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Abstract: The conjugacy problem for a group G is one of the important algorithmic problems deciding
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1. Introduction

Since the formulation by M. Dehn on the topology of surfaces (see [1]), decision
problems have played a central role in geometric group theory and combinatorial group
theory. Among them, the word problem and the conjugacy problem (and the isomorphism
problem) are of major importance. Focused on the fundamental groups of compact man-
ifolds, it was M. Dehn who suggested that the fundamental groups of compact surfaces
have solvable word and conjugacy problems. For dimension 3, there are various ways of
proving that the fundamental groups of 3-manifolds have solvable word problems. One of
the easiest ways is invoking the geometrization theorem and the work of Hempel about
the residual finiteness of 3-manifold groups (see [2]). For the conjugacy problem, Préaux
extended Sela’s work on knot groups ([3]) to prove that the conjugacy problem is solvable
in the class of the fundamental groups of 3-manifolds (see [4,5]). The author refers readers
to [6] for decision problems for 3-manifold groups.

For the dimension n ≥ 4, the situation is completely changed. First of all, in [7],
Novikov constructed a finitely presented group with undecidable conjugacy problems. It is
well known that each finitely presented group is the fundamental group of some n-manifold
for n ≥ 4 fixed. Therefore, the conjugacy problem is, in general, unsolvable in the class of
n-manifolds for n ≥ 4. Furthermore, due to the absence of the geometrization theorem, we
do not expect the kind of unified arguments for the manifolds of high dimensions.

In this paper, we study algorithmic problems for the fundamental groups of recently
introduced high-dimensional manifolds, which are built up with complete finite volume
hyperbolic manifolds. By definition, it turns out that, as 3-manifold groups do, the fun-
damental groups of such manifolds have the graphs of group structure. In Section 2, we
introduce the notion of high-dimensional graph manifolds. Then we study the graph of
group structure for the fundamental group. It is well known that the fundamental group of
the truncated complete finite volume hyperbolic manifold is a relatively hyperbolic group.
In Section 3, various algorithmic problems will be discussed. As a corollary, we prove the
solvability of the word problem. In the final section, we present the example of a reducible
graph manifold such that the fundamental group has the unsolvable conjugacy problem
and we prove the main theorem of this paper.
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Theorem 1. The fundamental group of an irreducible graph manifold has a solvable conjugacy prob-
lem.

2. High-Dimensional Graph Manifolds

Recently, there has been a lot of work on proving rigidity theorems for non-positively
curved spaces and developing these results beyond non-positively curved spaces. In [8],
Frigerio, Lafont and Sisto introduced, as a generalization of 3-manifolds supporting non-
positively curved metrics, the notion of high-dimensional graph manifolds and proved
various, including topological and quasi-isometric, rigidity theorems. They also proved that
there are infinitely many graph manifolds not supporting non-positively curved metrics
even if graph manifolds are, by definition, built up with “pieces” supporting non-positively
curved metrics, and suggested that one might need different approaches to study them to
those used in studying non-positively curved spaces. For details, see [8].

In their monograph, Frigerio, Lafont and Sisto also studied various algebraic and
algorithmic properties of the fundamental groups of high-dimensional graph manifolds.
As indicated in the introduction, we analyze the graph of group structure on the funda-
mental groups of graph manifolds to study the conjugacy problem, and answer one of the
questions posed in ([8], Section 12.1). The definition of a high dimensional graph manifold
follows first.

Fix n ≥ 3, k ∈ N and ni ∈ N with 3 ≤ ni ≤ n for i = 1, · · · , k. For every i =
1, · · · , k, let Ni be a complete finite-volume non-compact hyperbolic ni-manifold with toric
cusps. It is well-known that each cusp of Ni supports a canonical smooth foliation by
closed tori and defines a diffeomorphism between the cusp and Tni−1 × [0, ∞), where
Tni−1 = Rni−1/Zni−1 is the standard torus. Truncate the cusps of Ni by setting Ni =

Ni \ ∪
ai
j=1Tni−1

j × (4, ∞), where Tni−1
j × [0, ∞), j = 1, · · · , ai are the cusps of Ni. Let Vi =

Ni× Tn−ni and fix a subset B of the set of boundary components of the Vis. Finally, glue the
Vis along affine diffeomorphisms between the paired tori in B. The (connected) manifold
M obtained in this way is called a graph n-manifold.

