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Abstract: This paper is mainly concerned with the exact controllability for a class of impulsive
ψ-Caputo fractional evolution equations with nonlocal conditions. First, by generalized Laplace
transforms, a mild solution for considered problems is introduced. Next, by the Mönch fixed point
theorem, the exact controllability result for the considered systems is obtained under some suitable
assumptions. Finally, an example is given to support the validity of the main results.
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1. Introduction

Fractional systems have gained considerable popularity and importance due to their
wide range of applications in many mathematical, physical, and engineering disciplines such
as the chaotic synchronization system [1], solutions of differential systems [2–4], impulsive
problems [5,6], quantum theory [7], diffusion phenomena [8–10], delay problems [11,12],
systems of thermoelasticity [13,14], etc. It turns out that fractional calculus can provide
a more vivid and accurate description of many practical problems than integral ones.
Increasingly more recent achievements in various aspects of science and technology have
proved that fractional differential systems [15–20] have naturally replaced integer-order
differential systems. What makes fractional calculus special is the fact that there exist
various kinds of fractional operators which can be chosen to provide a more accurate
modeling of real-world phenomena. In order to improve the precision of the objective
modeling, in 2017, Almeida [21] introduced the new definition of fractional derivative by
considering the Caputo fractional derivative with another function ψ, that is, the ψ-Caputo
fractional derivative. In 2020, Jarad and Abdeljawad [22] introduced the generalized
Laplace transforms and the inverse version about ψ-Caputo fractional derivative. As we
all know, Laplace transforms can be used to solve the mild solutions of some fractional
differential equations. Consequently, the application of fractional differential equations
opens a new window in the framework of the ψ-Caputo fractional derivative.

On the other hand, impulsive differential systems are powerful tools to describe
systems with short-term perturbations, which are observed in optimal control, biology,
stability analysis, medicine, biotechnology, and electronics, please see in [23–26] and the
references therein. Moreover, Byszewski [27] recently introduced another kind of Cauchy
condition, which is called the nonlocal Cauchy condition, that plays a more important
role on the above two systems. Since then, increasingly more researchers have paid their
attention to kinds of differential equations with nonlocal initial conditions. For more details,
see in [28,29] and the references therein.

As we all know, controllability is an important component of control theory and
engineering. As one fundamental concept in mathematical control theory, controllability
of the above two systems has increasingly received interest in recent years, and many
controllability problems for integer-order and fraction-order evolution equations have
been discussed in many papers such as in [29–33] and the references therein. In 2009,
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Hernández and O’Regan [34] pointed out that under the compactness semigroup and
some suitable assumptions, controllability results for some abstract control systems are
only applicable in finite-dimensional space. Since then, many advancements have been
made for various kinds of nonlinear evolution equations with a non-compact semigroup in
infinite dimensional spaces. However, note that there still exist some unsolved controllable
problems in the framework of infinite dimensional spaces, such as the exact and regional
of controllability about ψ-Caputo fractional evolution equations.

Motivated by the above-mentioned discussions, we consider the controllability for the
following impulsive ψ-Caputo fractional evolution equations with nonlocal conditions:

c
0D

α
ψx(t) = Ax(t) + f (t, x(t), x(t)) + Bu(t), a.e. t ∈ J := [0, `];

∆x |t=ti= Ii(x(ti)), i = 1, 2, . . . , k;

x(0) + g(x) = x0,

(1)

where ∆x |t=ti= x(ti + 0)− x(ti − 0), 0 < α < 1, ` < +∞. A is an infinitesimal generator
of a C0-semigroup {T(t)}t≥0 on X. Further, the control function u is given in L2[J, V].
Here, V is a Banach space. B is a linear bounded operator from V to X. The function
g : PC[J, X] → X. 0 < t1 < t2 < . . . < tk < tk+1 = `, Ii : X → X (i = 1, 2, . . . , k) are
impulsive functions. Here, the nonlinear function f will be specified later. The Volterra

integral operator x(t) :=
∫ t

0
K(t, s)x(s)ds is equipped with integral kernel K ∈ C[Ω,R+],

Ω := {(t, s) : 0 ≤ t ≤ s ≤ `}.
As far as we know, there are few papers that have studied the exact controllability

in the framework of ψ-Caputo fractional derivative and there is no paper considering
such a problem. The aim of this paper is to fill this gap. What is more, for the sake
of investigating the exact controllability of (1), the framework of a ψ-Caputo fractional
derivative is constructed and a new concept of mild solutions is introduced (Section 3,
Definition 3) for system (1).

The rest of this paper is organized as follows. Some background materials and
preliminaries are introduced in Section 2. Section 3 is reserved for discussion about the
concept of mild solution. In Section 4, some sufficient conditions for exact controllability
are obtained. Finally, in Section 4, an example is given to support the validity of the
main results.

