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Abstract: This paper examines some approaches to modeling and managing traffic flows in modern
megapolises and proposes using the methods and approaches of the percolation theory. The author
sets the task of determining the properties of the transport network (percolation threshold) when
designing such networks, based on the calculation of network parameters (average number of
connections per crossroads, road network density). Particular attention is paid to the planarity and
nonplanarity of the road transport network. Algorithms for building a planar random network (for
modeling purposes) and calculating the percolation thresholds in the resulting network model are
proposed. The article analyzes the resulting percolation thresholds for road networks with different
relationship densities per crossroad and analyzes the effect of network density on the percolation
threshold for these structures. This dependence is specified mathematically, which allows predicting
the qualitative characteristics of road network structures (percolation thresholds) in their design. The
conclusion shows how the change in the planar characteristics of the road network (with adding
interchanges to it) can improve its quality characteristics, i.e., its overall capacity.

Keywords: increasing traffic capacity; percolation threshold; transport link density; transport net-
work; density of transport links

1. Introduction

Controlling and balancing flows in transport networks is one of the main problems of
modern conurbations. Urbanization and the development of the motor transport industry
have led to the emergence of huge vehicle flows moving within our current limited traffic
infrastructures, and this has led to an increase in delays and, consequently, a loss of time
and money, as well as increased emissions of harmful substances into the atmosphere.

All this entails the requirement for traffic flow control and balancing models and
methods to be developed. In general, it is necessary to look at the topology of a transport
network in order to solve the dynamic task of traffic redistribution. The problem in so
doing, however, is that the number of vehicles in the network is constantly increasing and,
as a result, current management models become outdated and inefficient. It is, therefore,
necessary to search for new management tools or to modernize the physical base (road
width and length, number of lanes etc.) of the current transport network. Let us consider
some of the current approaches to traffic management in transport systems which fall into
two categories: local and systematic management.

Local management is carried out on the basis of statistically estimated vehicle char-
acteristics. The result is provided with the estimate of transport flow efficiency per any
single road junction regardless of any neighboring ones. Systematic management provides
transport flow optimization in the sphere including many junctions and, as a rule, operates
considering the macro-characteristics of the flow. Any change in management operations
on any single junction inevitably leads to a change in neighboring transport flow character-
istics. Conflict between local and systematic management methods is common. Thus, if a
network simultaneously uses both management methods, these should be implemented at
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different times. Local management time is selected with the aim of limiting the influence of
transport flow on neighboring junctions.

Without dwelling in detail on transport flow analysis and the development of man-
agement models throughout history (which include models proposed by Grinschields,
Richards, Grindberg, El Hozaini, Underwood, Drake, and Pipes: optimal speed, “Smart”
driver, leader follow, cellular automata models, etc.) and the different methods of classifi-
cation, this paper instead presents some more recent models.

For example, in [1], a network flow model based on a conservation hyperbolic system
with discontinuous flow was investigated. This investigation showed that the model
could be quickly developed because additional procedures were not required for solution
management. The model developed enables us to automatically select the solution where
a flow is maximized in each direction (user’s optimum), i.e., there is no need to calculate
maximum flow, which could be transferred through any junction (global optimum), as the
model is developed according to standard approaches.

In [2], the authors developed a short-term traffic forecasting method. During this
investigation, an efficiency comparison of specific algorithms was undertaken using the
Volterra prediction model, RBFNN (radial basis function neural network). According to
such a comparison, the Volterra model was selected where traffic data were normalized to
simplify the programming of algorithms.

In [3], the authors developed an algorithm to calculate the exact average speed of flow
movement using mobile detector data for measuring movement speed. The algorithm
developed indicates average speed on a given road section, ignoring repetitive messages,
and a travel time filter is used to compensate such time selection exceeding the road speed
limit. Furthermore, this method comprises errors, such as errors caused by connection
failure, dubbing recording, and other factors.

In [4], the authors performed an investigation on the calibration and testing of a
macroscopic traffic flow model. Their model was investigated and compared to 10 different
algorithms in total (regarding its ability to converge to this solution) for different datasets.
Optimization algorithms using particle swarm (PSO) seemed to be the most effective in
terms of both convergence rate and solution compilation.

In [5], the authors used a Gaussian regression model (GPR), optimized using par-
ticle swarm algorithm (PSO), to predict undefined, nonlinear, and complex traffic in a
road tunnel.

Other studies [6,7] described models of stochastic flow dynamics in traffic networks
with nondeterministic characteristics of statistical parameter distribution, describing the
dependence of the probability of blocking individual nodes from traffic characteristics over
time. The developed mathematical models describe the rules of intersection maintenance
(time of switching traffic lights), considering the material balance of the number of cars
in the system and the connection of their flows between neighboring intersections. The
authors of [6,7] showed that the use of percolation theory techniques and the results of the
stochastic model of traffic flows allows simulating the operation of the transport network
at the level of not only individual nodes, but also the whole structure. The proposed model
allows using a real map of the transport network to create its dynamic model, as well as
simulate its work and the occurrence of traffic jams.

In [8], the authors studied traffic flow instability in experimental and empirical inves-
tigations. To calculate traffic instability, the authors considered the competition between
stochastic violations, which can tend to destabilize traffic flow, and how drivers adapt to
changing speeds, which can, in contrast, tend to stabilize traffic flow.

In [9], the authors developed a modified algorithm for optimizing the transportation
route according to street traffic flow. This study was based on a modified ant algorithm
(ant colony optimization algorithm), being one of the most effective polynomial searching
solutions for dealing with problems regarding route optimization.
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In [10], a structural analysis of public transport routes was performed concerning
tariffs and operating mode. To provide more adequate and logical results, the advanced
route calculation algorithm was proposed for different structures.

In [11], the authors developed a transport network algorithm in the form of a pre-
fractal graph based on their theory. The search for solutions to multi-objective problems
using an indication of the optimal path was carried out by algorithms which searched for
optimal solutions on several criteria if the presence of such criteria was proven or based
on a solution with specific deviations from the optimal solution. In this paper, the largest
maximal chains extraction algorithm (MCEA algorithm) was used with the arbitrary graph.

In [12], the professional system and regulator using the fuzzy logic module was
studied for traffic control systems at intersections.

In [13], the authors developed a traffic control method based on a traffic efficiency
index they compiled, comprising factors such as traffic and road capacities.

In [14], the authors studied loaded traffic management issues using a prediction
model for any specific intersection and within the transport area. Using a solution based
on a predictive management algorithm model, the residual queue is distributed, due to a
transport demand which exceeds the capacity of the crossing, along all incoming transport
links. Simultaneously, in the case of long-term implementation of the intersection, a big
queue accumulation in oversaturation mode is observed. In this case, a network-wide
delay can be prevented by decreasing transport demand at intersection entrances only.

