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Abstract: In recent years, wildfires have caused havoc across the world, which are especially ag-
gravated in certain regions due to climate change. Remote sensing has become a powerful tool for
monitoring fires, as well as for measuring their effects on vegetation over the following years. We aim
to explain the dynamics of wildfires’ effects on a vegetation index (previously estimated by causal
inference through synthetic controls) from pre-wildfire available information (mainly proceeding
from satellites). For this purpose, we use regression models from Functional Data Analysis, where
wildfire effects are considered functional responses, depending on elapsed time after each wildfire,
while pre-wildfire information acts as scalar covariates. Our main findings show that vegetation
recovery after wildfires is a slow process, affected by many pre-wildfire conditions, among which the
richness and diversity of vegetation is one of the best predictors for the recovery.

Keywords: causal inference; functional data analysis; functional principal components analysis;
function-on-scalar regression; landsat; NDVI; remote sensing; synthetic controls; time series decom-
position; wildfires

1. Introduction

Wildfires are becoming a major concern for societies around the globe, and research
shows that changes in climate are going to alter the amount and size of wildfires in
specific regions [1–4]. The effects are diverse depending on many factors, like weather
conditions, vegetation affected, land cover, land management before and after the incident,
the geographical region affected, or human vegetation management and risk mitigation.
Wildfires occur by a combination of conditions created either by human intervention
(e.g., power lines failures [5]) or by unpredictable events (such as lightnings [6,7], and
thus are much harder to anticipate). As natural environments become more vulnerable
to this kind of events, cities and inhabitable places need to be made more resilient, as
they are likely to become more frequent due to changes in climate [3]. The result of these
events increasing in size and frequency is hard to capture, as the amount of ecosystems
and populations affected by these is very large.

Remote sensing can be defined as “the science of observation from a distance" [8],
including many types of sensors. In this study, we are particularly interested in satellite
images. These have become an invaluable and increasingly popular research field of study
in the last few decades. Observation of the Earth from a distance has enormous potential.
It allows monitoring and capturing changes in environments around the world, enabling
their detection, quantification and possible prevention, which makes the modification of
human environments more sustainable. Historically, natural disasters have played an
important role in shaping societies, as these pose a significant threat in some regions on
Earth. In order to create resilient and sustainable communities, remote sensing tools can
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help adapt to these events [9–11], and help build environmental policies to protect Earth
as we know it [12]. In this work, we are focusing on how wildfires affect vegetation and
how environments recover from these catastrophic events. Remote sensing plays a critical
role for assessing the impact of wildfires and learning to coexist with these events [13].
We use Functional Data Analysis (FDA, [14]) to analyze wildfire dynamics from remote
sensing data. This work is part of the growing literature on FDA for remote sensing data
(see, e.g., [15–17] among others).

Information from remote sensing provides a very important temporal component
that allows studying and quantifying the dynamical evolution of the effects of wildfires
and recoveries over time. Specifically, ref. [18] uses various sources of remote sensing
data, combined with synthetic controls for assessing the vegetation impacts of wildfires
over time. In this study, we analyze these recoveries processes as functional data. Each
observation measures over several years how the vegetation evolves in a specific region
that suffered from a large wildfire, and it represents the decrease or loss of vegetation (that
will be defined in the next sections) from each wildfire, as a function of time t, starting at the
time of the wildfire up until 7 years after the wildfire, showing the recovery of vegetation
from these events.

Hence, the aim of this study is to explain the effects of wildfires on vegetation from
remote sensing (satellite) images through FDA, as an alternative approach to classical re-
gression methodologies used to study the effects of wildfires. Classical models usually sum-
marize the whole recovery by comparing few periods of time, pre- and post-wildfire [19].
We take advantage of remote sensing technologies and modern statistical tools to answer
questions like the following:

(i) What are the effects of wildfires on different kinds of environments?
(ii) Do the wildfire effects evolution depend on the vegetation of the burned area?
(iii) Can we explain recoveries of vegetation from wildfires using pre-wildfire observ-

able covariates?

This study is focused on medium to large wildfires (≥1000 acres, or 404 hectares) in
California throughout a time-span of two decades (1996–2016). We explain the recoveries of
vegetation from wildfires using pre-wildfire vegetation conditions and other characteristics
of the affected lands using FDA. One of the main advantages from this methodology is that
we can use the whole recovery process as a function of time.

Previous studies use differences between pre- and post-wildfire occurrence, showing
relative difference between values over fixed time periods, or comparisons of few wildfires
(e.g., a dozen wildfires [20], 3 or 5 years after the event [21,22]). This results in raster maps
of differences between few time periods, gaining insights on the exact locations where
vegetation has decreased. However, this approach lacks the temporal nature of the problem,
as vegetation changes over time in a continuous manner.

In order to estimate the dynamical causal effects of wildfires, causal inference through
synthetic controls was used in [18]. This methodology comes from the combination of
Econometrics and Political Science, and it consists on the estimation of a hypothetical
scenario (a counterfactual) with the absence of a wildfire (the intervention). Thus, in
the present case, health vegetation indices were estimated in places where there were
wildfires, as if the wildfires had not happened, using a Generalized Synthetic Control (GSC)
methodology [23]. Then, the wildfire effect was estimated as the difference between the
observed indices and the estimated counterfactuals. Usually the size of the wildfire effect
decreases over time so we also refer as wildfire recovery to the wildfire effect as a function
of time.

We use seasonality adjustment techniques to extract the trend of the wildfire effects
estimated in the previous study. Then proceed to regress these effects, measured over time,
using Functional Regression Models. More precisely, we regress functional responses on
scalar covariates. This results in estimated coefficients changing over time that provide
insights into different questions, as the ones stated above.
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This paper is structured as follows. First, we introduce the used data and their pre-
processing, as well as the algorithms used to obtain the outcomes to be predicted. Next, we
explain the methodology that will be used in this study. Then, we show the attained results
and summarize the key findings derived from this study. Last, we discuss the potential
impact of these results and conclude with final notes.