2. Preliminaries

In this section, we will introduce some definitions and results that are used in this

paper. In the following, Γ(α) =
∫ +∞

0
xα−1e−xdα, α > 0 represents the Gamma function.

ψ′ denotes the first derivative of ψ. For convenience, we set J0 = [0, t1] and Ji = (ti, ti+1],
i = 1, 2, . . . , k. Let X be a Banach space with the norm ‖ · ‖, PC[J, X] := {x : x is a map
from J into X such that x(t) is continuous at t 6= ti, and left continuous at t = ti, and the
right limit x(t+i ) exists for i = 1, 2, . . . , k}.

It is clear that PC[J, X] is a Banach space with the following norm

‖x‖PC = sup
t∈J
{‖x(t)‖}, ∀x ∈ PC[J, X].

Let Lp[J, X] (p ∈ [1,+∞]) denote the Banach space of all strongly measurable func-
tions x : J → X with the norm

‖x‖p =

 (
∫

J
‖x(t)‖p)

1
p , 1 ≤ p < +∞;

ess supt∈J ‖x(t)‖ = inf{a ≥ 0 : ‖x(t)‖ ≤ a, a.e. t ∈ J}, p = +∞.
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First, we recall some basic definitions and fundamental results about fractional calculus.

Definition 1 ([21]). Let α > 0, f be an integrable function defined on [a, b] and ψ ∈ C1[a, b]
be an increasing function with ψ(t) 6= 0 for all t ∈ [a, b]. The ψ-Riemann–Liouville fractional
integral operator of a function f is defined by

(aIα
ψ f )(t) =

1
Γ(α)

∫ t

a
(ψ(t)− ψ(s))α−1 f (s)ψ′(s)ds. (2)

Clearly, (2) is the classical Riemann–Liouville fractional integral when ψ(t) = t.

Definition 2 ([21]). Let n− 1 < α < n, f ∈ Cn[a, b] and ψ ∈ Cn[a, b] be an increasing function
with ψ(t) 6= 0 for all t ∈ [a, b]. The ψ-Caputo fractional derivative of a function f is defined by

(C
aDα

ψ f )(t) = (aIn−α
ψ f [n])(t) =

1
Γ(n− α)

∫ t

a
(ψ(t)− ψ(s))n−α−1 f [n](s)ψ′(s)ds,

where n = [α] + 1 and f [n](t) := ( 1
ψ′(t)

d
dt )

n f (t) on [a, b].

Lemma 1 ([21]). Let f ∈ Cn[a, b] and α > 0. Then, we have

aIα
ψ

C
aDα

ψ f (t) = f (t)−
n−1

∑
k=0

f [n](a+)
k!

(ψ(t)− ψ(a))k.

In particular, given α ∈ (0, 1), we have C
aDα

ψ f (t) = f (t)− f (a).

Second, we list the Mönch fixed point theorem, which will be used in the proof of our
main results. Here, the Hausdorff measure of non-compactness of a bounded set in X and
PC[J, X] are denoted by χ(·) and χPC(·), respectively.

Lemma 2 ([35]). Suppose X is a Banach space. Let H be a countable set of strongly measurable
function x : J → X such that there exists y ∈ L[J,R+] with ‖x(t)‖ ≤ y(t), i.e., t ∈ J for all
x ∈ H. Then, χ(H(t)) ∈ L[J,R+] and

χ( {
∫

J
x(t)dt : x ∈ H } ) ≤ 2

∫
J

χ( H(t) )dt,

where χ(·) denotes the Hausdorff non-compactness measure.

Theorem 1 ([36] Mönch fixed point theorem). Suppose X is a Banach space. Let D be a closed
and convex subset of X and u ∈ D. Assume that the continuous operator A : D → D has the
following property:

C ⊂ D countable, C ⊂ co( {u} ∪ A(C) ) implies C is relatively compact.

Then, A has a fixed point in D.

3. The Concept of Mild Solution

In this section, based on the works in [22,37–39], the existence of a mild solution is
obtained for our problems.

First, we introduce some facts about semigroups theory. For more details about it,
please see in [40,41] and the references therein.

The infinitesimal generator A : D(A) ⊂ X → X of C0-semigroup {T(t)}t≥0 is de-
fined by

Ax = lim
t→0+

T(t)x− x
x

,
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where D(A) := {x ∈ X : lim
t→0+

T(t)x− x
x

exists}.
A family of bounded and linear operators {T(t)}t≥0 is called a C0-semigroup if

(a) T(0) = I.
(b) T(t1 + t2) = T(t1)T(t2) for all t1, t2 ∈ [0,+∞).
(c) For all x ∈ X and t ∈ [0,+∞), lim

t→0+
T(t)x = x.