The manifolds V1, · · · , Vk are called the pieces of M. For every i, Ni (or Ni) is the
base of Vi and if p ∈ Ni, the set {p} × Tn−ni is a fiber of Vi. The toric hypersurfaces of M
corresponding to the tori in B are called internal walls and the components of the boundary
of M are called boundary walls.

Definition 1. Let M be a graph manifold, and V+, V− a pair of adjacent pieces of M. We say
that two pieces have transverse fibers along the common internal wall T if, under the gluing
diffeomorphism ψ : T+ → T− of the paired boundary tori corresponding to T, the image of the fiber
subgroup of π1(T+) under ψ∗ intersects the fiber subgroup of π1(T−) trivially.

Definition 2. A graph manifold is irreducible if every pair of adjacent pieces has transverse fibers
along every common internal wall.

In the study of graph manifolds, irreducibility plays an important role in the sense
that it enables us to understand the geometry of a graph manifold in terms of the geometry
of the pieces. Using this idea, various results for quasi-isometric rigidities can be obtained
(see [8], Chapter 10, 11). Related to our interest, a graph manifold is called purely hyperbolic
if all pieces have a trivial fiber and a purely hyperbolic graph manifold supports a non-
positively curved Riemannian metric ([8], Theorem 0.3). The fundamental group of a
purely hyperbolic manifold is hyperbolic relative to cusp subgroups ([8], Theorem 0.12)
and the solvable conjugacy problem ([9], III.Γ. Theorem 1.4). In the case of irreducible
graph manifolds, providing a much wider class than purely hyperbolic graph manifolds,
relative hyperbolicity has been completely studied; namely, the fundamental group of an
irreducible graph manifold is relatively hyperbolic if and only if the manifold contains
a purely hyperbolic piece ([8], Proposition 6.11). The author refers readers to Osin’s
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monograph ([10]) for relatively hyperbolic groups. The word problem is also solvable for
the fundamental group of an irreducible graph manifold ([8], Corollary 6.32).

3. Graph of Group Structure

A graph of groups (G, X) consists of a graph X, a vertex group Gv for each vertex v
in X, an edge group Ge for each edge e in X, and, for the edge e with the initial vertex v,
a monomorphism ie : Ge → Gv from an edge group Ge to the vertex group Gv. We also
require that Ge = Ge, where e is the edge e with the opposite direction. For a graph of
groups (G, X), once a base point ∗ is fixed, one defines the fundamental group π1(G, X, ∗)
of a graph of groups and it turns out that this definition is independent of the choice of a
base point so that we just denote by π1(G, X) (or π1(G), if the underlying graph is obvious).
We denote ie(Ge) in Gv by G−e and ie(Ge) by G+

e . For an element c ∈ Ge, denote ie(c) ∈ G−e
by c− and ie(c) ∈ G+

e by c+.
For a graph of group (G, X), fix the maximal tree T. If a vertex group has the presenta-

tion 〈Si | Ri〉, then π1(G, X) has the following presentation:

• Generators : S1 ∪ S2 ∪ · · · ∪ Sn ∪ {te | e is an edge in X}
• Relators :

R1 ∪ R2 ∪ · · · ∪ Rn ∪ {for all edge e, for all c ∈ G−e , te(i−1
e ◦ ie)(c)t−1

e = c}
∪{for all edge e, te = t−1

e } ∪ {for all edge e ⊂ T, te = 1}
Note that te is called the stable letter associated to the edge e.
In this section, following [11] (Section 5), we briefly recall how to express an element

in π1(G, X) and prove some propositions needed for the main theorem. The author refers
readers to Serre’s book ([11]) for the definitions and basic properties about graphs of
groups.