2. Data Gathering

The study area of this paper is California over the period 1996–2016. There are three
main data sources used for this study. First, perimeters from large wildfires (≥404 hectares)
were obtained from the Monitoring Trends in Burn Severity (MTBS) program [24] con-
ducted by the United States Geological Services (USGS). Second, the Normalized Difference
Vegetation Index (NDVI) Surface-Reflectances coming from several Landsat satellites was
derived and aggregated using Google Earth Engine platform (GEE) over the areas of in-
terest, as well as meteorological conditions over the areas of interest, that were obtained
from GridMET [25] during the observed time span. Third, we use the results from a
previous analysis in [18], where the effects of wildfires were estimated using the above two
mentioned data sources. Details on these data sources are expanded below.

2.1. Wildfires Data

Perimeters from large wildfires (≥404 hectares) that occurred over the considered
time span were obtained from MTBS [24] program, as it provides a consistent source of
wildfire perimeters for this period. Additionally, only perimeters of wildfires that did
not overlap each other over the time period studied have been considered, because the
synthetic control methodology used in [18] is not able to deal with units that experiment
more than one intervention (multiple wildfires, in this case). After pruning the wildfires
that either occurred too early and thus do not have enough pre-wildfire periods (at least
5 years) to estimate the counterfactual vegetation, and the wildfires that do not have enough
follow-up years after the wildfire (at least 7 years), we end up with 243 wildfires. Figure 1
shows the perimeters of the burned areas. As an example, the upper right corner of Figure 1
shows the perimeter from a 2008 wildfire in the Mendocino County, officially named MEU
LIGHTNING COMPLEX (MIDDLE). This fire burned 2087 acres, and the predominant
land cover was evergreen forest. We have chosen this wildfire as an example because it
corresponds to the modal median for 2008 (the deepest function in 2008 according to the
modal depth [26]) and 2008 was the year with the largest amount of wildfires.

Moreover, several spatial covariates were obtained from MTBS: latitudinal and longi-
tudinal centroid of the polygons, the year that the fire occurred, the month when it started,
and the acres or size (in acres) of the burned areas. Lastly, another covariate indicating the
average elevation of the burned areas was obtained from the National Elevation Dataset
(NED) from the USGS. Table 1 shows a summary of the used covariates in this study.
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Figure 1. Map of California and the perimeters selected for this study. The upper right corner shows the perimeter of the
MEU LIGHTNING COMPLEX (MIDDLE) wildfire in June 2008. The figure was generated using geopandas [27], and the
data of the polygons was obtained from the Monitoring Trends in Burn Severity (MTBS) program [24], and polygons of the
state and major lakes and reservoirs were obtained form the California Open Data Portal https://data.ca.gov (accessed on 6
April 2020). The top right-hand side picture was created with the contextily Python package https://contextily.readthedocs.
io/en/latest/ (accessed on 20 April 2021), using the Map tiles by Stamen Deisgn, CC BY 3.0—Map data (C) OpenStreetMap
contributors.

https://data.ca.gov
https://contextily.readthedocs.io/en/latest/
https://contextily.readthedocs.io/en/latest/
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Table 1. Summary of the variables used in this study as covariates for the function-on-scalar regressions.

Variable Description Source

Latitude Average of the South–North latitude coordinates for the pixels in the area of interest. MTBS
Longitude Average of the West–East longitude coordinates for the pixels in the area of interest. MTBS
Avg Elevation Average of the elevation over the sea level for the pixels in the area of interest. NED
Year Year the wildfire occurred. MTBS
Start Month Month the wildfire started. MTBS
log(Acres) Logarithm of the surface (in acres) of the burned area. MTBS
Landcover Predominant type of vegetation over the area of interest. Four categories: Shrubland/scrubland, evergreen forest, grasslands herbaceous and others. GlobCover
Landcover Entropy Shannon’s Entropy of the distribution of Landcover among the pixels in the area of interest. Larger values indicate more variety of vegetation types. GlobCover
Avg NDVI 5 years Average of the Normalized Difference Vegetation Index (NDVI) for the 5 years of pre-wildfire periods (averaged over pixels). LANDSAT
Std NDVI 5 years Standard deviation of the NDVI for the 5 years of pre-wildfire periods (averaged over pixels). LANDSAT
Burning Index Burning index, a proxy for fire weather hazard, as defined in the National Fire Danger Rating System (NFDRS), averaged over pixels. GridMET
Maximum Temperature Maximum Temperature in Kelvin degrees (averaged over pixels). GridMET
Rain Daily precipitation in mm total (averaged over pixels). GridMET
Solar Radiation Solar Radiation in W/m2 (averaged over pixels). GridMET
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2.2. Satellite Data

The NDVI is one of the Landsat Surface Reflectance Derived Specral Indices (LSR-DSI).
For each pixel in a satellite image, it is defined as

NDVI =
NIR− Red
NIR + Red

,

where Red is the spectral reflectance measurement in the red band of the spectrum (centred
near 0.66 µm), and NIR measures the reflectance in the near-infrared band (centred near
0.87 µm). Both, Red and NIR, are codified as 256 grey levels. Therefore the values of NDVI
are always between −1 and 1, but in general they are non-negative. Large values of NDVI
are associated with high contents of live green vegetation.

For instance, Figure 2 shows the NDVI (in red, averaged over pixels) for the MEU
LIGHTNING COMPLEX (MIDDLE) wildfire example. This area was covered mainly by
evergreen forest, having large NDVI values before the wildfire (they oscillate around 0.75).

Figure 2. NDVI for MEU LIGHTNING COMPLEX (MIDDLE) wildfire. Plot of the vegetation indices
NDVI of burned region and counterfactual NDVI vegetation between 2000 and 2016. This figure
shows the evolution of NDVI, as well as the counterfactual estimated as explained in [18]. The data
used to make this plot was obtained aggregating pixels over time of the polygons of burned areas
from MTBS [24] using Google Earth Engine (GEE) [28], and the estimated counterfactual vegetation
was created using the gsynth package [29].

We use the GEE platform to obtain the NDVI for images provided by three Landsat
satellites (LT5, LT7 and LO8) masking clouds, shadows and snow pixels and removing
pixels from water bodies such as lakes, reservoirs, rivers and creeks, as we already did in a
previous study [18]. The Landsat satellites provide a consistent source of 30 m per pixel
resolution, with a frequency of 16 days (approximately 26 observations per year). All the
pixels within a burned region are aggregated by taking the average of each spectral index.
In this way a time series of NDVI values is obtained for each region of interest. Further
details can be found in [18].