Further, the C0-semigroup {T(t)}t≥0 is called an analytic semigroup if the map t 7→
T(t) is analytic in [0,+∞).

Let A be the infinitesimal generator of a C0-semigroup of uniformly bounded linear
operators {T(t)}t≥0 on X. Thus, there exists M ≥ 1 such that M = supt∈[0,+∞) ‖T(t)‖.

Define the following two operators Sα
ψ(t, s) and T α

ψ(t, s) on X by

Sα
ψ(t, s)x =

∫ ∞

0
φα(θ)T((ψ(t)− ψ(s))αθ)xdθ, ∀x ∈ X,

and
T α

ψ(t, s)x = α
∫ ∞

0
θφα(θ)T((ψ(t)− ψ(s))αθ)xdθ, ∀x ∈ X, (3)

for 0 ≤ s ≤ t ≤ `, where

φα(θ) =
1
α

θ−1− 1
α ρα(θ

− 1
α ),

and ρα(θ) is defined by

ρα(θ) =
1
π

∞

∑
k=1

(−1)k−1θαk−1 Γ(αk + 1)
k!

sin(kπα),

where φα is a probability density function on (0,+∞). Here, φα has the following properties:

φα(θ) ≥ 0 for all θ ∈ (0,+∞) and
∫ ∞

0
φα(θ)θ

rdθ =
Γ(1 + r)

Γ(1 + αr)
for r > −1.

Very similar to the argument in [42], we can obtain the following results.

Lemma 3. The bounded linear operators Sα
ψ and T α

ψ have the following properties.
(1) For t ≥ s ≥ 0 and x ∈ X,

‖Sα
ψ(t, s)x‖ ≤ M‖x‖ and ‖T α

ψ(t, s)x‖ ≤ αM
Γ(1 + α)

‖x‖ = M
Γ(α)

‖x‖;

(2) For all t ≥ s ≥ 0, the operators Sα
ψ and T α

ψ are strongly continuous. That is, for every
x ∈ X and 0 ≤ s ≤ t1 ≤ t2 ≤ `, we have

‖Sα
ψ(t2, s)x− Sα

ψ(t1, s)x‖ → 0 and ‖T α
ψ(t2, s)x− T α

ψ(t1, s)x‖ → 0, as t2 → t1.

Subsequently, for simplicity and convenience, set

£t2
t1
{x(t)} :=

∫ t2

t1

(ψ(t2)− ψ(s))α−1T α
ψ(t2, s)x(s)ψ′(s)ds, (4)

where t1, t2 ∈ J, x ∈ PC[J, X], and T α
ψ as defined in (3).

In order to obtain the mild solution for problem (1), we also need to introduce the
following two lemmas.

Lemma 4. If 0 < α < 1, then

c
0Dα

ψ[ Sα
ψ(t, 0)x0 ] = A[ Sα

ψ(t, 0)x0 ],



Mathematics 2021, 9, 1358 5 of 14

and
c
0Dα

ψ[ £t
0{h(t)} ] = A[ £t

0{h(t)} ] + h(t),

where Sα
ψ, T α

ψ are defined in (3), and h ∈ PC[J, X].

Proof of Lemma 4. Similar to the argument of Lemma 3.3 in [38], applying the generalized
Laplace transforms (Definition 3.1 in [22]) to (3), one can obtain that

LΨ{ Sα
ψ(t, 0)x0 }(λ) = LΨ{

∫ ∞

0
φα(θ)T((ψ(t)− ψ(0))αθ)x0dθ }(λ)

= λα−1(λα I − A)−1x0.

(5)

Therefore, by (5) and Corollary 4 in [22],

LΨ{ c
0Dα

ψ[ Sα
ψ(t, 0)x0 ] }(λ) = λα · ( LΨ{ Sα

ψ(t, 0)x0 }(λ)− λ−1Sα
ψ(t, 0)x0 |t=0 )

= λα · ( LΨ{ Sα
ψ(t, 0)x0 }(λ)− λ−1x0 )

= λα(λα−1(λα I − A)−1x0)− λα−1x0

= λα−1(λα I − A)−1 · Ax0

= Aλα−1(λα I − A)−1x0.

This together with (5) guarantees that

c
0Dα

ψ[ Sα
ψ(t, 0)x0 ] = A[ Sα

ψ(t, 0)x0 ].

Using a similar process of the proof of Lemma 3.1 in [37], one can get that

LΨ{ £t
0{h(t)} }(λ) = (λI −A)−1 · LΨ{ h(t) }(λ). (6)

Moreover,

LΨ{ c
0D

α
ψ( £t

0{h(t)} ) }(λ) = λα · ( LΨ{ £t
0{h(t)} }(λ)− λ−1(£t

0{h(t)}) |t=0 )

= λα · ( λα I −A )−1 · LΨ{h(t)}.
(7)

Based on (6) and (7), we have

c
0Dα

ψ[ £t
0{h(t)} ] = A[ £t

0{h(t)} ] + h(t).