Another author [15] studied the possibility to use the main network traffic diagram for
prediction of traffic functioning conditions in cities. The traffic model studied by the author
was based on the use of standard Pipes model for indication of dependencies between
speed and density for traffic performance calculation. The model analysis showed that
it is necessary to limit a high level of vehicle accumulation and use the correspondent
management strategies when controlling traffic on roads in cities.

In [16], the authors studied the nature of traffic interval distribution depending on
the distance from the previous signaled crossing. According to the investigation results,
the authors made a conclusion that normalized Erlang distribution is the most suitable
practice for description of intervals inside traffic groups.

In [17], the principles of using telecommunications technologies based on the protocols
of interaction of the type “car-to-car” were examined to organize an efficient infrastructure
in terms of ensuring traffic transport. The information used for this method included the
parameters of movement, the location, and the parameters of the state of the car’s systems.
After processing and analyzing this information, it is possible to form recommendations
and management effects. These recommendations are used by the driver or an automated
driving system. The article described a model that allows realizing the interaction of cars,
which can determine the optimal use of the car’s resources, as well as the aggressive driving
style of the vehicle.

A brief review on the development of recently created models shows that, despite
their variety, no investigations studied the general features of transport network structure,
indicating its conductivity. No works banded the dynamic characteristics and structural
features (topology) of transport systems.

Accordingly, this paper aimed to study the effect of the density of transport network
connections on their conductivity when blocking nodes and/or links, analyzing the depen-
dence of such an influence and finding generalized patterns for predicting the properties
of the road network (the possibility of determining the percolation threshold based on the
calculated density of the road network). This should take into account different types of
network structures (planar and nonplanar networks) and various tasks to be solved (node
tasks and link tasks).

2. Statement of the Problem

The significant density index of vehicles per area unit of all current roads leads
to an inevitable congestion of vehicles at one or other elements of the traffic system
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(e.g., intersections and roads), i.e., delays (jams). Most traffic investigations, analyses,
and subsequent developments of management models focus on local-level solutions, not
considering the transport network.

The traffic systems of modern conurbations have very wide, complex, and branching
structures (see Figure 1 for example), which may be represented as a graph (junctions—
road intersections and edges—roads). When modeling traffic, it is necessary to consider
the dynamic of traffic mass change (daily variation of flows) and the fact that all elements
of the transport graph (junctions and edges) have different characteristics (traffic capacity).
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If we trace the path of the detailed traffic graph model generated with a detailed
description of its attributes (number of lanes, route length, number of directions at intersec-
tions, etc.), requiring such a model for the local management of traffic would be extremely
complicated and difficult to implement for practical purposes.

It is arguably more convenient to create a traffic percolation model to make the
structure more efficient, regardless of which specific elements could be blocked due to the
formation of traffic delays. In this case, functioning and reliability mean that at least one
freeway is possible which comprises unblocked graph elements between any two arbitrary
network junctions.

3. Percolation Theory Methods for the Network Transport Structures

Percolation theory (graph-based probability theory) studies solutions to problems
relating to junction and link tasks [18–21] for networks with various regular and accidental
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structures. When solving the link problem, the link share must be separated by at least
two isolated parts (or, conversely, the fraction of conductive nodes (crossroads) when
conductivity occurs). When solving junction problems, the fraction of blocked junctions
is indicated where the network is broken up into isolated clusters within which links can
be kept (or, conversely, the fraction of conductive junctions, when conductivity occurs).
Percolation threshold is the fraction of nonblocked junctions (junction task) or unbroken
nodes (crossroads) (nodes task), where conductivity occurs between two randomly selected
network junctions. For the same structure of percolation threshold values, junction, and
nodes (crossroads), tasks have different meanings. Note that, in the case of junction
blocking, all links are blocked, and, in the case of node (crossroad) blocking, only one link
is blocked between neighboring junctions.

Use of the term “blocked junction fractions” or “blocked road fractions” is equivalent
to the occurrence probability that a randomly selected junction (or nodes) will be blocked.
Therefore, we may accept that the percolation limit value indicates the probability of pas-
sage through the whole network if any of its junctions (or links) are blocked or (removed),
i.e., given the average probability of a single junction (or nodes) being blocked.

Achieving the percolation threshold in a network corresponds to a cluster where links
exist among random junctions. An endless or contracting conducting cluster is formed.
Note that this approach claims to be universal and can be applied not only to the topology
of road networks, but also to other topologies [22].

For finite structures, conductivity may appear at different fractions of conducting
junctions (or links, see Figure 2). However, if network size L tends toward endlessness,
then the sphere of transfer becomes compact (see Figure 2, curve I for small-sized structure
or curve II for an endless network).
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conductive junctions (or links).

For finite-sized structures, the percolation threshold structure ξc(L) may be determined
from the fixed value of network transition probability in relation to the conducting state. In
Figure 2, this probability is chosen to be equal to 0.5 (50%). However, we could also take a
value of 0.95 or 0.99, for example (then, the percolation threshold would correspond to the
given criteria of network reliability working); in other words, it is possible to determine
what fraction of blocked junctions and/or links influences the decrease in the necessary
level of performance.

Based on specified work reliability values (the probability of transition or being in
conductive state), we can find the fraction of unblocked junctions (or road).

The fraction of blocked junctions (or links) where network conductivity disappears
(which can be calculated as follows: one minus conductive junctions (or links)) causes
the blocking of the network as a whole, and this value can be associated with the macro-
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characteristics of traffic in the current transport system. In the simplest case, we can give
the following estimate: the accepted level of intensity of traffic without delays (presented
as qmax) for European cities is 600–900 vehicles and in the USA up to 1300 vehicles per
hour per lane; in Russian cities, this index is 300–700 vehicles per hour per lane. Therefore,
knowing the total city road stretch and number of lanes, as well as daily vehicle dynamics,
we can use such data to calculate the average traffic intensity at any moment (presented as
q(t)). Then, the average probability (P(t)) of a network element blocking at any moment in
time t may be indicated as follows:

P(t) =

{
q(t)
qmax

, q(t) ≤ qmax

1, q(t) > qmax
.

Furthermore, using such a probability estimate of network element blocking, we can
find, at a given time t, the state of the reliability and efficiency of the network as a whole, as
well as analyze daily dynamics of changes to the network and, consequently, if necessary,
change the structure (for example, link density) of the transport system as appropriate (the
way in which the traffic functioning reliability is associated with density of its links, for
example, as discussed later in the article).

For exact estimates of average blocking probability, different macroscopic mathemati-
cal models of traffic flows can be used (drawing on the models proposed by Grinschilds,
Richards, Grindberg, El Khozaini, Underwood, Drake, and Pipes: the optimum speed,
“Smart” driver, leader follow, cellular automata models, etc.).

The main problem when investigating percolation features of network structures
which have accidental structures is that there are currently no established analytical meth-
ods and, as such, it is only possible to study such networks by using computer-aided
simulation. First of all, it is necessary to build a topological graph, which is itself a rather
difficult task for studying the percolation properties of planar network structures which
have accidental structures.