Given that our main goal is predicting wildfires effects using pre-wildfire observable
covariates, two additional explanatory variables were created from the spectral indices
data. The average and standard deviation of the NDVI for 5 years of pre-wildfire periods
were computed for all observations. These two variables work as proxies for the type of
vegetation, e.g., larger NDVI values usually show forested areas, whereas lower values
of the average of NDVI and larger standard deviations (associated with strong cyclical
patterns) indicate grasslands or shrublands types of vegetation.

In addition, climatological covariates or weather conditions were obtained using
GEE from GridMET [25]. These were also aggregated on the regions of interest, taking
averages over the regions of interest on all the pre-wildfire available periods (from 1990
until the period where each wildfire occurs). This dataset has a resolution of 4 km per pixel
and contains the maximum and minimum temperature (in Kelvin degrees), precipitation
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accumulation (in daily milimetres), downward surface shortwave radiation (in W/m2),
and burning index from the National Fire Danger Rating System (NFDRS, [30]).

2.3. Effects of Wildfires Data

The main contribution of [18] was to estimate the effect of the studied wildfires over
time.The wildfire effect was estimated as the difference between the observed spectral index
and the estimated counterfactual (the values that the spectral index would have taken in a
hypothetical scenario with the absence of wildfire). Counterfactuals are estimated in [18]
following the proposals in [31], a way to perform GSC [23] based on matrix completion.

Figures 2 and 3 illustrate, for the MEU LIGHTNING COMPLEX (MIDDLE) wildfire
example, the effect estimation process performed in [18]. Figure 2 shows the observed
NDVI as well as the estimated counterfactual vegetation index. The estimated effect is the
difference between these two time series and it is shown in Figure 3.

A descriptive analysis of the estimated wildfires effects is performed in [18]. Among
its findings are the following. Depending on the region burned and the vegetation of these
places, the effects can last from less than 2–3 years to more than a decade post-wildfire, and
sometimes change the state of vegetation permanently. Serra-Burriel et al. [18] also found
that the dynamical effects vary across regions, and have an impact on seasonal cycles of
vegetation in later years. In order to have more conclusive results than the descriptive ones
found in [18], statistical models must be proposed and estimated. A promising possibility
is considering regression models with functional response (the estimated wildfire effects
as functions of the time elapsed after the wildfire) and explanatory variables such as
geographical location, burn severity, size of the burned area, and land cover/vegetation
type. This constitutes the main contribution of the present project.

Figure 3. Plot of the effect and trend extracted for the MEU LIGHTNING COMPLEX (MIDDLE)
wildfire. The estimated effect is shown in light green. The extracted trend is shown in dark green.
This figure shows 5 previous years and 7 years after the wildfire, as this is the inclusion criteria in
this study.

The wildfire effects over time estimated in [18] for 7 years post-wildfire and for each
of the 243 wildfires that meet our inclusion criteria, are the base from which we construct
the functional dataset that will be analyzed in this study. We perform one last step to
preprocess the data, that is the trend extraction as explained in Section 3.1.
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3. Methods

NDVI time series usually present seasonality, as vegetation changes throughout the
seasons of the year. This is especially evident for some types of vegetation, such as
grasslands or shrublands. Therefore, we expect post-wildfire NDVI time series of both,
the observed and the estimated counterfactual vegetation indices, to present seasonal
components. These seasonal components will have different amplitudes, since the burned
region will present distinct seasonal patterns during the recovery. Therefore, the difference
between the burned region NDVI and the counterfactual NDVI will presumably present a
changing seasonal pattern.

Note that, when aligning all the timings of the wildfires, the seasonal pattern of each
particular wildfire will present a different phase, as the timings throughout the year of
wildfires are different: some wildfires occur on summer periods as opposed to the ones
that occur during early spring. Hence, before aligning the recoveries for all wildfires, to
conform a unique functional dataset with no mismatches in the phases of seasonality we
need to extract the seasonal pattern of each wildfire separately.

In addition, several aspects of the remote sensed data can produce measurement error.
Even though pixels that captured clouds were not included at the timing of aggregating
multispectral data to measure vegetation, other types of noise could have potentially
leaked in the data. To reduce the amount of noise and extract recoveries of vegetation from
wildfires, it is suitable for this analysis to smooth the data.

Therefore, for each time series, we perform a LOcally Estimated Scatterplot Smoothing
(LOESS) decomposition, that will simultaneously remove the individual seasonality from
the time series, as well as remove noise from the remotely sensed data.

3.1. Trend Extraction with LOESS and Functional Representation of Data

Once the effects for each wildfire are obtained, we decompose the time series into its
structural components. Trend extraction of univariate data is a wide field of study [32],
where the classical decomposition model [33] is a time series decomposed in additive terms,
separating trend, seasonal component and residuals. Assuming the time series can be
expressed as the addition of separate terms, for a wildfire starting at calendar time t0 (in
years) we have

y(t) = T(t) + S(t) + R(t),

where y(t) is the outcome observed y at time t = t0 + j/26 for j ∈ {1, . . . , N = 7× 26}, T(t)
is the trend component at time t, S(t) is the seasonal component, which is approximately
periodic with cycles of length one year (26 instants of time) in our case, and R(t) is the
residual component of the time series.

One method commonly used in many fields for time series decomposition is the
seasonal-trend decomposition procedure using LOESS [34], that is based on local polyno-
mial fitting. This procedure presents several advantages, such as the flexibility on the trend
and seasonal components extraction or the ability to decompose series with missing values.

We use the LOESS implementation from the Python [35] library statsmodels [36]
to extract the trend from the wildfire effects time series, removing the seasonal and the
residual components at once. Figure 4 shows an example of the time series decomposition
in the MEU LIGHTNING COMPLEX (MIDDLE) example. Figure 3 also shows (in dark
green) the extracted trend over the estimated effect (in light green).