As a result, the conclusion of this lemma follows.

Lemma 5. The function

x(t) = Sα
ψ(t, 0)x0 + £t

0{h(t)}+ ∑
0<ti<t

Sα
ψ(t, ti)Ii(x(ti)) (8)
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defined on J is a mild solution of the following nonhomogeneous impulsive linear fractional equation:

c
0D

α
ψx(t) = Ax(t) + h(t), a.e. t ∈ J := [0, `], t 6= ti;

∆x |t=ti= Ii(x(ti)), i = 1, 2, . . . , k;

x(0) = x0,

(9)

where h ∈ PC[J, X].

Proof of Lemma 5. By Definition 3.3 in [37], x(t) = Sα
ψ(t, 0)x0 + £t

0{h(t)} is the mild solu-
tion on J0.

For t ∈ Ji (i = 1, 2, . . . , k), by (8) and Lemma 4, we have

c
0Dα

ψx(t) =c
0 Dα

ψ[ Sα
ψ(t, 0)x0 + £t

0{h(t)}+
i

∑
j=0

Sα
ψ(t, tj)Ij(x(tj)) ]

= ASα
ψ(t, 0)x0 +A£t

0{h(t)}+ h(t) +A
i

∑
j=0

Sα
ψ(t, tj)Ij(x(tj))

= A[ Sα
ψ(t, 0)x0 + £t

0{h(t)}+
i

∑
j=0

Sα
ψ(t, tj)Ij(x(tj)) ] + h(t)

= Ax(t) + h(t).

Moreover, one can easily obtain that x(0) = x0 and ∆x |t=ti= Ii(x(ti)).
To sum up, Lemma 5 is proved.

Based on Lemma 5, we introduce the definition of mild solution and exact controlla-
bility of system (1).

Definition 3. A function x ∈ PC[J, X] is called a mild solution of (1) if it satisfies

x(t) = Sα
ψ(t, 0)(x0 − g(x)) + £t

0{ f (t, x(t), x(t)) + Bu(t) }+ ∑
0<ti<t

Sα
ψ(t, ti)Ii(x(ti)), t ∈ J.

It is obvious that the mild solution here is the same as in [39] when ψ(t) = t.

Definition 4. The problem (1.1) is said to be exactly controllable on J if, for every x0, x1 ∈ X, there
exists a control u ∈ L2[J, V] such that the mild solution of (1.1) in J satisfies x(`) + g(x) = x1.

4. Controllability Results

In this section, our aim is to obtain the exact controllability result for problem (1). For
simplicity and convenience, set

K∗ := sup
t∈J

∫ t

0
K(t, s)ds.

Furthermore, we give the following hypotheses:

Hypothesis 1 (H1). {T(t)}t≥0 is a C0-semigroup and lim
t→0+

T(t) = I (the identity operator).

Hypothesis 2 (H2). The linear operator W : L2[J, V]→ X defined by

Wu =
∫ `

0
T α

ψ(`, s)Bu(s)ds
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satisfies the following:
(1) W has an invertible operator W−1, which take values in L2[J, V]\kerW, and there exist

two positive constants LB and Lw, such that ‖B‖ ≤ LB and ‖W−1‖ ≤ Lw;
(2) there exists η ∈ L1[J,R+] such that

χ(W−1(D)(t)) ≤ η(t) · χ(D), t ∈ J,

for any countable subset D ⊂ X.

Hypothesis 3 (H3). The function f : J × X× X → X satisfies the following properties:
(1) for a.e. t ∈ J, f (t, ·, ·) : X× X → X is continuous;
(2) for each (x, y) ∈ X× X, f (·, x, y) : J → X is strongly measurable;
(3) for any r > 0, there exists a function hr ∈ L∞[J, E] such that

sup{‖ f (t, x, y)‖ : ‖x‖ ≤ r, ‖y‖ ≤ K∗r} ≤ hr(t), t ∈ J,

and

lim
r→∞

‖hr‖∞

r
< Lh < ∞,

where lim means the upper limit of
‖hr‖∞

r
as r→ ∞.

(4) There exists ξ ∈ L1[J,R+] such that

χ( f (t, D1, D2)) ≤ ξ(t)(χ(D1) + χ(D2)), t ∈ J,

for any bounded countable subsets D1, D2 ⊂ X.

Hypothesis 4 (H4). g : PC[J, X] → X is a continuous operator and there exist a, b, c ≥ 0
such that

‖g(y)‖ ≤ a‖y‖PC + b, ∀y ∈ PC[J, X];

χ( g(D) ) ≤ c · χPC(D),

for any bounded countable D ⊂ PC[J, X].