The application of some methods of percolation theory to traffic flow modeling was
described in [23]. In this paper, traffic dynamics were seen as a critical phenomenon, in
which there was a transition between isolated local and global flows on the roads with
the formation of clusters of congested sections of the transport network in local structures
and their unification into a global cluster. Local flows are connected by narrow links, and
narrow links can occur in different places of the transport network at different times of
the day. The authors of [23] described such processes as the percolation of traffic between
local clusters. The authors tried to describe how local traffic flows interact and merge into
a global stream across the city network.

When modeling a transport structure, it is difficult to assess the entire dynamics
of traffic organization throughout the network as a whole and to link it to local traffic
characteristics. To solve this problem, the authors [23] used the percolation theory. They
collected and analyzed the speeds of more than 1000 roads with record 5 min segments
measured on roads in Beijing’s central district. The data covered a period of 2 weeks in
2013, with the road network encompassing intersections (nodes) and sections of the road
between two intersections. For each road, the speed Vij(t) changed throughout the day in
accordance with real time. For each road eij, authors set the 95th percentile of its maximum
speed at each day and defined the model parameter rij(t) as the ratio between the current
speed and the limited maximum speed measured for that day. At some given threshold q,
all eij roads could be divided into two categories: functional at rij > q and dysfunctional at
rij < q. With this assumption, the authors found it possible to build a functional network of
traffic for a given value q from the dynamics of road traffic in the network.

At q = 0, nothing happens with the traffic in the network, whereas, at q = 1, it becomes
completely fragmented. The hierarchical organization of road traffic at different scales
appears only in the road groups where rij above q. These clusters are functional modules
consisting of connected roads at speeds above q. For example, at q = 0.69, there is a speed
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that the entire transport network cannot maintain. When the value of q is reduced to 0.19,
small clusters merge together and form a global cluster, in which the functional network
(with less flow speed) extends to almost the entire road network.

The merit of the authors’ method for modeling and analyzing traffic is that, by having
data on traffic flows in the real network, it is possible to determine the critical value of qc
below which the transport network loses functionality (percolation threshold). In [23], qc
was set to approximately 0.4.

The drawback of the study is that the results are private and only available for a
certain part of Beijing’s transport network. In this regard, they cannot be generalized to
a transport network with an arbitrary structure. In addition, another drawback is the
significant laboriousness of the method of analysis and modeling of transport networks
proposed by the authors of this work.

A more technological and versatile modeling method may be to use common network
characteristics, such as the impact of network density on traffic recycling. In this case, if
it turns out that the density of the network, regardless of its real structure, is a universal
characteristic, allowing the user to link structural and dynamic (traffic) characteristics, it
at least reduces the laboriousness of analysis and modeling of the health of the transport
network, thus becoming more universal.

4. Methods and Algorithms for Calculating the Percolation Properties of Random
Network Structures: Modeling the Dependence of the Percolation Thresholds of
Random Networks on Their Link Density

The main problem when investigating percolation features of network structures which
have accidental structures is that there are currently no established analytical methods and, as
such, it is only possible to study such networks by using computer-aided simulation.

When studying and modeling percolation processes in transport networks, it is nec-
essary to consider that they have two components: planar and nonplanar (taking into
account multi-level interchanges).

First of all, it is necessary to build a topological graph, which is itself a rather difficult
task for studying the percolation properties of planar network structures which have
accidental structures.

4.1. Algorithm of Planar Networks with Accidental Structures

In order to build a planar network with an accidental number of links for each junction
(network density), we may use the following algorithm [24]:

(1) Plot the total number of junctions N and quantity of links E.
(2) Generate a list S consisting of junctions N with accidental coordinates (x, y).
(3) Select the junction n0 with the smallest coordinate along x; if there are any junctions,

then select the point with the maximal y coordinate. Point this junction as n0 {n0x;
n0y}. The first index shows us the number of junctions, and the second one shows the
coordinates of the junction.

(4) Sort junctions on the list S by the increase of the distance L value from the junction n0
as follows:

L =
√
(n0x − nix)

2 +
(
n0y − niy

)2,

where n0 is the selected first junction, i is the junction index, nix is the x-coordinate of
junction i, and niy is the y-coordinate of junction i. After such a step, we have a sorted
junction list: n0 {n0x; n0y}, n1, n2 . . .

(5) Join the first three junctions n0, n1, n2 from the list S to the first triangle, adding edges.
Moving clockwise from the edge between the first and second junctions in the list,
add the triangle edges to the cyclical list H.

(6) Sequentially process all junctions from the list S.

a. Take the first raw junction ni.
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b. In the H list, take the last edge V, which joins na {nax; nay} and nb {nbx; nby} with
ni {nix; niy} to form a left turn. The following condition is satisfied:

(nix–nax) ∗
(
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by − nay

)
–
(
niy–nay

)
∗
(
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bx − nax
)
> 0.

c. Among all the edges H, find the first edge VL which does not satisfy the left
turn condition (appearing before and to the left of edge V).

d. Among the edges H, find the first edge VR which does not satisfy the left turn
condition (being behind and to the right if edge V).

e. Sequentially process all edges from the list H between VL and VR. Each of these
edges forms a new triangle with junction ni by adding new edges among them.

f. Remove all edges between VL and VR from the list H.
g. From the first triangle added, take the edge between ni and the edge point,

absent from the following processed triangle, and add it to the list H.
h. From the first added triangle, take the edge between ni and the edge point,

absent from the previous processed triangle, and add it to the list H.

(7) Remove the edges from the current graph, until their quantity is no longer equal to
E. Edges should be selected randomly but only removed if there is a way to do so
without them being between the junctions of such an edge.

Sorting Joints Clockwise

(1) Find the center of the polygon for whole junction as follows:

R =
∑i ri

i
,

where i is the index of edges connected to the junction, ri is the i-edge vector with
(x, y) coordinates, and R is the calculated center of the polygon for the whole junction.

(2) Shift all apexes so that the center is at the beginning of the coordinate.
(3) Take a zero value (for example, radius OA vector = (0, 1) see Figure 3).
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Figure 3. Selection of points while sorting.

(4) Find corners among the vectors from the center to each apex and OA (corners should
be over the range of 0–360).

(5) Sort corners from smaller to larger ones.

Using this algorithm, we can build different accidental planar networks; an example
is presented in Figure 4.
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Figure 4. Example of an accidental planar network consisting of 500 junctions with an average
number of links equal to 2.9.

4.2. Network Percolation Threshold Calculation Algorithm

The network percolation threshold algorithm used consists of the following steps [24]:

(1) Randomly select two network junctions A and B, considering limits, with at least one
intermediate junction between them.

(2) Set the blocking probability value of the single junction (in the junction task) or link
(for the link task) and randomly block the junction (or link) fraction which is equal to
this probability.

