φ) + (36a3−3a)Ωα1

8(2+3a2)
2 (cos φ− 3 cos 3φ),

.
Y(0) = −α2kC3 +

√
k2 − kα2C4 −ΩQ3 sin φ + ΩQ4 cos φ,

.
X( 2π

Ω ) = e−
2nπα1

Ω

[(√
Ω2 − α2

1C2 − α1C1

)
C(n)−

(
α1C2 +

√
Ω2 − α2

1C1

)
S(n)

]
+

+ 9a2Ω
8+12a2 (3 sin 3φ− sin φ) + (36a3−3a)Ω2α1

8(2+3a2)
2 (cos φ− 3 cos 3φ),

.
Y( 2π

Ω ) = e−
2nπα1

Ω

[√
k2 − kα2C4 − α2kC3

]
C∗(n)−

(
α2kC4 +

√
k2 − kα2C3

)
S∗(n)−ΩQ3 sin φ + ΩQ4 cos φ.

(73)

A graphical analysis of the stability conditions is presented in Figures 6–9, taking into
account the influence of different parameters; the yellow color denotes a zone of stability.
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7. Conclusions

In this paper, we presented a study on the dynamical model of a two-degree-of-
freedom vibro-impact oscillator with damping, subject to a perturbing force. Within this
system, each of the masses may produce a combination of continuous movements or vibro-
impact movements that are quite complicated. The system under study was composed of a
linear oscillator and nonlinear one whose movements were determined by means of an
approximate analytical solution, very close to the numerical solution. This approximate
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analytical solution was optimally determined using a new method, namely the Optimal
Auxiliary Functions Method (OAFM), which was very efficient in practice. This solution
was further used in analyzing the kinetic energy loss, the contact force, and the stability of
periodic motions. Several cases were emphasized for possible movements of the system
depending on the initial conditions and movement parameters, considering various impact
possibilities between the two oscillators or between the oscillators and the walls.

In the case of periodic movements, it was considered that the period of the system
was proportional with the period of the perturbing force. The boundary conditions of the
system between two periodic subsequent arbitrary impacts were considered. After some
analytical and numerical computations and by using the Schur principle, we established
the stability conditions of the system. For different values of the movement parameters,
a graphical analysis of stability conditions was presented. Different expressions for the
velocities of the two oscillators were considered, establishing recurrence relations for
periodic solutions.

Limitations of this study include the fact that it did not cover bifurcation- and chaos-
related problems, but these aspects will be the subject of future developments. In addition,
more research will be necessary to refine and further elaborate the proposed approach to
make it applicable to three-degree-of-freedom vibro-impact systems, which would provide
a more complete understanding of more complex systems. Moreover, as an alternative to
the Schur criterion, use of the Zhukovsky-type stability [33] could be convenient, and the
Sommerfeld effect [34,35] could be investigated by means of OAFM.
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