Hypothesis 5 (H5). Ii : X → X (i = 1, 2, . . . , k) is a continuous operator and there exist
non-negative numbers ai, bi, ci such that

‖Ii(x)‖ ≤ ai‖x‖+ bi, ∀x ∈ X;

χ( Ii(D) ) ≤ ci · χ(D),

for any bounded countable D ⊂ PC[J, X], i = 1, 2, . . . , k.
Now, we are in a position to prove the exact controllability result of (1). For convenience, let

Υ0 =
M

Γ(α + 1)
· (ψ(`)− ψ(0))α;

Ωr = {x ∈ PC[J, X] : ‖x‖PC ≤ r} (∀r > 0);

Υ∗ = (1 + 2Υ0LB‖η‖1) · (1 + K∗)‖ξ‖1 + MLB‖η‖1 · (1 +
k

∑
i=1

ci).

Theorem 2. Assume that (H1)–(H5) hold. Then, the system (1) is exactly controllable on J
provided that

Ma + Υ0Lh + Υ2
0LBLwLh < 1 and M(c +

k

∑
i=1

ci) + 2Υ0Υ∗ < 1.
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Proof of Theorem 2. In order to obtain the result, we need to define a control:

ux(t) = W−1[ x1 − g(x)− Sα
ψ(`, 0)x0 − £`0{ f (s, x(s), x(s))} −

k

∑
i=1

Sα
ψ(`, ti)Ii(x(ti)) ](t),

for x ∈ PC[J, X], x1 ∈ X, and t ∈ J.
Moreover, define an operator H on PC[J, X] by

Hx(t) = Sα
ψ(t, 0)( x0 − g(x) ) + £t

0{ f (s, x(s), x(s)) + Bux(s)}+ ∑
0<ti<t

Sα
ψ(`, ti)Ii(x(ti)),

for x ∈ PC[J, X] and t ∈ J. It is obvious that Hx ∈ PC[J, X].
It is obvious that if x is a fixed point of H, then it is a mild solution of (1) that satisfies

x(`) + g(x) = x1, which implies that the system (1) is exactly controllable. Therefore, we
need only to find a fixed point of H in the following work. For this sake, we divide the
proof of Theorem 2 into three steps:

Step 1. Claim that H : PC[J, X]→ PC[J, X] is continuous.
To do this, suppose {xn}∞

n=1 ⊂ PC[J, X] such that

xn → x∗, as n→ +∞.

Then, there exists r > 0 such that {xn}∞
n=1 ⊂ Ωr. By (H4) and (H5), we have

‖Hxn − Hx∗‖PC

≤ M‖g(xn)− g(x∗)‖+ M
Γ(α)

∫ `

0
(ψ(t)− ψ(s))α−1‖ f (s, xn, xn)− f (s, x∗, x∗)‖ · ψ′(s)ds

+
M

Γ(α)

∫ `

0
(ψ(t)− ψ(s))α−1‖Buxn −Bux∗‖ · ψ′(s)ds + M ·

k

∑
i=1
‖Ii(xn)− Ii(x∗)‖.

(10)

Notice that

‖Buxn −Bux∗‖ ≤ LBLw · ( ‖ g(xn)− g(x∗) ‖+ Υ0 · ‖ f (t, xn, xn)− f (t, x∗, x∗)‖

+M ·
k

∑
i=1
‖Ii(xn)− Ii(x∗)‖ ).

(11)

Therefore, by (10) and (11), (H2)–(H5), and the Lebesgue dominated convergence
theorem, we obtain ‖Hxn−Hx∗‖PC → 0, as n→ ∞, namely, that H : PC[J, X]→ PC[J, X]
is continuous.

Step 2. Claim that there exists r > 0 such that H(Ωr) ⊂ Ωr.
Suppose on the contrary, for each r > 0, there exists x ∈ Ωr such that ‖Hx‖PC > r.
By Lemma 3 and (H3)–(H5), one can get that

r < ‖Hx‖PC ≤ M‖x0 − g(x)‖+ Υ0 · ‖hr‖∞ + Υ0 · ‖Bux‖+ M ·
k

∑
i=1
‖Ii(x)‖

≤ M · (‖x0‖+ a · r + b) + Υ0 · ‖hr‖∞ + Υ0 · ‖Bux‖

+M ·
k

∑
i=1

(ai‖x‖+ bi).

(12)

Notice that by (H2)–(H5), one can see that
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‖Bux‖ ≤ LBLw · [ ‖x1‖+ (a‖x‖PC) + b) + M‖x0‖+ Υ0‖hr‖∞ + M
k

∑
i=1

(ai‖x‖+ bi) ]. (13)

Then, it follows from (12) and (13) and our assumptions that

1 ≤ Ma + Υ0Lh + Υ2
0LBLwLh < 1.