(3) Check for the presence of at least one “free” way in the network (a route which is
included in the junction or link list) from junction A to junction B. If no “free” way is
present (i.e., number of “free” ways is equal to 0), record 0. Otherwise, record 1.

(4) Increase the blocking probability value of a single junction (for the junction task) or
link (for the link task) on any value. Then, randomly block the fraction of network
junctions (or links), equal to the specified probability value. Next, indicate the specific
network junctions being excluded.

(5) Repeat step 3, until all network junctions have been processed.
(6) Return to step 2 and execute steps 3–5 Q times (for example, several hundred times).

Repeat all steps (if the whole network is blocked) on all experiments. Indicate the
number of embeddings, where at least one “free” way was indicated (designate as
ξ). For example, at step h = 18 in 8, 12, 19, 56, 58, 76, 80, and 89 experiments with at
least one “free” way, then ξ(5) = 8 (8 is the total number of “free” ways). Find the
value ρ(h) = ξ(h)/Q, h—step number per step. Calculate the average cluster size
of excluded junctions, the quantity of such clusters, etc. (on all N experiments per
step). The average size of the cluster may be indicated as the ratio of all value sums
obtained for this clustering step (on all Q experiments) to total number of experiments
Q. For illustrative purposes, we can consider the following example: assume that,
at step h = 6 in the first experiment, four clusters were obtained, each having a size
of 15 junctions, whereas three clusters were obtained in the second experiment, two
clusters were obtained in the third, etc. Then, the average number of clusters having
a size 10 of blocked junctions would be equal to (4 + 3 + 2 + . . . + 5)/100.

(7) Then, return to step 1 and repeat the implementation of steps 2–6, W times. For each
W test, we can calculate the value pw(h) = ξ(h)/Q. Index w indicates which W-test
to study.

(8) After completing the simulation, for each of the h steps, we can calculate the value

ρ(h) =
W=100

∑
w=1

pw(h)/W, i.e., the average value of the probability ratio for passage

through the network as a whole through unblocked junctions (or links for the task of
link blocking) at each of the steps (considering different possible route configurations).
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Calculating using this algorithm enables us to obtain a database for the dependency of
the average ratio value of the probability of passage through the network ρ(h) as a whole
on the fraction of blocked junctions (or links for link blocking tasks), at different average
numbers of links, per junction (network density).

4.3. Calculating the Dependency of the Percolation Threshold Dependency on the Network Density
(Average Number of Links per Crossroad)

The results of computational modeling and calculation of percolation threshold values
for planar networks with an accidental number of links per junction for junction and link
blocking tasks are presented in Table 1. Note that column 3 named “density” represents
the average number of links per single junction, and the values of reverse link densities are
specified in brackets. Column 4 named “threshold” represents the value of the percolation
threshold (fraction of conductive junctions or links where network conductivity appears as
a whole). The natural log values of percolation thresholds are specified in brackets.

Table 1. Values of percolation thresholds for planar networks with an accidental structure.

No. Task Type Density Threshold

1.

Junction blocking task
[19–21]

5.99 (0.167) 0.500 (−0.693)
2. 5.40 (0.185) 0.533 (−0.629)
3. 4.80 (0.208) 0.570 (−0.562)
4. 4.50 (0.222) 0.593 (−0.523)
5. 4.20 (0.238) 0.618 (−0.481)
6. 3.90 (0.256) 0.650 (−0.431)
7. 3.60 (0.278) 0.683 (−0.381)
8. 3.42 (0.292) 0.708 (−0.345)
9. 3.18 (0.314) 0.750 (−0.288)

10. 2.94 (0.340) 0.793 (−0.232)
11. 2.70 (0.370) 0.852 (−0.160)
12. 2.46 (0.407) 0.925 (−0.078)

13.

Link blocking task

5.99 (0.167) 0.395 (−0.929)
14. 5.69 (0.176) 0.405 (−0.904)
15. 5.39 (0.186) 0.435 (−0.832)
16. 5.09 (0.196) 0.445 (−0.810)
17. 4.49 (0.223) 0.480 (−0.734)
18. 4.19 (0.239) 0.510 (−0.673)
19. 3.89 (0.257) 0.550 (−0.598)
20. 3.59 (0.279) 0.570 (−0.562)
21. 3.29 (0.304) 0.625 (−0.470)
22. 2.99 (0.334) 0.685 (−0.378)
23. 2.87 (0.348) 0.715 (−0.335)
24. 2.70 (0.370) 0.770 (−0.261)
25. 2.58 (0.388) 0.805 (−0.217)
26. 2.39 (0.418) 0.900 (−0.105)

Table 1 includes percolation threshold values as a fraction of conductive junctions
(or links), where network conductivity appears. The fraction of blocked junctions (or
links), where network conductivity disappears may be found as one minus the fraction of
conductive junctions (or links).

Note that the percolation threshold values of planar networks with different densities
for junction blocking tasks were calculated by the present authors in earlier works [25–30],
where networks consisting of 100,000 junctions were used to carry out computational
simulations. In order to undertake numerical experiments while solving network tasks,
a network with 5000 junctions was used, requiring significant computational steps to
successfully solve the tasks.

A 0.5 value of probability that the network transition is in a conducting state (see
Figure 2) was selected as the percolation threshold of percolation network structures.
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However, note once again that we may take, for example, another value of transition
probability of 0.95 or 0.99 (the percolation threshold would be set by the reliability criteria),
i.e., we may calculate the fraction at which the total number of blocked junctions and/or
links leads to the network losing the required level of efficiency.

It is important to note that the average number of links per single junction (network
density) for a planar graph cannot exceed a value of 6. This is due to the Euler theo-
rem [31], according to which, for a plane graph, the following equation should be fulfilled:
V—E + F = 2, where V is the number of vertices in the graph, E is the number of edges, and
F is the number of areas the graph separates in the plane.

In Figure 5, the dependencies of percolation threshold values of planar networks on
the average number of network links per single junction (in junction blocking tasks [24]
and in link blocking tasks) are presented.
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To calculate the influence of the network’s structure density on the value of its perco-
lation limits, it is necessary to analyze the data, shown in Table 1 and in Figure 5, and to
calculate a functional dependency which may describe the influence of the network density
on the value of its percolation limit. This enables us to calculate the link density of actual
transport networks, to estimate the value of their percolation limit and, consequently, draw
conclusions on the reliability of their structure, i.e., at which fraction of blocked junctions
and/or links the network as a whole loses the required level of efficiency.

The results obtained can be used in the process of transport network construction or
renovation in order to increase traffic potential and working capacity.