Finally, we align all the extracted trends at t0 = 0 and represent them as functional
data. Each of the 243 wildfires is now represented by a function over 7 years of recovery.
Each year of data contains 26 discrete values for each observation. Figure 5 shows the
functional dataset of NDVI trend recoveries, jointly with their mean function. The MEU
LIGHTNING COMPLEX (MIDDLE) wildfire example is also highlighted in the figure.
Raw data representation has been used for these functional data, that is, every function is
represented as a column vectors with j-th element equal to the value of the function at time
t = j/26, for j = 1, . . . , N = 7× 26.
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Figure 4. Plot of time series decomposition using LOcally Estimated Scatterplot Smoothing (LOESS)
of the MEU LIGHTNING COMPLEX (MIDDLE) wildfire. The four graphics show, from top to
bottom, the estimated wildfire effect, the extracted trend, the seasonal component, and the residuals.

Figure 5. Plot of the functional dataset, composed by the extracted trends from the 243 estimated
wildfire effects. The trend corresponding to the MEU LIGHTNING COMPLEX (MIDDLE) wildfire
example has been marked in green. The functional mean is also represented (in dashed blue lines).



Mathematics 2021, 9, 1305 10 of 22

3.2. Functional Principal Components Analysis

Functional Principal Component Analysis (FPCA; see, for instance, [14] or [37]) is a
dimensionality reduction technique for functional data that generalizes the well known
Principal Component Analysis extensively used for multivariate data.

Consider a functional dataset {yi(t) : i = 1, . . . , n, t ∈ T = [a, b] ⊂ R} with elements
in L2(T ), the set of square integrable functions defined on T equiped with the inner product
〈 f , g〉 =

∫
T f (t)g(t)dt. It is assumed that these functional data are independent realizations

of a functional random variable Y. The main objective of the FPCA is to determine the main
modes of variation of the observed functions around the mean function. Formally, FPCA
can be stated as follows. Let ȳ(t) = (1/n)∑n

i=1 yi(t) be the mean function of the observed
functional data. FPCA looks for functions g1, . . . , gq in L2(T ) (principal functions) and real
numbers (scores) ψij, i = 1, . . . , n, j = 1, . . . , q, such that

n

∑
i=1

∫
T

(
(yi(t)− ȳ(t))−

q

∑
j=1

ψijgj(t)

)2

dt

is minimum. Moreover, the functions g1, . . . , gq are required to be orthonormal
(
∫
T gi(t)gj(t)dt = 1{i=j}). In other words, we are looking for a representation of func-

tional data in the q-dimensional space spanned by the functions g1(·), . . . , gq(·):

yi(t) ≈ ȳ(t) +
q

∑
j=1

ψijgj(t), t ∈ T , i = 1 . . . n.

For s, t ∈ T , the empirical covariance function is defined as

ĉ(s, t) =
1
n

n

∑
i=1

(yi(s)− ȳ(s))(yi(t)− ȳ(t)).

It can be proven that the principal functions are the eigen-functions corresponding to
the largest q eigenvalues of the sampling covariance operator, that is,

Ĉ(gj)(t) =
∫
T

ĉ(s, t)gj(s)ds = λjgj(t), for all t ∈ T , j = 1, . . . , q,

with λ1 ≥ · · · ≥ λq.
Moreover the score of the i-th functional data on the j-th principal function is

ψij =
∫
T (yi(t)− ȳ(t))gj(t)dt.

The numerical computation of the functional principal components can be performed
in different ways. We follow the proposal of [14] (Chapters 8 and 9), based on cubic B-
spline bases expansions of both, the observed functional data and the eigenfunctions of the
sampling covariance operator.

Let B1(t), . . . , BK(t) a cubic B-spline basis on the interval T = [a, b]. We consider the
expansion of the centered functional data in this basis:

yi(t)− ȳ(t) ≈
K

∑
k=1

αikBk(t), t ∈ T ,

that we write in vector notation as yi − ȳ ≈ αT
i B, where αi = (αi1, . . . , αiK)

T and B(t) =
(B1(t), . . . , BK(t))T. Then

ĉ(s, t) ≈ c̃(s, t) =
1
n

n

∑
i=1

B(s)Tαiα
T
i B(t) = B(s)TAB(t),

where A = (1/n)∑n
i=1 αiα

T
i .
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For a generic f ∈ L2(T ), let ∑K
k=1 βkBk(t) = βTB ≈ f be the expansion of f in the

cubic B-spline basis. Then ‖ f ‖2 = 〈 f , f 〉 ≈ βTΦβ, with Φhj =
∫
T
∫
T Bh(s)Bj(t)dsdt. It

can be proven that the first eigenfunction of the sampling covariance operator is also the
solution of max f :‖ f ‖2=1 V̂ar(〈Y, f 〉). However,

V̂ar(〈Y, f 〉) = 〈Ĉ( f ), f 〉 =
∫
T

(∫
T

ĉ(s, t) f (s)ds
)

f (t)dt ≈

∫
T

(∫
T

B(s)TAB(t)βTB(s)ds
)

B(t)Tβdt =

βT
(∫
T

∫
T

B(s)B(s)TAB(t)B(t)Tdsdt
)

β = βTΦAΦβ.

Then max f :‖ f ‖2=1 V̂ar(〈Y, f 〉) is (almost) equivalent to

max
β∈RK :βTΦβ=1

βTΦAΦβ = max
β∈RK :(Φ1/2β)T(Φ1/2β)=1

(Φ1/2β)T
(

Φ1/2AΦ1/2
)
(Φ1/2β)

and the problem reduces to the diagonalization of Φ1/2AΦ1/2. Let u1 be the eigenvector as-
sociated with its largest eigenvalue. Then we take β1 = Φ−1/2u1 and the first eigenfunction
we are looking for is g1(t) = ∑K

k=1 β1kBk(t) = βT
1 B(t).

For obtaining successive eigenfunctions, it must be taken into account that two func-
tions gh = βT

h B and gj = βT
j B are orthogonal if and only if βT

h Φβj = (Φ1/2βh)
T(Φ1/2βj) =

0. Therefore finding the eigenfunctions of the sampling covariance operator reduces to
looking for the eigenvalues of the matrix Φ1/2AΦ1/2.

