
mathematics

Article

Estimation of the Optimal Threshold Policy in a Queue with
Heterogeneous Servers Using a Heuristic Solution and
Artificial Neural Networks

Dmitry Efrosinin 1,2,* and Natalia Stepanova 3

����������
�������

Citation: Efrosinin, D.; Stepanova, N.

Estimation of the Optimal Threshold

Policy in a Queue with

Heterogeneous Servers Using a

Heuristic Solution and Artificial

Neural Networks. Mathematics 2021,

9, 1267. https://doi.org/10.3390/

math9111267

Academic Editors: Vladimir M.

Vishnevsky and Mark Kelbert

Received: 26 March 2021

Accepted: 25 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Insitute for Stochastics, Johannes Kepler University Linz, 4030 Linz, Austria
2 Department of Information Technologies, Faculty of Mathematics and Natural Sciences,

Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
3 Laboratory N17, Trapeznikov Institute of Control Sciences of RAS, 117997 Moscow, Russia;

natalia0410@rambler.ru
* Correspondence: dmitry.efrosinin@jku.at

Abstract: This paper deals with heterogeneous queues where servers differ not only in service
rates but also in operating costs. The classical optimisation problem in queueing systems with
heterogeneous servers consists in the optimal allocation of customers between the servers with the
aim to minimise the long-run average costs of the system per unit of time. As it is known, under some
assumptions the optimal allocation policy for this system is of threshold type, i.e., the policy depends
on the queue length and the state of faster servers. The optimal thresholds can be calculated using a
Markov decision process by implementing the policy-iteration algorithm. This algorithm may have
certain limitations on obtaining a result for the entire range of system parameter values. However,
the available data sets for evaluated optimal threshold levels and values of system parameters can be
used to provide estimations for optimal thresholds through artificial neural networks. The obtained
results are accompanied by a simple heuristic solution. Numerical examples illustrate the quality
of estimations.

Keywords: heterogeneous servers; policy-iteration algorithm; heuristic solution; artificial neural
networks

1. Introduction

Many queueing systems are analysed for their dynamic and optimal control related to
system access, resource allocation, changing service area characteristics and so on. Sets of
computerised tools and procedures provide large data sets which can be useful to expand
potential of classical optimisation methods. The paper deals with a known model of a multi-
server queueing system with controllable allocation of customers between heterogeneous
servers which are differentiated by their service and cost attributes. For the queueing
system with two heterogeneous servers it has been shown in [1] by using a dynamic
programming approach that to minimise the mean sojourn time of customers in the system,
the faster server must be always used and the customer has to be assigned to the slower
server if and only if the number of customers in the queue exceeds the certain threshold
level. Furthermore, this result was obtained independently in more simple form in [2,3].
In [4], the author has analysed a multi-server version of such a system and confirmed a
threshold nature of the optimal policy as well.

The problem of an optimal allocation of customers between heterogeneous servers
in queueing systems with additional costs with the aim to minimise the long-run average
cost per unit of time is notoriously more difficult. Some progress has been made after the
appearance of a review paper [5]. In [6,7], the authors studied a model with set-up costs
using a hysteretic control rule, thereby stressing the algorithmic aspects of the optimal
control structure. The same system has been discussed in [8], where a direct method that

Mathematics 2021, 9, 1267. https://doi.org/10.3390/math9111267 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0902-6640
https://orcid.org/0000-0001-5920-1358
https://doi.org/10.3390/math9111267
https://doi.org/10.3390/math9111267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9111267
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9111267?type=check_update&version=2

Mathematics 2021, 9, 1267 2 of 14

provides a closed-form expression for the stationary occupancy distribution was proposed.
In [9,10], the authors have used theoretical study and exhaustive numerical analysis to show
that for some specified servers, ordering the optimal allocation policy which minimises
the long-run average cost belongs to a set of structural policies. In other words, for the
servers’ enumeration (1), the allocation control policy denoted by f can be defined through
a sequence of threshold levels 1 = q1 ≤ q2 ≤ · · · ≤ qK < ∞. With respect to the defined
policy, the server operating at highest rate should remain busy by non-empty queueing
system. The kth server (k ≥ 2) is used only if the first k− 1 servers are busy and the queue
length reaches a threshold level qk > 0. In the general case, the optimal threshold levels
can depend on states of slower server and formally the optimal policy f is not of a pure
threshold type. However, since the kth threshold value may vary by at most one when the
state of slower server changes and it has a weak effect on the average cost, such influence
can be neglected. Hence the optimal allocation policy for multi-server heterogeneous
queueing system can be treated as a threshold one.