In [32–34] based on the topological structure of binding clusters proposed by Schklovskiy
and de Zhen (“skeleton and dead ends”), the function of conditional flow probability (perco-
lation) in grid Y(ξ, L) was obtained as follows:

Y(ξ, L) =
1

1 + e−S(ξ,L)
, (1)

where S(ξ, L) = ∑
i

ai(ξ
i − ξ i

c(L) is the polynomial of degree i, ai represents its coefficients,

ξ is the fraction of blocked junctions, and ξc(L) is the fraction of blocked junctions, corre-
sponding to the percolation threshold value which depends on the size of the network L.
The polynomial S(ξ, L) of degree i may depend on the topological features of the network
structure (network density, space symmetry, dimensionality etc.), which may be set during
phenomenology with coefficients ai.

The main problem when describing percolation using Equation (1) is indicating the
polynomial degree i and its coefficients. The shred use of Equation (1) and Hodge algebraic
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geometry methods [35], as well as Kadanoff–Wilson renormalization theory [36,37] with
groups (see, e.g., [18]), enables us (in all cases) to calculate theoretical values of the percola-
tion threshold for any regular structures [32–34]. In Hodge theory, algebraic varieties are
studied (varieties, consisting of subsets, any of which comprise a set of solutions to any
polynomial equations). Geometrical representations of algebraic varieties are called Hodge
cycles. Linear combinations of such geometrical figures are called algebraic cycles [38].

The core of this approach is that we may depart from using Hodge methods and
Kadanoff–Wilson renormalization groups to calculate the dependency of polynomial S(ξ, L)
of degree i, from conditional probability Y(ξ, L) of the flow in the grid, as well as to calculate
the influence of topological factors on such a dependency. Using Equation (1), we can
derive the following:

lnY(ξ, L) = −ln
{

1 + e−S(ξ,L)
}

,

where S(ξ, L) = ∑
i

ai
{

ξ i − ξ i
c(L)

}
is the polynomial of degree i, ai designates its coefficients,

ξ is the current value of the blocked junction fraction, and ξc(L) is the fraction of blocked
junctions, which corresponds to the percolation threshold value (this depends on the size
of network L). Considering that a value near to the percolation threshold is ξ ≈ ξc(L), then
the polynomial value S(ξ, L) is small and e−S(ξ,L) may be expanded in series, restricted by
two elements. After some manipulation, we can derive the following:

lnY(ξ, L) ≈ 1 − S(ξ, L) = 1 − ∑
i

ai

{
ξ i − ξ i

c(L)
}

. (2)

The righthand side of Equation (2) may be the function (or composed function)
of certain variables, each of which is associated with any specific absolute concept of
the network. For example, one of the variables may be the average number x of links
(network density).

The described approach enables us to analyze the data specified in Table 1 and in
Figure 5. It also enables us to present the dependency for the base logarithm of the
percolation threshold lnP(x) on topological characteristics, for example, network density
reciprocity (1/x), calculated as one divided by the average number of links per single
network junction (see Figure 6). As may be inferred from Figure 6, the dependencies
identified have a linear form and may be approximated by linear equations.
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For planar structures in nodes tasks, the dependency of a percolation threshold
log lnP(x) on the reciprocal of the network density (1/x) may be described using the
following equation:

lnPnode, unreg(x) =
2.52

x
− 1.08, (3)
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with a correlation number coefficient value and linear dependency equation equal to 0.99
(see righthand line 1 in Figure 6). In the links task, this equation becomes

lnPbond, unreg(x) =
3.19

x
− 1.44, (4)

with a correlation number coefficient value and linear dependency equation equal to 0.99
(see the righthand line 2 in Figure 6).

The focus here is a comparison of percolation features for accidental and regular planar
networks. For example, the transport networks for New York or Mexico (see Figure 1) have
a structure resembling a square lattice, while the transport networks of many other cities
have structures which more closely resemble the structure shown in Figure 4. This leads
us to question how the thresholds for such network blocking can differ at the same link
density.

In Table 2, the percolation threshold values of some regular networks are shown (see
Figure 7), and the cited literature is specified (where the source was not specified, the
percolation threshold values were indicated in the numerical modeling results).

Table 2. Percolation threshold values for planar networks with regular structures.

No. Task Type Density Threshold

1.

Node blocking task

2.7 (0.37)–f in Figure 5. 0.74 (−0.30)
2. 3 (0.33)–d in Figure 5 [17]. 0.70 (−0.36)
3. 3.40 (0.29)–g in Figure 5. 0.64 (−0.45)
4. 4 (0.25)–a in Figure 5 [17]. 0.59 (−0.53)
5. 4.5 (0.22)–e in Figure 5. 0.56 (−0.58)
6. 6 (0.17)–b in Figure 5. 0.50 (−0.69)
7. 6 (0.17)–c in Figure 5 [17]. 0.50 (−0.69)

8.

Bond blocking tasks

2.7 (0.37)–f in Figure 5. 0.69 (−0.37)
9. 3 (0.33)–d in Figure 5 [17]. 0.65 (−0.43)

10. 3.40 (0.29)–g in Figure 5. 0.52 (−0.65)
11. 4 (0.25)–a in Figure 5 [17]. 0.50 (−0.69)
12. 6 (0.17)–b in Figure 5. 0.36 (−1.02)
13. 6 (0.17)–c in Figure 5 [17]. 0.35 (−1.05)
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Figure 8 shows that dependencies of natural logs for percolation threshold values
of regular networks from the reverse density of links are also described accurately using
linear equations. For the nodes task, this equation becomes

lnPnode, reg(x) =
1.98

x
− 1.02, (5)
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with the value of the numeric correlation coefficient and linear dependence equation equal
to 0.99 (see righthand line 1 in Figure 8). In the links task, this equation becomes

lnPbond, reg(x) =
3.29

x
− 1.56, (6)

with the numeric correlation value and linear equations equal to 0.97 (see righthand line 2
in Figure 8).
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Analysis of the results shows that the conductivity of any planar networks at identical
densities of its bonds is larger than in the task of bond blocking compared with the task of
node blocking. The percolation threshold (fraction of conductive nodes or bonds or where
conductivity occurs) in the bond task is less than in the node task.

5. Discussion

Table 3 presents data on the density of transport bonds in any world cities, generated
according to its graph analysis, as well as the value of blocking thresholds calculated using
Equations (3) and (4). The values of network blocking values are specified in brackets,
calculated from the analysis of real transport systems using numerical simulation. The
blocking value is calculated using the following equation: one minus the percolation
threshold calculated in Equation (3) or Equation (4). The values found in the analysis of
the network graph are specified in brackets.

Table 4 presents data on the density of transport bonds in any world cities, calculated
from graph analyses, as well as from the value of blocking thresholds calculated using
Equations (5) and (6). The values of network blocking values are specified in brackets,
calculated in the analysis of real transport systems using numerical simulation. The
blocking value is calculated according to the following equation: one minus the percolation
threshold calculated using Equation (5) or Equation (6).

Table 3. Densities of transport bonds in any world cities and values of their blocking thresholds
identified using models of accidental networks.