3.1. Cyclically Reduced Form

Given a graph of groups (G, X), a path in X is a sequence (v1, e1, v2, · · · , em, vm+1),
where vis are vertices of X and ei is the edge in X starting from vi to vi+1. The integer m is
the length of the path. A loop in X is a path between a vertex v and itself. A word of type C is
a pair (C, µ), where

• C = (v1, e1, v2, · · · , em, vm+1) is a based loop in X.
• µ = (µ1, · · · , µm+1) is a sequence such that µi is an element of the vertex group

Gvi , i = 1, · · · , m + 1.

Once a base point ∗ in X is given, a word of type C based at ∗ defines an element in
π1(G, X, ∗), denoted by |C, µ|, µ1te1 µ2te2 · · · tem µm+1. A word of type C, (C, µ) is reduced if
either its length is 0 and v1 6= 1, or its length is > 1 and whenever ei−1 = ei, then µi /∈ G−ei

.

Theorem 2 ([11], Theorem 11). If (C, µ) is a reduced word, then the associated element |C, µ| is
6= 1 in π1(G, X).

A cyclic conjugate of (C, µ) = ((v1, e1, v2, · · · , em, vm+1), (µ1, · · · , µm+1)) is a word
of type (C ′, µ′) = ((vi, ei, vi+1, · · · , vm, em, vm+1, e1, v2, · · · , ei−1, vi), (µi, · · · , µm, µm+1µ1, µ2,
· · · , µi−1, 1)) for some i, 0 ≤ i ≤ m. Note that indices are taken modulo m. A word of type
C is cyclically reduced if all of its cyclic conjugates are reduced, and if µm+1 = 1 whenever
m > 1.

The fundamental group of a graph manifolds canonically has the graph of group
structure induced by the decomposition of the manifold M into pieces V1, · · · , Vk. More
precisely, if we let G be the graph of groups induced by decomposition of M into pieces
V1, · · · , Vk, a vertex group Gv is the fundamental group π1(Vi) of a piece Vi, an edge group
Ge is isomorphic to Zn−1 and a monomorphism ie : Ge → Gv from an edge group Ge
into the vertex group Gv is induced by the inclusion of a boundary component into the
corresponding piece. Finally, a basic result of Bass–Serre theory implies that π1(M) ∼=
π1(G).
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3.2. Various Algorithmic Problems

Consider the base N of a piece of a graph manifold, which is a truncated complete
finite-volume non-compact hyperbolic manifold with toric cusps. It is well known that
π1(N) is hyperbolic relative to cusp subgroups. Since each peripheral subgroup is free
abelian, the following algorithmic problems for the fundamental group π1(N) are all
solvable. See [10] (Corollary 5.5, Theorem 5.6, Theorem 5.12).

• Word Problem. In other words, there exists an algorithm that decides, for a given
g ∈ π1(N), whether g is the identity or not.

• Conjugacy Problem.
• Membership Problem. In other words, there exists an algorithm that decides, for a

given g ∈ π1(N) and a peripheral subgroup T, whether g ∈ T or not.
• General Parabolicity Problem. In other words, there exists an algorithm that allows, for

a given parabolic element g ∈ π1(N), finding a peripheral subgroup T and t ∈ π1(N)
such that t−1gt ∈ T.

• Special Parabolicity Problem. In other words, there exists an algorithm that allows,
for a given peripheral subgroup T and a given element g ∈ π1(N) conjugate to an
element in T, finding an element t ∈ π1(V) such that t−1gt ∈ T.

In [8], the coarse geometry of π1(M) was used to prove that if M is irreducible, π1(M)
has a solvable word problem. Using the basic argument in terms of a graph of groups, we
can prove that the word problem is solvable even for a reducible case.

Theorem 3. Let M be a graph manifold. Then the word problem for π1(M) is solvable.