In this approach to FPCA the smoothness of the principal functions g1, . . . , gq is
inherited from the smoothness of the observed functional data y1, . . . , yn via the empirical
covariance function ĉ(s, t). Nevertheless it is possible to force smoothness in the eigenvalues
explicitly performing a regularized version of FPCA (see [14] (Chapter 9)). To do so, the
problem to be solved is

max
f

V̂ar(〈Y, f 〉)
‖ f ‖2 + λ‖ f ′′‖2

for som λ > 0, where f ′′ is the second derivative of f and the maximization is done in
the space of functions f ∈ L2(T ) for which f ′′ is also in L2(T ). It is easy to see that this
problem with λ = 0 is equivalent to the previously considered FPCA problem, namely
max f :‖ f ‖2=1 V̂ar(〈Y, f 〉). In [14], is proved that the regularized FPCA can numerically
solved by the diagonalization of the matrix

Ψ−1/2ΦAΦΨ−1/2,

where Ψ = Φ + λΓ, and Γ is the K × K matrix with generic (h, j) element Λhj =∫
T
∫
T B′′h (s)B′′j (t)dsdt.

3.3. Functional Regression Models

Analogous to classical regression models, Functional Regression Models (FRM) regress
outcomes based on covariates when using functions as either the outcomes or regressors.
Hence, FRM take advantage of the nature of time changing variables, either parametrically
or non-parametrically. To do so, it can use the functional representation of both regressors
and/or outcomes.

3.3.1. Function-on-Scalar Regression

In this research we use the function-on-scalar regression methodology (see,
e.g., [14,38,39]) as it allows us to understand the relation between the observed outcome
over time, with respect to the fixed covariates observed. Let (X, Y) be a pair of random
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variables, where Y is functional and X = (X1, . . . , Xk) is a random vector of dimension k.
The linear function-on-scalar regression model for Y given X = (xi1, . . . , xik) is stated as

Yi(t) = β0(t) + β1(t)xi1 + · · ·+ βk(t)xik + εi(t), (1)

where Yi(t) is the functional response over time t ∈ T for the observation i, xij is the value
of variable Xj in the observation i, β0(t) is the functional intercept (it is equal to the mean
function (Y(t)) when the k covariates are centered), β j(t) is the functional coefficient for the
j-th covariate Xj for j ≥ 1, and εi(t) is the functional error for the i-th observation, a zero
mean continuous stochastic process, assumed to be indpendent for different observations.
The problem of variable selection in the linear function-on-scalar regression model was
addressed in [40].

However, different kinds of covariates can be considered, as not all of them have a
changing effect over time, or might have different effects. In order to allow the function-on-
scalar regression model to admit richer covariate terms, ref. [41] introduced the functional
additive mixed model (where functional covariates are also allowed). As an example, the
following equation shows a function-on-scalar additive regression model with terms of
different types:

yi(t) = β0(t) + β1xi1 + s2(xi2) + β3(t)xi3 + γ4(t, xi4) + εi(t), (2)

where β0(t) is the functional intercept, β1 is constant over time, s2(xi2) is a smooth function
of the covariate, β3(t)xi3 is the same kind of covariate-coefficient relation from Equation (1),
γ4(t, xi4) is a smooth function depending on t and xi4, and finally εi(t) is the i-th error
function. Variable selection is less developed for the function-on-scalar additive model
than for the linear function-on-scalar model.

In the estimation of model (2), the response functions yi have been represented as raw
data, that is, as a column vector yi ∈ RN with yi(tj) as the j-th entry, where tj = j/26. Co-
efficient functions β j(t), j ≥ 0, are represented by their expansion in a cubic B-spline basis:

β j(t) = ∑
Kj
k=1 β jkBk(t) = βT

j B(t). The smooth functions of the covariates, as s2(xi2), are
represented also by expansions in a cubic B-spline basis over the range of the corresponding
explanatory variable. For instance, s2(x2) = ∑H2

h=1 δ2hD2h(t) = δT
2 D2(x2). Finally, smooth

functions depending on t and an explanatory variable, as x4, are represented by their ex-
pansions in a tensor product basis. For instance, γ4(t, x4) = ∑K4

k=1 ∑H4
h=1 ξ4

khBk(t)D4h(x4) =

vec(B(t)DT
4 (x4))

Tξ4, where ξ4 ∈ RK4×H4 , and vec(M) is the vector formed by concatena-
tion of the columns of matrix M. Using these representations, for the i-th observation,
model (2) can be written as

yi = BN β0 + 1N xi1β1 + 1NDT
2 (xi2)δ2 + xi3 ⊗ BN β3 +

(
DT

4 (xi4)⊗ BN

)
ξ4 + εi, (3)

where 1N denotes the N-vector of ones, BN is the N × K matrix with element (j, k) equal
to Bk(tj), and M1 ⊗M2 denotes the Kronecker product of matrices M1 and M2, and εi is
the raw data representation of the functional noise εi(t). Following [41], model (3) can be
expressed as

yi = Φiθ+ εi,

where Φi and θ can be partitioned into 5 blocks, each corresponding to a term in (3). Let
θ = (θ0, θ1, θ2, θ3, θ4) be the partition corresponding to the parameters.

Assuming white noise, that is ε = (εT
1 , . . . , εT

n)
T ∼ N(0, σ2

ε InN), the penalized likeli-
hood criterium to be minimized for estimating the model is

n

∑
i=1
‖yi −Φiθ‖2 + ∑

v∈{0,2,3,4}
λvθT

v Pvθv,
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where matrices Pv in the the penalty terms are known positive semi-definite matrices,
related with the integral of products of the second derivatives of the elements in the B-
splines basis used in the smoothing terms. The smoothing parameters λv control the trade-
off between goodness of fit to the training data, and smoothness of the non-parametrically
estimated functions of t and/or xj. The proposal in [41] is to adopt a linear mixed effects
model approach to the estimation process, in which the model parameters θ and the
smoothing parameters λv are estimated simultaneously by restricted maximum likelihood
(REML), as it is done in the R library mgcv ([42]) upon which [41] base the function pffr in
their library refund, for estimating models as (2).

4. Results

In this section, we present the main results from this study, showing how the char-
acteristics of the vegetation and land cover previous to the wildfire, as well as the prior
weather conditions to the wildfire, affect the vegetation recovery patterns.