No. City Density Blocking Threshold in Node
Tasks according to Equation (3)

Blocking Threshold in Link
Tasks according to Equation (4)

1. New York 2.85 0.18 (0.19) 0.27 (0.21)
2. Istanbul 2.91 0.19 (0.19) 0.29 (0.21)
3. Madrid 2.77 0.16 (0.18) 0.25 (0.21)
4. Beijing 2.70 0.14 (0.17) 0.23 (0.27)
5. Paris 2.63 0.11 (0.16) 0.20 (0.19)
6. Moscow 2.51 0.08 (0.13) 0.16 (0.17)
7. London 2.39 0.03 (0.11) 0.10 (0.14)
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Table 4. Densities of transport bonds in any world cities and the values of their blocking thresholds
calculated using models of regular networks.

No. City Density Blocking Threshold in Node
Tasks according to Equation (5)

Blocking Threshold in Link
Tasks according to Equation (6)

1. New York 2.85 0.28 (0.19) 0.33 (0.21)
2. Istanbul 2.91 0.29 (0.19) 0.35 (0.21)
3. Madrid 2.77 0.26 (0.18) 0.31 (0.21)
4. Beijing 2.70 0.25 (0.17) 0.29 (0.27)
5. Paris 2.63 0.23 (0.16) 0.27 (0.19)
6. Moscow 2.51 0.21 (0.13) 0.22 (0.17)
7. London 2.39 0.17 (0.11) 0.17 (0.14)

A comparison of the data presented in Tables 3 and 4 (which consider inaccuracies in
reporting of traffic density and numerical simulation) enables us to draw two conclusions:
1. The transport networks of many cities in the world have structures which are close to

an accidental structure and not regular planar networks.
2. An increase in network density leads to an increase in the blocking threshold of the

network.

Today, rather often, overpasses and multilevel transport interchanges are constructed
to increase traffic capacity. From a topological perspective, this changes its planarity. Earlier,
in [25], the percolation features of nonplanar accidental networks were studied, and the
following equation was found to calculate the conductivity threshold in node tasks:

lnPst
node, unreg(x) =

4.39
x

− 2.41, (7)

where Pst
node, unreg(x) is the percolation threshold value, and x is the network density.

Taking the example of a network density equal to 2.65 (the mean density according
to data from Tables 3 and 4), for the percolation limit value of an accidental nonplanar
network, we obtain 0.47. Thus, loss of conductivity for such structures occurs when
the fraction of blocked nodes is greater than 0.53. Therefore, creating many nonplanar
interchanges and overpasses in the transport network may significantly increase traffic
capacity, but this is nevertheless associated with significant expenses due to the major
construction work involved.

Let us consider the change in network topology due to the construction of multilevel
interchanges and overpasses and their influence on the loss of efficiency in terms of bond
blocking. Earlier, in [25], the percolation features of nonplanar accidental networks were
studied, and the following equation was found for the conductivity limit in bond tasks:

lnPst
bond, unreg(x) = −6.58

x
− 0.20, (8)

where Pst
bond, unreg(x) is the percolation threshold value, and x is the network density.

Taking a network density value equal to 2.65 as an example, we obtain 0.07 for the
percolation limit value of the accidental nonplanar network. Thus, the loss of conductivity
for such structures occurs when the fraction of blocked bonds is greater than 0.93. Accord-
ingly, the creation of a large quantity of planar interchanges and overpasses in the transport
network and in the event of bond blocking can also significantly increase its traffic capacity.

However, as mentioned earlier, this is due to the significant cost of capital construction
of complex interchanges. When choosing specific urban planning solutions, it is necessary
to consider that the percolation threshold of the transport network can be increased not
only due to nonplanar overpasses, but also due to changes in density. In other words, you
can add a small number of plank connections to the network graph instead of building
tiered interchanges (if the cost of building them is higher).

6. Avenues for Future Research

In further investigations, the author plans to study the following issues:
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1. Table 3 includes data on the density of transport bonds in cities around the world and
specific threshold values of blocking based on the analysis thereof, calculated using
Equations (3) and (4). Note that the network blocking values were specified during
an analysis of real transport systems using numerical simulation. The author further
plans to study more city graphs, from which statistics can be gathered to study the
correlation of blocking threshold values, calculated using Equations (3) and (4) and
reported in the result of real traffic analysis. This will enable the development of an
accurate percolation model.

2. To estimate the reliability and efficiency of traffic, as well as the changes in traffic den-
sity throughout the day, it is necessary to indicate the average blocking probability of
a network element at any given moment. Hence, different macroscopic traffic models
will be studied in order to create an effective and accurate model of the influence of
traffic characteristics and topology on the average probability of its elements blocking
(drawing on the models proposed by Grinschields, Richards, Grindberg, El Hozaini,
Underwood, Drake, and Pipes: the optimal speed, “Smart” driver, leader follow,
cellular automata models, etc.). This will enable us to choose these characteristics
as the core of the model and, consequently, to provide the required result after its
modernization. Moreover, it will be useful to develop new models, for example, based
on the description of stochastic systems including the possibility of self-organization
and presence of memory of previous states.

3. Further research may also include a wider range of studies by various authors about
road traffic management using intelligent vehicles equipped with a variety of sensors
and communications [39–44] to integrate new approaches and data streams into the
proposed traffic percolation model.

7. Conclusions

Percolation theory methods may be used to investigate the operational reliability and
ground transport network fault tolerance where any transport structure may be represented
as a planar or almost planar graph with some nonlinear bonds (in real transport networks,
this is associated with the presence of overpasses and multilevel interchanges).

In percolation theory, we may consider the solution to problems relating to the in-
dication of blocked nodes and bond fractions for networks with different structures. In
order to solve bond tasks, the fraction of nodes and bonds, which must be broken up to
separate such a network into at least two isolated areas (or, conversely, the fraction of +–+
conductive bonds when conductivity occurs), is indicated. In the node task, the fraction of
blocked nodes where network decomposition occurs to create isolated areas (or, vice versa,
the fraction of conductive nodes when conductivity occurs) is indicated. The percolation
threshold is the fraction of nonblocked nodes (for the node task) or unbroken bonds (for
the bond task), where conductivity occurs between two randomly selected network nodes.
For the same structure of percolation threshold values, node and bond tasks have different
meanings. The value of the percolation threshold depends on the average number of bonds
per single node of the network (density) and is the criterion of work reliability, i.e., it
indicates at which fraction of blocked nodes and/or bonds the network loses the required
level of efficiency as a whole.

The dependence of the blocking (percolation) threshold value on the network bond
density can be mathematically expressed. This enables us to use the traffic map and
indicates the average number of bonds per single node to then calculate the threshold
value of when it blocks, which can be used when engineering and modernizing the road
infrastructure. If such a blocking threshold is increased, we may calculate the necessary
number of additional links.