Proof. Let a word of type C, (C, µ) = ((v1, e1, v2, · · · , em, vm+1), (µ1, · · · , µm+1)) be given.
Note that it defines an element |C, µ| = µ1te1 µ2te2 · · · tem µm+1 in π1(G)(= π1(M)). Then
one can systematically reduce the word to decide whether the associated element represents
the identity or not. More precisely, if there exists i such that ei = ei+1, apply the solvable
membership problem to decide whether µi+1 ∈ G+

e or not. If so, since all vertex/edge
groups are finitely presented, we can find the element µ′i+1 ∈ Gei such that µ′+i+1 = µi+1.
Then replace

((· · · , ei−1, vi, ei, vi+1, ei+1, vi+2, ei+2 · · · ), (· · · , µi, µi+1, µi+2, · · · ))

by ((· · · , ei−2, vi, ei+2, · · · ), (· · · , µiiei µ
′−
i+1µi+2, · · · )). Since this process strictly decreases

the length of the loop, one must stop after finitely many such steps to obtain a word of
length 0 or a reduced form. If we end up with the loop of length 0, we apply the solvable
word problem for π1(V) to determine whether it represents the identity or not. If not, by
Theorem 2, the element is not the identity.

Remark 1. By using the same method as in the proof of the above theorem to every cyclic permu-
tation, one can reduce a word of type C to a cyclically reduced form whose label represents some
element in the same conjugacy class as the given element.

We study two algorithmic problems that are necessary to prove our main theorem.
The following propositions are called the boundary parallelism problem and the two coset
problem. See [4]. We denote by g ∼ h if g and h are conjugate to each other.

Proposition 1. For k ≥ 3, let N be a truncated complete finite-volume non-compact hyperbolic
k-manifold with toric cusps. Let H be a cusp subgroup of π1(N) and g be an element in π1(N).
Then CH(g) = {h ∈ H | g ∼ h in π1(N)} is empty or a singleton. Furthermore, there exists an
algorithm to find CH(g).

Proof. It is well known that the universal cover Ĥk of N is a hyperbolic space with suitable
π1(N)-equivariant open horoballs removed. We consider π1(N)-action on the universal
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cover. Note that the stabilizer of each horosphere corresponds to the conjugate of a cusp
subgroup. Suppose that h1, h2 ∈ CH(g). Then, by the definition of CH(g), h1 and h2 are
conjugate. Suppose that B is the horosphere fixed by H in Ĥk and h1 = u−1h2u for some
u ∈ π1(N). Then uB = uh1(B) = h2u(B) = h2(uB) and, since B is the only horosphere
fixed by H, uB = B. Furthermore, π1(N)-action on Ĥk is free. Therefore, if u fixes another
horosphere so that u pointwise fixes the unique minimal geodesic joining two distinct
horospheres, then u must be an identity. This implies that if u is non-trivial, then u must be
parabolic and fixes B so that u ∈ H. Since H is free abelian, h1 = h2.

Let g ∈ π1(N) be given. Apply the solvable membership problem to decide whether
g is parabolic or not. If g is not parabolic, since a hyperbolic element cannot be conjugate to
a parabolic element, CH(g) is empty. Suppose that g is parabolic. Then apply the solvable
general parabolicity problem to find the peripheral subgroup T′ and an element t such
that t−1gt ∈ T′. Suppose that T 6= T′. Since each conjugacy class of peripheral subgroups
corresponds to an orbit of horospheres under the action of π1(N) on Ĥk, CH(g) is empty.
Finally, if T = T′, then apply the solvable special parabolicity problem to find CH(g).

Note that the fundamental group π1(V) of a piece of a graph manifold is the product
of π1(N) and the free abelian group. Therefore,

Corollary 1. Let π1(V) = π1(Nk
) × Zn−k be the fundamental group of a piece of a graph

manifold. Let π1(T) be the fundamental group of a wall and g be an element in π1(V). Then
Cπ1(T)(g) = {h ∈ π1(T) | g ∼ h in π1(V)} is either empty or a singleton. Furthermore, there
exists an algorithm to find Cπ1(T)(g).