Searching for the optimal values of q2, . . . , qK by direct minimising the average cost
function can be expensive, especially when K is large. To calculate the optimal threshold
levels we can use a policy-iteration algorithm [11–13] which constructs a sequence of
improved policies that converges to optimal one. This algorithm is a fairly versatile tool for
solving various optimisation problems. Unfortunately, as is usually the case in practice,
this algorithm is not without some limitations, such as the difficulties associated with
convergence when the traffic is close to loaded, limitation on the process dimension and,
consequently, on the number of states. Thus, we would like to compensate for some of the
weaknesses of this algorithm with other methods for calculating the optimal control policy.
The contribution of this paper can be briefly described in two conceptual parts. In the first
part, we propose a heuristic solution (HS) to obtain functional relationships for optimal
thresholds based on a simple discrete approximation of the system’s behaviour. The second
part is devoted to the alternative machine learning technique such as artificial neural
networks (NN) [14–16] which is used again for the estimation of the optimal threshold
levels. The policy-iteration algorithm is used in the paper to generate the data sets needed
both to verify the quality of the proposed optimal threshold estimation methods and to
train the neural networks. We strongly believe that the trained neural network can be
successfully used to calculate the optimal thresholds for those system parameters for which
alternative numerical methods are difficult or impossible to use, for example, in heavy
traffic case, or, in general, to reconstruct the areas of optimality without usage of time-
expensive algorithms and procedures. There are some number of papers on prediction
of the stochastic behaviour of queueing systems and networks using machine learning
algorithms, see e.g., [17,18] and references therein. However, we unsuccessfully tried to
find published works where heuristics and machine learning methods would be used to
solve a similar optimisation problem for heterogeneous queueing systems and therefore
we consider this paper relevant.

This paper is organised as follows. In Section 2, we briefly discuss a mathematical
model. Section 3 introduces some heuristic choices for threshold levels that turn out to
be nearly optimal. Section 4 presents results when the trained neural network was ran on
verification data of the policy-iteration algorithm.

2. Mathematical Model

We summarise briefly the model under study. The queueing system is of the type
M/M/K with infinite-capacity buffer and K heterogeneous servers. This system is shown
schematically in Figure 1. The Poisson arrival stream has a rate λ and the exponential
distribution of the service time at server j has a rate µj. We assume that the service in the
system is without preemption, when customer in service cannot change the server. The
random variables of the inter-arrival times and the service times of the servers are assumed
to be independent. An additional cost structure is introduced, consisting of the operating

Mathematics 2021, 9, 1267 3 of 14

cost cj > 0 per unit of time of service on server j and the holding cost c0 > 0 of waiting in
the queue. Assume that the servers are enumerated in a way

µ1 ≥ · · · ≥ µK, c1µ−1
1 ≤ · · · ≤ cKµ−1

K , (1)

where cjµ
−1
j stands for the mean operating cost per customer for the jth server.

Figure 1. Controllable multi-server queueing system with heterogeneous servers and operating costs.

The controller has full information about the system’s state and, based on this infor-
mation, can make control actions on the system at the decision epochs when certain state
transitions occur, following the prescription of the policy f . In our case, the controller
selects the control action at the time when a new customer enters the system and at the
service completion times, if the queue is not empty. When a new customer arrives, it joins
the queue and at the same time, the controller sends another customer from the head of the
queue to one of the idle servers or leaves it in the queue. At the service completion, the
customer leaves the corresponding server, and at the same time the controller takes the
next customer from the head of the queue, if it is not empty, and dispatches it to one of idle
servers or can leave it in the queue as well. The service completion in the system without
waiting customers does not require the controller to perform any control action.