Real transport networks have a topology which is closer to accidental networks than
to regular ones. Given equal network density, an accidental planar network (if loss of
efficiency is possible) is slightly inferior to regular structures.
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Thus, if we know the total city road stretch and number of lanes, as well as daily
vehicle dynamics, we may calculate the average traffic intensity on the basis of such data.
Then, we can calculate the average probability that a network element will block at any
given moment. This enables us to estimate the reliability and efficiency of the network, to
analyze daily dynamics, and—if possible—to change the traffic structure accordingly.

Increasing transport bond density may increase the reliability and traffic capacity
of the network. Moreover, in order to increase traffic capacity, we can choose to build
overpasses and multilevel interchanges. From a topological perspective, this changes its
planarity. In the case of the same link density with planar networks, random nonplanar
networks have higher blocking threshold values. Creating a small number of nonplanar
junctions and overpasses may significantly increase the traffic capacity of the network.

The results of this study can be methodically used as follows: the graph of the
real transport network can be applied to investigate their percolation properties using
previously described models and techniques. If we want to increase bandwidth and
reliability (increase the percolation threshold), then various changes to the network graph
may be proposed (either additional connections or tiered interchanges). Next, numerical
simulations or calculations can be carried out using the percolation threshold equations
obtained in the study for modified graphs (various proposed solutions). Then, the estimated
option with the largest percolation threshold and minimal capital cost can be chosen in the
implementation of city planning solutions. This solution will claim optimal reliability at
minimal cost.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Briani, M.; Cristiani, E. An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Netw. Heterog. Media

2014, 9, 519–552. [CrossRef]
2. Hui, M.; Bai, L.; Li, Y.; Wu, Q. Highway traffic flow nonlinear character analysis and prediction. Math. Probl. Eng. 2015, 20–27.

[CrossRef]
3. Ahn, G.-H.; Ki, Y.-K.; Kim, E.-J. Real-time estimation of travel speed using urban traffic information system and filtering algorithm.

IET Intell. Transp. Syst. 2014, 8, 145–154. [CrossRef]
4. Poole, A.; Kotsialos, A. Swarm intelligence algorithms for macroscopic traffic flow model validation with automatic assignment

of fundamental diagrams. Appl. Soft Comput. 2016, 38, 134–150. [CrossRef]
5. Guo, J.; Chen, F.; Xu, C. Traffic flow forecasting for road tunnel using PSO-GPR algorithm with combined kernel function. Math.

Probl. Eng. 2017, 125–135. [CrossRef]
6. Lesko, S.A.; Alyoshkin, A.S.; Barkov, A.A. Mathematical and software development of modeling and management of transport

flows based on percolation stochastic model. CEUR Workshop Proc. 2017, 2064, 454–469.
7. Lesko, S.A.; Alyoshkin, A.S.; Titov, V.V. Models and algorithms of optimization of routes in the transport network of the city.

CEUR Workshop Proc. 2017, 2064, 438–453.
8. Jiang, R.; Jin, C.; Zhang, H. Experimental and empirical investigations of traffic flow instability. Transp. Res. Procedia 2017, 23,

157–173. [CrossRef]
9. Danchuk, V.; Bakulich, O.; Svatko, V. An Improvement in ant algorithm method for optimizing a transport route with regard to

traffic flow. Procedia Eng. 2017, 425–434. [CrossRef]
10. Pun-Cheng, L.S.; Chan, A.W. Optimal route computation for circular public transport routes with differential fare structure. Travel

Behav. Soc. 2015, 3, 71–77. [CrossRef]
11. Baranovskata, T.P.; Pavlov, D.A. Simulation of large-scale traffic networks using multiobjective optimization methods and

considering structural dynamics. Political Netw. Electron. Sci. J. Kuban State Agrar. Univ. 2016, 120, 1686–1705.
12. Pavlenko, P.F. Use of expert system and control module based on fuzzy logic in traffic adaptive management. Inst. Autom. Inf.

Technol. NAN KR 2014, 2, 92–97.
13. Trubicin, V.A.; Golub, D.I. Traffic management based on traffic and road capacity ratio. Bull. North-Cauc. Fed. Univ. 2013, 2, 89–92.
14. Vlasov, A.A.; Chushkina, Z.A. Saturated Traffic Control Regional Architecture and Construction. Reg. Archit. Eng. 2014, 4,

152–156.
15. Ziryanov, V.V. Peculiarities of main traffic diagram use on network level. Energy Resour. Sav. Ind. Transp. 2013, 21, 71–74.

http://doi.org/10.3934/nhm.2014.9.519
http://doi.org/10.1155/2015/902191
http://doi.org/10.1049/iet-its.2012.0051
http://doi.org/10.1016/j.asoc.2015.09.011
http://doi.org/10.1155/2017/2090783
http://doi.org/10.1016/j.trpro.2017.05.010
http://doi.org/10.1016/j.proeng.2017.04.396
http://doi.org/10.1016/j.tbs.2015.09.001


Mathematics 2021, 9, 1278 18 of 18

16. Filippova, D.M.; Chernyago, A.B.; Slobodchikova, N.A. Traffic flow distribution organizing coordinated traffic management. Bull.
Irkutsk State Univ. 2013, 9, 172–176.

17. Kaligin, N.N.; Uvaysov, S.U.; Uvaysova, A.S.; Uvaysova, S.S. Infrastructural review of the distributed telecommunication system
of road traffic and its protocols. Russ. Technol. J. 2019, 7, 87–95. (In Russian) [CrossRef]

18. Grimmet, G. Percolation, 2nd ed.; Springer: Berlin, Germany, 1999.
19. Sahimi, M. Applications of Percolation Theory; Tailor & Francis: London, UK, 1992.
20. Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Tailor & Francis: London, UK, 1992.
21. Feder, J. Fractals; Plenum Pressl: New York, NY, USA; London, UK, 1998.
22. Lesko, S.A.; Alyoshkin, A.S.; Filatov, V.V. Stochastic and Percolating Models of Blocking Computer Networks Dynamics during

Distribution of Epidemics of Evolutionary Computer Viruses. Russ. Technol. J. 2019, 7, 7–27. [CrossRef]
23. Li, D.; Fu, B.; Wang, Y.; Lu, G.; Yehiel Berezin, H.; Stanley, E.; Havlin, S. Percolation transition in dynamical traffic network with

evolving critical bottlenecks. Proc. Natl. Acad. Sci. USA 2015, 112, 669–672. [CrossRef]
24. Zhukov, D.O.; Andrianova, E.G.; Lesko, S.A. The Influence of a Network’s Spatial Symmetry, Topological Dimension, and Density

on its Percolation Threshold. Symmetry 2019, 11, 920. [CrossRef]
25. Zhukov, D.; Khvatova, T.; Lesko, S.; Zaltsman, A. Managing social networks: Applying the Percolation theory methodology to

understand individuals’ attitudes and moods. Technol. Forecast. Soc. Chang. 2017, 123, 234–245. [CrossRef]
26. Zhukov, D.O.; Khvatova, T.Y.; Lesko, S.A.; Zaltsman, A.D. The influence of connection density on clusterization and percolation

threshold during information distribution in social networks. Inform. Appl. 2018, 12, 90–97. [CrossRef]
27. Khvatova, T.Y.; Zaltsman, A.D.; Zhukov, D.O. Information processes in social networks: Percolation and stochastic dynamics.