Proposition 2. For k ≥ 3, let N be a truncated complete finite-volume non-compact hyperbolic
k-manifold with toric cusps. Let H, H′ be cusp subgroups (possibly H = H′) and g, g′ ∈ π1(N).
Suppose further that if H = H′, then g′ /∈ H. Then CH,H′(g, g′) = {(c, c′) ∈ H × H′ | g =
cg′c′} is empty or a singleton. Furthermore, there is an algorithm to find CH,H′(g, g′).

Proof. Suppose that there are two distinct elements (c1, c′1), (c2, c′2) in CH,H′(g, g′), i.e.,
g = c1g′c′1, g = c2g′c′2. Then c1g′c′1 = c2g′c′2 ⇒ c−1

2 c1 = g′c′2(c
′
1)
−1(g′)−1. This implies

that c−1
2 c1 ∈ H is conjugate to c′2(c

′
1)
−1 ∈ H′. Note that elements in two distinct cusp

subgroups cannot be conjugate. Applying the same idea as Proposition 1 concludes that
c−1

2 c1 = c′2(c
′
1)
−1 = 1. Therefore, CH,H′(g, g′) is at most a singleton.

By [4] (Lemma 6.1), there exists a constant K that depends on the length of g and g′

and constants related to the relative hyperbolicity of π1(N) such that if g = c1g′c2, then c1
and c2 have the length at most K. Apply the solvable word problem to find all pairs (c1, c2)
such that g = c1g′c2. Then use the solvable membership problem to determine whether
c1 ∈ H and c2 ∈ H′.

Corollary 2. Let π1(V) = π1(Nk
)×Zn−k be the fundamental group of a piece of graph manifold.

Let π1(T), π1(T′) be the fundamental groups of walls and g, g′ be an element in π1(V). Then
Cπ1(T),π1(T′)(g, g′) = {(h, h′) ∈ π1(T)× π1(T′) | g = hg′h′} is either empty or a singleton.
Furthermore, there exists an algorithm to find Cπ1(T),π1(T′)(g, g′).

4. Conjugacy Problem in Fundamental Groups of Graph Manifolds

In this section, we present the algorithm proving the main theorem. Note that for the
graph manifold, being irreducible is necessary for the solvable conjugacy problem. Before
we proceed, we give an example of reducible graph manifolds such that the conjugacy
problem is unsolvable.

Consider the following graph of groups (G, X): X consists of 2 vertices v, v′ and
(p + 1)-edges e0, e1, · · · , ep for some p ≥ 1. All the vertex groups and edge groups are Z4.
Finally, for the edge e0, the monomorphism from Ge0 to Gi(e0)

is the identity, where i(e0) is
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the initial vertex of the edge e0. For i = 1, 2, · · · , p, and each edge ei, the monomorphism
from the edge group Gei to the initial vertex group Gi(ei)

is some affine map φi ∈ GL(4,Z).

Proposition 3. For the graph of groups (G, X) above, two elements g and g′ in vertex groups are
conjugate if and only if there exists φ ∈ 〈φ1, φ2, · · · , φp〉 ≤ GL(4,Z) such that g = φ(g′).

Proof. Choose the subgraph T consisting of two vertices and the edge e0 as the maximal
tree. Suppose that g is conjugate to g′ by k ∈ π1(G), i.e., g = k−1g′k. Let (C, µ) =
((v1, e1, v2, · · · , em, vm+1), (µ1, · · · , µm+1)) be the type of word C whose label represents k.
Then

k−1g′k = (µm+1)
−1(tem)

−1 · · · (te1)
−1(µ1)

−1g′µ1te1 · · · tem µm+1

Consider (µ1)
−1g′µ1 in the middle. If µ1 and g′ are contained in the distinct vertex

groups, use the edge e0 to replace g′ by the same element that is contained in the same
vertex group as µ1. Then, since the vertex group is free abelian, (µ1)

−1g′µ1 = g′. Use
the same idea and the relation (tei )

−1htei = φei (h). Then we can prove that there exists
φ ∈ 〈φ1, φ2, · · · , φp〉 such that g = φ(g′). The opposite direction is obvious.