We start summarizing the functional dataset containing the 243 wildfire recoveries.
Their mean function is represented in Figure 5, jointly with the complete dataset. The mean
wildfire effect on NDVI is always negative for the 7 year period after the wildfire, and the
absolute value of this negative effect is monotonically decreasing over time, going from
−0.0856 at time 0 to −0.0418 seven years later, in terms of lost NDVI points, with a global
average of −0.0567. In average, the burned areas are progressively recovering 0.0438 NDVI
points after wildfires (approximately 10% of the range of the functional data set values, see
Figure 5). It is also noticeable that, on average, it takes more than 7 years for a complete
recovery of the NDVI: the value of the mean function after 7 years is still negative. The
library fda.usc [43] in R [44] has been used for the descriptive analysis, including the
choice of the MEU LIGHTNING COMPLEX (MIDDLE) as an illustrative wildfire example,
as it has the modal median recovery function in 2008 (the modal year).

Next, FPCA has been applied to find the main modes of variation of the studied
functional data around the average. Figure 6 shows the mean, and the mean plus/minus
a constant times the first four principal functions, that have been computed using the
function pca.fd from package fda [45] in R, as described in Section 3.2. In particular, the
number of functions in the B-spline basis has been K = 60 and the penalty parameter
λ = 0. These choices have been determined when using the function fdata2fd from library
fda.usc with default parameters to transform the raw functional data into a fd class object
of library fda.

The first principal function explains almost 90% of the variability, showing a direction
of severity in the NDVI drop: wildfires with positive scores in this principal function
experiment smaller drops in NDVI than those having negative scores. The second principal
function (4.3% of the total variability) can be interpreted as a direction separating wildfires
with faster recoveries (those with more positive scores) from those with slower regeneration
capacity (wildfires with more negative scores). The following two functional components
only explain less than 4% of the total variance, with no clear recovery patterns, so they
should be interpreted with caution.

The main goal of this study is to quantify the influence that different pre-wildfire
conditions (geographical region, climatological conditions, or vegetation types) of the
burned areas have on wildfire effects over the subsequent years post-wildfire. In order
to achieve this goal, function-on-scalar additive models (of the type from Equation (2))
are fitted using the function pffr from the library refund [46] in R. The list of potential
covariates to be included in this model is given in Table 1. The number of functions in the
B-Spline basis in all of these fitted models are the default values suggested by the pffr
function: 20 for the functional intercept β0(t), 5 for smoothing terms depending on t (for
instance, β3(t) and γ4(t, x4) in model (2)), and 10 for smoothing terms depending on other
covariates (for instance, s2(x2) and γ4(t, x4) in model (2)). Notice that terms as γ4(t, x4)
need two bases, one in the dimension of t and the other in the dimension of the explanatory
variable x4.
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Figure 6. Functional principal component analysis results for the wildfire recoveries dataset. The
upper plot shows the first four principal functions (with eigenvalues λ1 = 0.020670, λ2 = 0.001005,
λ3 = 0.000530, and λ4 = 0.000346). The lower plots show the mean (black solid line), and the mean
plus/minus a constant times each principal function. The percentage of variance explained by each
component is indicated in the headers.

As far as we know, the variable selection problem for the function-on-scalar additive
model is still an open issue, as we mentioned in Section 3.3.1. In fact, library refund in-
cludes a function doing variable selection for the linear function-on-scalar model (fosr.vs),
but not for the additive extension. Additionally, each of the explanatory variables can enter
in the function-on-scalar additive model in several ways, as it is illustrated in Equation (2).
Therefore we have developed a heuristic model building strategy, which we describe below.

To select the way in which we introduce each covariate to the function-on-scalar
additive model, five different univariate models have been fitted for each covariate sepa-
rately. Exceptions were made for three pairs of covariates (longitude and latitude, average
and standard deviation of NDVI for 5 years pre-wildfire, and landcover and landcover
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entropy) that have been included together additively in these five single models, because
both variables in each pair are jointly summarizing the same characteristic (geographic
location, NDVI, and land cover). Table 2 shows the results from the 11 × 5 = 55 different
fitted models (all of them being sub-models of Equation (2)), in terms of the percentage of
observed variability explained (100 times the adjusted R2).

Table 2. Percentage of observed variability explained from 11 × 5 univariate or bivariate function-
on-scalar regression models. For each row, the selected model is marked in bold.

Term Included in Each Model

Variable βx s(x) β(t)x β(t)x + s(x) γ(t, x)

Latitude, Longitude 7.05 19.91 7.08 19.94 17.63
Avg Elevation 19.03 23.86 19.32 24.15 24.91

Year 4.44 7.93 4.50 7.99 7.19
Start Month 6.40 7.72 6.57 8.39 8.17

log(Acres) 6.20 8.91 6.51 9.22 9.02
Landcover and

Landcover Entropy 4.92 7.25 4.72 7.26 6.98

Avg and Std
NDVI 5 years before 30.58 43.98 33.45 46.85 46.98

Burning Index 8.71 14.70 9.00 14.99 13.52
Maximum Temperature 21.74 27.78 22.19 28.23 28.93

Rain 22.17 29.22 23.25 30.30 28.34
Solar Radiation 7.60 15.18 7.70 15.28 16.24

The columns in Table 2 correspond to different types of models, and the rows to the
variable (or to the pair of variables) used as regressors in the models. In each row, the
complexity of the models increases from left to right: in the first two models, the terms
depend only on the explanatory variable (linearly first, then non-parametrically), while
in the other three models it depends on both, the covariate and the time index (in the
third column, the term is linear in the covariate and nonparametric in time, the fourth
model includes the second and third models terms additively, and finally the fifth model is
nonparametric simultaneously in the covariate and the time index). In general, the models
including a nonparametric term in the covariates have larger percentages of explained
variability (columns 2, 4 and 5, which show an even performance) than those that are
linear in the covariates (columns 1 and 3). Additionally, the inclusion of time dependent
coefficients β(t) (column 3) does not represent a large improvement with respect to the
standard linear term (column 1). Therefore, for each row, a model has been selected
according to a balance between explanatory power and model simplicity: a simpler model
is preferred to a more complex one, if the difference in percentage of explained variability
is less than 1%. At each row, the selected model is marked in bold.