CEUR Workshop Proc. 2017, 2064, 277–288.
28. Lesko, S.; Aleshkin, A.; Zhukov, D. Reliability Analysis of the Air Transportation Network when Blocking Nodes and/or

Connections Based on the Methods of Percolation Theory. IOP Conf. Ser. Mater. Sci. Eng. 2020, 714, 012016. [CrossRef]
29. Zhukov, D.O.; Zaltcman, A.G.; Khvatova, T.Y. Forecasting Changes in States in Social Networks and Sentiment Security Using the

Principles of Percolation Theory and Stochastic Dynamics. In Proceedings of the 2019 IEEE International Conference Quality
Management, Transport and Information Security, Information Technologies IT and QM and IS 2019, Sochy, Russia, 23–27
September 2019; pp. 149–153. [CrossRef]

30. Lesko, S.A.; Zhukov, D.O. Percolation models of information dissemination in social networks. In Proceedings of the 2015 IEEE In-
ternational Conference on Smart City/SocialCom/SustainCom (SmartCity), Chengdu, China, 19–21 December 2015; pp. 213–216.
[CrossRef]

31. Trudeau, R.J. Introduction to Graph Theory; Corrected, Enlarged Republication, Edition; Dover Pub.: New York, NY, USA,
1993; p. 64.

32. Gallyamov, S.R. A passing threshold of a simple cubic lattice in the site problem of Bethe lattice model. Vestn. Udmurt. Univ. Mat.
Mekhanika Komp’yuternye Nauki 2008, 3, 109–115. (In Russian) [CrossRef]

33. Gallyamov, S.R.; Mel’chukov, S.A. On one method of calculating percolation thresholds for square and diamond lattices in the
percolation problem of knots. Vestn. Udmurt. Univ. Mat. Mekhanika Komp’yuternye Nauki 2009, 4, 33–44. (In Russian) [CrossRef]

34. Gallyamov, S.R.; Mel’chukov, S.A. Hodge’s idea in percolation percolation threshold estimation by the unit cell. Vestn. Udmurt.
Univ. Mat. Mekhanika Komp’yuternye Nauki 2011, 60–79. (In Russian) [CrossRef]

35. Hodge, W.V.D. The Theory and Applications of Harmonic Integrals; Cambridge Mathematical Library: Cambridge, UK, 1952.
36. Kadanoff, L.P.; Jotze, W.; Hamblen, D.; Hecht, R.; Lewis, E.A.S.; Palciauskas, V.V.; Rayl, M.; Swift, J.; Aspres, D.; Kane, J. Static

Phenomena Near Critical Points: Theory and Experiment. Rev. Mod. Phys. 1967, 39, 395–431. [CrossRef]
37. Wilson, K.G. Renormalization group and critical phenomena. Phys. Rev. B 1971, 4, 3174–3183. [CrossRef]
38. Krasnov, V.A. Algebraic cycles on a real algebraic GM-manifold and their applications. Russ. Acad. Sci. Izv. Math. 1994, 43,

141–160. [CrossRef]
39. Romeo, F.; Campolo, C.; Molinaro, A.; Berthet, A.O. DENM repetitions to enhance reliability of the autonomous mode in NR V2X

sidelink. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Begium, 25–28 May
2020; pp. 1–5. [CrossRef]

40. Qi, W.; Landfeldt, B.; Song, Q.; Guo, L.; Jamalipour, A. Traffic differentiated clustering routing in DSRC and C-V2X hybrid
vehicular networks. IEEE Trans. Veh. Technol. 2020, 69, 7723–7734. [CrossRef]

41. Zadobrischi, E.; Dimian, M. Vehicular Communications Utility in Road Safety Applications: A Step toward Self-Aware Intelligent
Traffic Systems. Symmetry 2021, 13, 438. [CrossRef]

42. Ahmed, S.H.; Bouk, S.H.; Yaqub, M.A.; Kim, D.; Song, H.; Lloret, J. CODIE: COntrolled Data and Interest Evaluation in vehicular
named data networks. IEEE Trans. Veh. Technol. 2016, 65, 3954–3963. [CrossRef]

43. Carli, R.; Dotoli, M.; Epicoco, N. Monitoring Traffic Congestion in Urban Areas through Probe Vehicles: A Case Study Analysis.
Internet Technol. Lett. 2017, 1, e5. [CrossRef]

44. Wang, S.; Zhang, X.; Cao, J.; He, L.; Stenneth, L.; Yu, P.S.; Li, Z.; Huang, Z. Computing urban traffic congestions by incorporating
sparse GPS probe data and social media data. ACM Trans. Inf. Syst. 2017, 35, 30. [CrossRef]

http://doi.org/10.32362/2500-316X-2019-7-6-87-95
http://doi.org/10.32362/2500-316X-2019-7-3-7-27
http://doi.org/10.1073/pnas.1419185112
http://doi.org/10.3390/sym11070920
http://doi.org/10.1016/j.techfore.2017.09.039
http://doi.org/10.14357/19922264180213
http://doi.org/10.1088/1757-899X/714/1/012016
http://doi.org/10.1109/ITQMIS.2019.8928295
http://doi.org/10.1109/SmartCity.2015.73
http://doi.org/10.20537/vm080313
http://doi.org/10.20537/vm090404
http://doi.org/10.20537/vm110405
http://doi.org/10.1103/RevModPhys.39.395
http://doi.org/10.1103/PhysRevB.4.3174
http://doi.org/10.1070/IM1994v043n01ABEH001554
http://doi.org/10.1109/VTC2020-Spring48590.2020.9129367
http://doi.org/10.1109/TVT.2020.2990174
http://doi.org/10.3390/sym13030438
http://doi.org/10.1109/TVT.2016.2558650
http://doi.org/10.1002/itl2.5
http://doi.org/10.1145/3057281

	Introduction 
	Statement of the Problem 
	Percolation Theory Methods for the Network Transport Structures 
	Methods and Algorithms for Calculating the Percolation Properties of Random Network Structures: Modeling the Dependence of the Percolation Thresholds of Random Networks on Their Link Density 
	Algorithm of Planar Networks with Accidental Structures 
	Network Percolation Threshold Calculation Algorithm 
	Calculating the Dependency of the Percolation Threshold Dependency on the Network Density (Average Number of Links per Crossroad) 

	Discussion 
	Avenues for Future Research 
	Conclusions 
	References