In [12], Bogopolski, Martino and Ventura proved that there exists a finitely generated
subgroup H = 〈φ1, · · · , φp〉 of GL(4,Z) such that it is impossible to decide whether two
elements of Z4 are in the same orbit under the action of H. Using this fact, we can
provide the example of a reducible graph manifold M such that π1(M) has an unsolvable
conjugacy problem.

Let N be a truncated complete finite-volume non-compact hyperbolic manifold with
toric cusps. Suppose that N has (p + 1) cusps. Let V be the product of N and a 4-
dimensional torus and DV be the graph manifold obtained by gluing the cusps of two
copies of V as follows. One pair of cusps is glued by the map that induces the identity on
the fundamental groups. The other p-pairs of cusps are glued by the maps each of which
induces the affine map, for i = 1, 2, · · · , p,(

Id. 0
0 φi

)
Note that the identity part above means that we glue the cusp of N to the cusp of the

other piece by the map inducing the identity on the fundamental groups and φi ∈ GL(4,Z)
corresponds to the gluing of two 4-dimensional tori, one for each copy.

Theorem 4. The fundamental group π1(DV) of the graph manifold described above has an un-
solvable conjugacy problem.

Proof. By [12] and Proposition 3, it is impossible to determine whether two elements in
the fibers are conjugate or not.

Remark 2. Contrary to the low-dimensional cases, it is not easy to construct hyperbolic manifolds
in high dimensions. This is basically due to the absence of the geometrization theorem. Nevertheless,
in dimensional 3, Thurston constructed various hyperbolic manifolds with arbitrary numbers of
cusps and this eliminates the existence issue of the example above. See [13] for details.

We present the algorithm to prove the main theorem. The algorithm uses the following
theorem, which is well known to experts. The proof can be found in [4].

Theorem 5 ([4], Theorem 3.1). Suppose (C, µ) and (C ′, µ′) are cyclically reduced forms, whose
labels w and w′ are conjugate in the fundamental group of a graph of groups π1(G, X). Then (C, µ)
and (C ′, µ′) have the same length, and moreover, either

1. their length is equal to 0, C = C ′ = (vσ1), and w and w′ are conjugate in Gvσ1
;
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2. their length is equal to 0, and there exists a path (vα0 , eβ1 , · · · , eβp , vαp) in X, and a sequence
(c1, c2, · · · , cp) with ∀i = 1, 2, · · · , p, ci lying in the edge group Geβi

, such that w ∈
Gvα0

, w′ ∈ Gvαp , and

w ∼ c−1 in Gvα0
w′ ∼ c+p in Gvαp

and ∀i = 1, 2, · · · , p− 1, c+i ∼ c−i+1 in Gvαi
; or

3. their length is greater than 0. Up to the cyclic permutation of (C ′, µ′), the loops C, C ′ are
equal, C = C ′ = (vσ1 , eτ1 , · · · , vσn , eτn), and there exists a sequence (c1, · · · , cn), with all
i = 1, · · · , n, ci lying in the edge group Geτi

, such that

µ1 = c+n µ′1(c
−
1 )
−1 in Gvσ1

∀i = 2, 3, · · · , n, µi = c+i−1µ′i(c
−
i )
−1 in Gvσi

In particular, the element c+n ∈ G+
eτn

conjugates w′ into w in π1(G, X):

w = c+n w′(c+n )
−1 in π1(G, X)

Definition 3. Let G be the fundamental group of a graph of groups G. We say G-action on the
Bass–Serre tree T associated to G is K-acylindrical if there exists a constant K such that any
element that pointwise fixes any path in T of length ≥ K is automatically trivial. The action is
acylindrical if it is K-acylindrical for some K.

Proposition 4 ([8], Proposition 6.4). If M is irreducible, then π1(M)-action on the Bass–Serre
tree T is 3-acylindrical.