Observe that the best univariate (or bivariate) fits in Table 2 correspond to the models
having average and standard deviation of NDVI for the five previous years to the wildfires
as covariates (almost 47% of explained variability), followed by those including rain (30%)
or maximum temperature (around 28%) as explanatory variables.

Despite we do not delve any further into the results of these simple models (further
comments on individual covariates effect on the response will be made below), we are going
to build a multiple function-on-scalar additive model. Rather than delving further into the
results of these simple models, we are going to build an additive multiple function scalar
model, which in turn will provide further insights on the effect of individual covariates on
the response.

We then proceed to fit a full model (using again the function pffr in refund), which
includes the terms selected in Table 2. The covariates have been centered and standardized
before fitting the model to force all of them to share a common scale. This way the estimated
functions are comparable to each other. Tables 3 and 4, and Figures 7 and 8, summarize
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the fitted model. This model explains a 72.9% of the variability observed in the response,
strongly improving the best model included in Table 2 (46.98%). Tables 3 and 4 indicate
that all the terms included in the model are highly significant. This fact and the large
percentage of explained variability suggest that this is an adequate model.

Table 3. Full function-on-scalar additive model. Estimation of the parametric terms.

Parametric Terms Estimate Std. Error t Value Pr (≥ |t|)
(Intercept) −0.0574 0.0003548 −155.253 <2× 10−16

Landcover Grassland/Herbaceous −0.0022 0.0003699 −4.085 4.42× 10−05

Landcover Shrub/Scrub 0.0031 0.0004906 6.338 2.34× 10−10

Landcover Other 0.0046 0.0013508 3.429 0.000606

Table 4. Full function-on-scalar additive model. Estimation of the nonparametric terms.

Nonparametric Terms Edf Ref.df F p-Value

Intercept(t) 13.218 19.000 364.17 <2× 10−16

s1(Latitude) 8.973 9.000 346.12 <2× 10−16

s2(Longitude) 8.984 9.000 321.41 <2× 10−16

s3(Avg Elevation) 8.632 8.960 520.30 <2× 10−16

s4(Year) 8.959 8.999 123.46 <2× 10−16

s5(Start Month) 4.977 5.000 85.87 <2× 10−16

s6(log(Acres)) 8.906 8.997 9.000 <2× 10−16

s7(Entropy landcover) 8.977 9.000 346.38 <2× 10−16

s8(Avg NDVI 5 years before) 8.988 9.000 675.16 <2× 10−16

β9(t) Avg NDVI 5 years before 3.558 3.831 377.16 <2× 10−16

s10(Std NDVI 5 years before) 8.825 8.989 102.17 <2× 10−16

β11(t) Std NDVI 5 years before 3.962 3.999 433.37 <2× 10−16

s12(Burning Index) 8.940 8.998 214.318 <2× 10−16

s13(Maximum temperature) 8.980 9.000 487.19 <2× 10−16

s14(Rain) 8.966 8.999 286.88 <2× 10−16

β15(t) Rain 3.585 3.844 32.83 <2× 10−16

s16(Radiation) 8.923 8.998 249.83 <2× 10−16

We describe first the results for the parametric part of the model (Table 3), which
only includes the covariate Landcover (a factor with four levels) with constant effects over
time. The reference level for this factor is Evergreen forest. Table 3 shows that burned areas
having had Grassland/Herbacious as dominant land cover experiment larger decrement in
NDVI than evergreen forest areas. The opposite happens for areas at which shrubland or
scrubland were dominant. Regarding the constant coefficients, the most affected areas when
a wildfire happens are grassland/herbaceous (that lose 0.0596 points of NDVI on average;
we noted before that the global average loss is 0.0567 NDVI points), followed by evergreen
forests (losing 0.0574 points of NDVI), then shrublands and scrublands (with a reduction of
0.0543 points of NDVI), and finally areas at which other types of vegetation are dominant
(where the NDVI reduction is of 0.0528 points in average). However, the landcover
covariate cannot be interpreted separately from the other covariates (mainly the average
and the standard deviation of NDVI, which strongly depend on types of landcover).
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Figure 7. Full function-on-scalar additive model. Estimated functional coefficients of the form β j(t).
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Figure 8. Full function-on-scalar additive model. Estimated smooth terms of the form sj(xj).

We move our attention now to non-parametrically estimated terms, using the infor-
mation contained in Table 4 and in Figure 7 (showing the estimation of the functional
coefficients β j(t)) and Figure 8 (which includes the estimations of the functions sj(xj)).

The estimation of the function β0(t) in model (2) is labeled Intercept(t) in Figure 7
(upper panel). Except for a vertical shift, it is approximately equal to the mean function
(see Figure 5). The vertical shift should be equal to the estimated Intercept in Table 3
if there were no factor covariates in the model. In our case, however, this Intercept is
referred to the level Evergreen forest of the factor Landcover.

There are three covariates (Avg NDVI 5 years before, Std NDVI 5 years before, and
Rain) that contribute with two terms (β j(t)xj and sj(xj)) to the full additive function-on-
scalar model. To understand the contribution of these variables to the response recovery
functions, we have to consider simultaneously the two corresponding estimated functions,
where one is represented in Figure 7 and the other one in Figure 8. Regarding Avg NDVI 5
years before (average of NDVI over the 5 years before the wildfire), the estimation of its
functional coefficient β j(t) (Figure 7, second panel) presents a monotonically increasing
pattern with a total increment of 0.04 NDVI points over the 7 years. At the same time, the
estimation of its term sj(xj) (Figure 8, third row, second column) is a roughly decreasing
function with a range of values of more than 0.20 NDVI points. So it follows that the contri-
bution of the term sj(xj) is much larger than that of the term β j(t)xj for this explanatory
variable. The nonparametric term sj(xj) indicates that larger values of NDVI vegetation
tend to suffer more from wildfires. For instance, in average, an area with pre-wildfire NDVI
value equal to the mean plus one standard deviation loses 0.1 NDVI points more than
another area with pre-wildfire NDVI value one standard deviation below the average. For
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these two fictitious areas, the effect of the term β j(t)xj is to add or subtract, respectively,
the estimated coefficient β j(t). Then the area with NDVI values over the mean will have a
larger decrease in NDVI the first one and a half yeas, but its recovery will be faster than in
the area with previous lower NDVI values.