This is a contradiction, which means that there exists r > 0 such that H(Ωr) ⊂ Ωr.
Step 3. Claim that if D ⊂ Ωr is countable and there exists u0 ∈ Ωr such that

D ⊂ co( {u0} ∪ H(D) ), (14)

then D is relatively compact.
Suppose that D := {xn}∞

n=1 ⊂ Ωr. First, we show that {Hxn}∞
n=1 is equicontinuous on

each Ji (i = 1, 2, . . . , k). For this sake, we need only to claim that H(Ωr) is equicontinuous
on each Ji. If this is true, then co( {u0} ∪ H(D) ) is also equicontinuous on each Ji.

To do this, setting F (t, x) := f (t, x, x) + Bux and (t, s) := (ψ(t)− ψ(s))α−1T α
ψ(t, s),

then for any x ∈ D and t1 < t2 ∈ Ji, we have

‖Hx(t1)− Hx(t2)‖

≤ ‖[ Sα
ψ(t2, 0)− Sα

ψ(t1, 0) ](x0 − g(x))‖+ ‖
i

∑
j=1

( Sα
ψ(t2, tj)− Sα

ψ(t1, tj) )Ij(x(tj))‖

+ ‖
∫ t2

0
(t2, s)F (s, x(s))ψ′(s)ds−

∫ t1

0
(t1, s)F (s, x(s))ψ′(s)ds‖

≤ ‖[ Sα
ψ(t2, 0)− Sα

ψ(t1, 0) ](x0 − g(x))‖+
i

∑
j=1
‖ Sα

ψ(t2, tj)− Sα
ψ(t1, tj)‖ · ‖Ij(x(tj))‖

+ ‖
∫ t1

0
((t2, s)− (t1, s)) · F (s, x(s))ψ′(s)ds‖

+ ‖
∫ t2

t1

(t2, s) · F (s, x(s))ψ′(s)ds‖

≤ ‖[ Sα
ψ(t2, 0)− Sα

ψ(t1, 0) ](x0 − g(x))‖+
i

∑
j=1
‖ Sα

ψ(t2, tj)− Sα
ψ(t1, tj)‖ · ‖Ij(x(tj))‖

+ ‖
∫ t1

0
[ (ψ(t2)− ψ(s))α−1 − (ψ(t1)− ψ(s))α−1 ] · T α

ψ(t2, s)F (s, x(s))ψ′(s)ds‖

+ ‖
∫ t1

0
(ψ(t1)− ψ(s))α−1 · [ T α

ψ(t2, s)− T α
ψ(t1, s) ]F (s, x(s))ψ′(s)ds‖

+ ‖
∫ t2

t1

(t2, s) · F (s, x(s))ψ′(s)ds‖

= Λ1 + Λ2 + Λ3 + Λ4 + Λ5.

By Lemma 3, it is obvious that Λ1 → 0 and Λ2 → 0 as t2 → t1. Moreover, one can
get that

Λ3 ≤
M‖F‖

Γ(α + 1)
[ (ψ(t2 − ψ(t1)))

α + (ψ(t1 − ψ(0)))α − (ψ(t2 − ψ(0)))α ].
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Therefore, Λ3 → 0 as t2 → t1. Let ε be small enough, we have

Λ4 ≤
∫ t1−ε

0
(ψ(t1)− ψ(s))α−1 · ‖T α

ψ(t2, s)− T α
ψ(t1, s)‖ · ‖F‖ψ′(s)ds

+
∫ t1

t1−ε
(ψ(t1)− ψ(s))α−1 · ‖T α

ψ(t2, s)− T α
ψ(t1, s)‖ · ‖F‖ψ′(s)ds

≤ ‖F‖ ·
∫ t1−ε

0
(ψ(t1)− ψ(s))α−1ψ′(s)ds · sup

s∈[0,t1−ε]

‖T α
ψ(t2, s)− T α

ψ(t1, s)‖

+
2M‖F‖

Γ(α)

∫ t1

t1−ε
(ψ(t1)− ψ(s))α−1ψ′(s)ds.

Using a similar process of the proof of Lemma 2.9 in [43] and the absolute continuity
of the Lebesgue integral, one can get that Λ4 → 0 as t2 → t1 and ε→ 0. Λ5 → 0 as t2 → t1.

Therefore,

‖Hx(t2)− Hx(t1)‖ → 0 as |t2 − t1| → 0 with respect to x ∈ D.

Namely, H(D) is equicontinuous on every Ji.
Next, notice that

‖xn(s)− xm(s)‖ ≤ ‖xn − xm‖PC, s ∈ J,

which implies
χ( {xn(s)}∞

n=1 ) ≤ χPC( {xn}∞
n=1 ), s ∈ J.