Proposition 5. Let M be an irreducible graph manifold and u, v ∈ π1(M) be conjugate elements
lying in vertex groups. Then any reduced sequence in Theorem 5 has length at most 2.

Proof. Let ẽ1, ẽ2 be two consecutive edges sharing the vertex ṽ1, and c̃1 ∈ Gẽ1
, c̃2 ∈ Gẽ2

be elements in edge groups in the Bass–Serre tree. If c̃+1 is conjugate to c̃−2 by k ∈ Gṽ1
,

i.e., c̃+1 = k−1 c̃−2 k, then for the wall B corresponding to the starting vertex of the edge ẽ2,
c̃+1 (k

−1B) = k−1 c̃−2 k(k−1B) = k−1B. This implies that c̃+1 fixes the edge ẽ1 and kẽ2.
Suppose (vα0 , eβ1 , · · · , eβp , vαp) is the reduced path and (c1, c2, · · · , cp) be the reduced

sequence that appeared in Theorem 5. If we consider the lift of the path in the Bass–Serre
tree, then, by the argument above and [8] (Lemma 6.3), each ci must be contained in the
fiber subgroup of Gvαi

. Since M is irreducible, p must be less than 3.

Theorem 6. The fundamental group of an irreducible graph manifold M has a solvable conju-
gacy problem.

Proof. Suppose that we are given two words w and w′. Find words of type C whose labels
are w and w′ and reduce them to cyclically reduced forms. Note that a cyclically reduced
form represents an element in the conjugacy class. Without loss of generality, let (C, µ)
and (C ′, µ′) be cyclically reduced words that label precisely w and w′. By Theorem 5, we
assume that they have the same length, otherwise w and w′ are not conjugate. We have the
following two cases.

• Suppose that (C, µ) and (C ′, µ′) have the length of 0. Let us say that C = (v) and
C = (v′). If v = v′, apply the solvable conjugacy problem to Gv to determine whether
w is conjugate to w′ in Gv. Note that Gv is isomorphic to the product of π1(N) and
the free abelian group. Since π1(N), as a relatively hyperbolic group, has a solvable
conjugacy problem, so does Gv. If w and w′ are conjugate in Gv, then conclude that
they are conjugate in π1(M). If not, we do not conclude anything yet and proceed to
the following general case. For each boundary subgroup T of Gv, use the solution in
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Corollary 1 to find an element c− in T conjugate to w in Gv. Note that such elements
are at most singleton. Repeat the same process for each boundary subgroup of Gv′ .
Now for the vertex group containing c+ and each boundary subgroup, find an element
in the boundary subgroup conjugate to c+ in the vertex group. Repeat the process
to successively obtain the conjugate elements in the boundaries. At each step, by
Corollary 1, there exists at most one conjugate element. Furthermore, since M is
assumed to be irreducible, by Proposition 5, this process must stop at finitely many
steps. By Theorem 5, we can determine whether w is conjugate to w′ or not.

• Suppose that (C, µ) and (C ′, µ′) both have the length > 0. Up to cyclic permutations,
we can assume that C and C ′ are the same loop, otherwise w is not conjugate to w′, by
Theorem 5. Suppose that C = C ′ = (v1, e1, · · · , vn, en). For the boundary subgroups in
Gv1 corresponding to the edge en and e1, use the solution in Corollary 2 to find element
cn ∈ Gen , c1 ∈ Ge1 such that µ1 = c+n µ′1(c1)

−1 in Gv1 . Note that there exists at most one
such pair of elements. If such c+n exists, apply the solvable word problem of π1(M)
(Theorem 3) to determine w = c+n w′(c+n )−1 or not. If so, conclude that w is conjugate
to w′ in π1(M). If not, apply the same process to all possible cyclic conjugates (C ′′, µ′′)
of (C ′, µ′) such that C ′ = C ′′. Since there are finitely many such conjugates, the process
must stop and we can finally determine whether w and w′ are conjugate in π1(M).
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