For Std NDVI 5 years before (standard deviation of NDVI over the 5 years before the
wildfire), the relative relevance of the term β j(t)xj is also much smaller than that of the
term sj(xj): their ranges are 0.03 and 0.25, respectively. The functional coefficient β j(t),
negative for all t, is decreasing the first two years and almost constant from then on (with
an approximate value of −0.04 NDVI points). The term sj(xj) in this case is an increasing
function on the standard deviation of pre-wildfire NDVI values, indicating that vegetation
diversity (large values of Std NDVI 5 years before) is a protecting factor against wildfire
effects. Combining both terms, the difference in loss of NDVI points between two areas
with values of Std NDVI 5 years before one standard deviation over and below the mean,
respectively, for t larger than two years is(

β j(t) + s(1)
)
−
(

β j(t) + s(1)
)
≈ (−0.04 + 0.10)− (0.04− 0.03) = 0.05.

For t smaller than 2 years, the differences between these two areas are smaller than
0.05 and increasing in t.

For the explanatory variable Rain, the term β j(t)xj is even less important than in the
two previous cases (the range of β j(t) is smaller than 0.02 NDVI points, and it is almost
constant from two years after the wildfire). On the other hand, the term sj(xj), that has
an approximate range of 0.17, grows rapidly at low values of the variable Rain (smaller
than 0.3 times the standard deviation below the mean, approximately) and then it is almost
constant or slightly increasing. We conclude that moderate or large precipitations seem to
help recover or protect against the wildfire effects.

The remaining 10 explanatory variables contribute to the full additive function-on-
scalar model only with a nonparametric term sj(xj) that remains constant over time after
the wildfire. The estimations of these terms are represented in Figure 8. The most relevant
contribution to the model is that of the covariate Avg Elevation, which estimated term
sj(xj) has a range of 0.20 NDVI points. This function is decreasing in elevation, indicating
that the wildfire effects are larger in more elevated areas, probably because elevated areas
present in average richer vegetation (larger pre-wildfire NDVI values) than those with
lower elevation.

Less important, although also worth mentioning, are the explanatory variables Bi
(burning index) and maximum temperature. For the burning index, the estimated term
sj(xj) is an slightly increasing function in the middle part of the range of burning index
values. It follows that areas with lower fire hazard will have slightly larger wildfire effects.
The estimated term sj(xj) for maximum temperature is roughly decreasing in its argument,
indicating that low maximum temperatures protect moderately against the wildfire effects.

Regarding geographical coordinates contribution to the model, the wildfire effects
in the South (respectively, West) are larger than in the North (respectively, East), but the
differences are small (less than 0.1 NDVI points).

Lastly, we do not find clear and strong interpretable patterns of dependence between
the response, the wildfire effects functions, and the rest of covariates (year, start month,
log(acres), entropy land cover, and solar radiation).

The results we have shown indeed provide evidence that function on scalar regres-
sion models are a useful methodology to answer the research questions we stated in
the introduction. Our findings show that wildfire effects are different depending on the
kind of environment (e.g., average elevation of burned areas, average daily accumulated
rain or average daily maximum temperatures), and that wildfire effects do vary accord-
ing to the vegetation of the burned area (i.e., predominant landcover, type of vegetation
or greenness of vegetation), as suggested by previous literature [21,47–51]. Our results
also suggest that the vegetation response is influenced by the combination of previous
conditions of vegetation and climatological characteristics, e.g., we see that environments
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with vegetation having larger values of NDVI and less seasonal fluctuations are more
severely affected. Moreover, the variance in different types of recoveries can be largely
explained using pre-wildfire observable covariates, such as weather conditions, greenness,
seasonality or location and elevation.

5. Conclusions and Discussion

The functional regression methodology has shown to be an effective way to study
and explain vegetation recovery from wildfires, using pre-wildfire explanatory variables.
The additive function-on-scalar fitted model explains 72.9% of the total variability of the
responses. A large part of the explanatory power of the model goes directly to explain
the recovery dynamic through the presence of regression coefficients that change over
time. Nevertheless, the main part of the relationship between the explanatory variables
and the wildfire effects functions is constant over time after the wildfire and, it is worth
mentioning, non-linear.

The most important lessons we draw from this model are the following. On average,
the recovery process after a wildfire is slow and takes more than 7 years (the time span used
in this study). Each particular wildfire is a combination of a unique set of conditions that
alter vegetation and ecosystems in a different manner, and it seems that all of them have
an effect on the wildfire recovery process. The main risk conditions for a given area from
suffering larger wildfire effects are, in this order, to have a rich and homogeneous vegetation
(large and uniform NDVI, dominance of grassland, herbaceous vegetation or evergreen
forest as land cover), to present a low precipitation regime, to have a large elevation over
the sea level, to have low burning index, to have large maximum temperatures, and to be
located in the South or West of California.

The convenience of studying outcomes changing over time, together with the estima-
tion of the effect of several kinds of conditions pre- and post-wildfire, makes functional
regression models to be a perfect methodology for this kind of studies. Previous studies
use standard multiple regression models to compare absolute values of spectral indices,
or comparisons of geolocated rasters such that these can include the spatial component
of wildfires. However, giving estimates of the effect of these characteristics on the re-
covery pattern of vegetation from wildfires will allow environmental scientists and land
management entities to study the characteristics that need more preservation.

It is important to notice that this methodology has only been implemented over the
recoveries estimated from [18]. Nevertheless, this could be applied in many other research
areas and fields, benefiting from the temporal component that this methodology includes,
as everything is observed and measured over time. Expanding the study area to other
fire-prone regions around the world, and increasing the time-span observed after wildfires
(e.g., 15 years after each fire) would probably allow to observe full recoveries from wildfires.
However, this remains outside the scope of this work.

This study tries to close the gap between satellite remote sensing and evaluation of
wildfires’ effects over time. It must be noted that gathering and pre-processing data, usually
coming from different sources, is a crucial and highly sophisticated task when dealing with
remote sensing data. Functional data analysis, and functional regression in particular, is an
advanced statistical methodology well suited to analyze such rich data sets.
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