Then, for each t ∈ J, we have

χ( {(Hxn)(t)}∞
n=1 )

≤ χ( { Sα
ψ(t, 0)(x0 − g(xn) }∞

n=1 ) + χ( {
∫ t

0
(t, s)F (s, xn(s))ψ′(s)ds} )

+ χ( { ∑
0<ti<t

Sα
ψ(t, ti)Ii(xn(ti)) }∞

n=1 )

≤ Mc · χPC( {xn}∞
n=1 ) + 2M

∫ t

0
(ψ(t)− ψ(s))α−1 · χ( { F (s, xn(s)) }∞

n=1 )ψ′(s)ds

+ M ·
k

∑
i=1

ci · χ( {xn(ti)}∞
n=1 ).

(15)

From (H2) and (H3), one can see that

χ({F (s, xn(s)}∞
n=1) ≤ χ( { f (s, xn(s), xn(s))}∞

n=1 ) + χ( {Bxn(s)}∞
n=1 )

≤ χ( { f (s, xn(s), xn(s))}∞
n=1 ) + LB · η(s) · [ M · χ( {g(xn}∞

n=1 )

+ 2Υ0 · χ( { f (s, xn(s), xn(s)) }∞
n=1 ) + M ·

k

∑
i=1

ci · χ( {xn(ti)}∞
n=1 ) ]

≤ (1 + 2Υ0LB‖η‖1) · (1 + K∗)‖ξ‖1 · χ( {xn(s)}∞
n=1 ) + MLB‖η‖1 · (1 +

k

∑
i=1

ci) · χPC( {xn}∞
n=1 )

≤ [ (1 + 2Υ0LB‖η‖1) · (1 + K∗)‖ξ‖1 + MLB‖η‖1 · (1 +
k

∑
i=1

ci) ] · χPC( {xn}∞
n=1 )

= Υ∗ · χPC( {xn}∞
n=1 ).



Mathematics 2021, 9, 1358 11 of 14

This together with (15) implies that

χ( {(Hxn)(t)}∞
n=1 ) ≤ M · (c +

k

∑
i=1

ci) · χPC( {xn}∞
n=0 ) + 2Υ0Υ∗ · χPC( {xn}∞

n=1 )

= [ M · (c +
k

∑
i=1

ci) + 2Υ0Υ∗ ] · χPC( {xn}∞
n=1 ).

(16)

As {Hxn}∞
n=1 is equicontinuous on each Ji, one can get that

χPC( {Hxn}∞
n=1 ) = sup

0≤i≤k
sup
t∈Ji

χ( {Hxn(t)}∞
n=1 ).

This together with (14) and (16) guarantees that

χPC( {xn}∞
n=1 ) ≤ χPC( {Hxn}∞

n=1 ) ≤ [ M · (c +
k

∑
i=1

ci) + 2Υ0Υ∗ ] · χPC( {xn}∞
n=1 ).

From our assumptions, we know χPC( {xn}∞
n=1 ) = 0, which implies that D = {xn}∞

n=1
is relatively compact. Thus, H has a fixed point in Ωr by Theorem 1. To sum up, system (1)
is exactly controllable on J.

5. An Example

In this section, an illustrative example is worked out to show the effectiveness of the
obtained result.

Example 1. Let X = L2[0, π] be equipped with the norm and inner product defined by

‖x‖2 = (
∫ π

0
|x(y)|2dy )

1
2 and < x, z >= (

∫ π

0
x(y)z(y)dy )

1
2 , ∀x, z ∈ X.

Consider the following nonlinear partial integro-differential system:

∂
1
2

∂t
1
2

x(t, y) =
∂2

∂y2 x(t, y) +
sin(t)
1 + et [ ε1 · (1− Γ(

3
2
)) · x(t, y)

+ ε1 · Γ(
3
2
) ·

∫ t

0
(

3t
2
− s)2x(s, y)ds ] + ε2u(t, y);

x(t, 0) = x(t, π) = 0;

x(0, y) +
1

10
·
∫ 1

0
x(t, y)dt = 0;

∆x |t= 1
2
= x(

1
2

, y),

(17)

where t ∈ J := [0, 1], y ∈ [0, π] and εi (i = 1, 2) are positive numbers will be specified later.

Conclusion: System (17) is exactly controllable on J as εi (i = 1, 2) are sufficiently small.

Proof of Conclusion. System (17) can be regarded as the form of system (1), where

α =
1
2

, ` = 1, g(x) =
1
10
·
∫ 1

0
x(t, y)dt, I1(x(t1, y)) = x(

1
2

, y), ψ(t) = t;

f (t, x(t, y), x) =
sin(t)
1 + et [ ε1 · (1− Γ(

3
2
)) · x(t, y) + ε1 · Γ(

3
2
) ·

∫ t

0
(

3t
2
− s)2x(s, y)ds ].

Consider the operator A : D(A) ⊂ X → X defined by

Ax =
∂2

∂y2 x.
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As is well known, A has a discrete spectrum. The eigenvalues are {−n2 : n ∈ N}

with the corresponding normalized eigenvectors en(y) =

√
2
π

sin(ny). Then,

Ax = −
∞

∑
n=1

n2 < x, en > en, x ∈ D(A).

Moreover,A is the infinitesimal generator of a uniformly bounded analytic semigroup
{T(t)}t≥0, where

T(t)x =
∞

∑
n=1

e−n2t < x, en > en, x ∈ X.

Obviously, ‖T(t)‖ ≤ e−t for all t ≥ 0. Thus, one can choose M := supt∈[0,∞) ‖T(t)‖ = 1.
In addition, the operator B = ε2 I (the identity operator). For y ∈ [0, π], the linear operator
W is defined by

Wu = ε2

∫ 1

0
T

1
2
t (1, s)Iu(s, y)ds.

It is easy to see that

‖Wu‖ ≤ ‖ε2

∫ 1

0
T

1
2
t (1, s)Iu(s)ds‖ ≤ ε2‖u‖,

which means ‖W‖ ≤ ε2. Thus, (H2) holds by choosing LB = ε2 and a suitable Lw > 0.
By careful calculation, one can obtain that for all x ∈ Ωr,

‖ f (t, x(t), x(t))‖ ≤ ε1r · ( 1− Γ(
3
2
) + Γ(

3
2
) ·

∫ t

0
(

3t
2
− s)2ds ) = ε1r · ( 1− Γ(

3
2
) + Γ(

3
2
)t2 ).

Thus, (H3) holds by choosing hr(t) = ε1r · ( 1− Γ(
3
2
) + Γ(

3
2
)t2 ) and Lh = Γ(

3
2
) · ε1.

Moreover, one can easily verify that (H4) and (H5) hold by choosing a =
1

10
, a1 = 1,

and b = b1 = 1. Suppose ε1 and ε2 are sufficiently small such that

ε1 < min{1
3

, Γ(
3
2
)} and ε2 <

Γ(
3
2
)

3Lwε1
,

Ma + Υ0Lh + Υ2
0LBLwLh =

1
10

+ ε1 +
Lwε1ε2

Γ(
3
2
)

<
1

10
+

1
3
+

1
3
< 1.

Consequently, system (17) is exactly controllable on J by Theorem 2.

6. Discussion

In this paper, first, based on generalized Laplace transforms and semigroup theory, the
concept of a mild solution is obtained for a class of impulsive fractional evolution equations
with nonlocal conditions in the framework of ψ-Caputo fractional derivatives. As far as we
know, there is no definition of the mild solution available for the considered systems (1).
Second, by Mönch fixed point theorem, the exact controllability result is investigated with
a non-compact semigroup. The exact controllability obtained in the present paper can be
applied in the broadest context such as many fractional evolution system with various
boundary conditions involving the classical Caputo or Hadamard fractional derivatives.
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version of the manuscript.
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39. Wang, J.; Fečkan, M.; Zhou, Y. On the new concept solutions and existence results for impulsive fractional evolutions. Dyn. Partial
Differ. Equ. 2011, 8, 345–361.

40. Engel, K.; Nagel, R. One-Parameter Semigroups for Linear Evolution Equations; Springer: New York, NY, USA, 2000.
41. Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983.
42. Zhou, Y.; Jiao, F. Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 2010, 59, 1063–1077.

[CrossRef]
43. Wang, J.R.; Zhou, Y. A class of fractional evolution equations and optimal controls. Nonlinear Anal. 2011, 12, 262–272. [CrossRef]

http://dx.doi.org/10.1016/j.amc.2018.11.018
http://dx.doi.org/10.1007/s002850100121
http://www.ncbi.nlm.nih.gov/pubmed/11942532
http://dx.doi.org/10.1016/S0362-546X(97)00693-7
http://dx.doi.org/10.1016/j.amc.2011.01.107
http://dx.doi.org/10.1137/18M1170443
http://dx.doi.org/10.1016/j.amc.2014.12.145
http://dx.doi.org/10.1002/mma.4685
http://dx.doi.org/10.3934/cpaa.2019023
http://dx.doi.org/10.1016/j.jfranklin.2008.08.001
http://dx.doi.org/10.1016/0362-546X(83)90006-8
http://dx.doi.org/10.1016/0362-546X(80)90010-3
http://dx.doi.org/10.1186/s13662-020-02570-8
http://dx.doi.org/10.1016/j.amc.2015.10.020
http://dx.doi.org/10.1016/j.camwa.2009.06.026
http://dx.doi.org/10.1016/j.nonrwa.2010.06.013

	Introduction
	Preliminaries
	The Concept of Mild Solution
	 Controllability Results
	An Example
	Discussion
	References