The fact that the optimal policy for the problem of minimising the long-run average
cost per unit of time belongs to a set of threshold-based policies for the multi-server
heterogeneous queueing systems with costs were proved first in [10] and further conformed
for systems with heterogeneous groups of servers in [19]. The corresponding optimal
thresholds can in the general case depend on the states of slower servers. However,
according to obtained numerical results in [9], we can neglect the weak influence of
the slower servers’ states on the optimal allocation policy for the faster servers. This
phenomena was discussed additionally in Example 2. Therefore, we may assume that the
optimal policy belongs to the class of a pure threshold policy when the use of a certain
server depends solely on the number of waiting customers in the queue. Specifically, for the
system under study, such a policy is defined by the following sequence of threshold levels:

1 = q1 ≤ q2 ≤ · · · ≤ qK < ∞. (2)

The policy prescribes the use of the k fastest servers whenever the number of customers
waiting in the queue satisfies the condition qk ≤ q ≤ qk+1 − 1.

To calculate optimal thresholds we need to formulate the introduced optimisation prob-
lem in terms of a Markov decision process. This process is based on a K + 1-dimensional
continuous-time Markov chain

{X(t)}t≥0 = {Q(t), D1(t), . . . , DK(t)}t≥0 (3)

with an infinitesimal matrix Λ f which depends on the policy f . Here the component
Q(t) ∈ N0 stands for the number of waiting customers at time t and

Mathematics 2021, 9, 1267 4 of 14

Dj(t) =

{
0 if jth server is idle
1 if jth server is busy

.

The state space of the process {X(t)}t≥0 operating under some policy f is E f = {x =
(q(x), d1(x), . . . , dK(x))} ⊆ N0 × {0, 1}K, where the notations q(x) and dj(x) are used
respectively for the queue length and for the state of jth server in state x ∈ E f .

The possible server states are partitioned as follows:

J0(x) = {j : dj(x) = 0}, J1(x) = {j : dj(x) = 1}.

The sets J0(x) and J1(x) denote the sets of idle and busy servers in state x ∈ E f ,
respectively. The set of control actions a is A = {0, 1, . . . , K}. If a = 0, the controller allocates
a customer to the queue. Otherwise, if a 6= 0, the controller instructs a customer to occupy
the server with a number a. In addition, we can define the subsets A(x) = J0(x)∪ {0} ⊆ A
of admissible actions in state x The policy f specifies the choice of a control action at any
decision epoch and the infinitesimal matrix Λ f = [λxy(a)] of the Markov-chain (3) has then
the following elements,

λxy(a) =

λ y = x + ea, j ∈ A(x)
µj y = x− ej, j ∈ J1(x), q(x) = 0
µj y = x− ej − e0 + ea, a ∈ A(x− ej − e0), q(x) > 0,

where ej is defined as K + 1-dimensional unit vector with each element equal to zero except
the jth position (j = 0, 1, . . . , K).

We will search for the optimal control policy among the set of stationary Markov
policies f that guarantee ergodicity of the Markov chain {X(t)}t≥0. The corresponding
stability condition is obviously defined as λ < ∑K

j=1 µj. It follows from the fact, that if
number of customers exceeds a threshold qK, then the queueing systems behaves like a
M/M/1 queue with an arrival rate λ and total service rate µ1 + · · ·+ µK. As it is known,
see e.g., [13], the ergodic Markov chain with costs implies the equality of the long-run
average cost per unit of time for the policy f and the corresponding assemble average, that
can be written in the form

g f = lim sup
t→∞

1
t

V f (x, t) = ∑
y∈E f

c(y)π f
y , (4)

where c(y) = c0q(y) + ∑K
j=1 cjdj(y) is an immediate cost in state y ∈ E f . The cost function

V f (x, t) is given by

V f (x, t) = E f
[∫ t

0

(
c0Q(t) +

K

∑
j=1

cjDj(t)
)

dt|X(0) = x
]
.

This function describes the total average cost up to time t given the initial state is x and
π

f
y = P f [X(t) = y] is a stationary state distribution for the policy f . The policy f ∗ is said

to be optimal when for g f defined in (4) we evaluate

g∗ = inf
f

g f = min
q2,...,qK

g(q2, . . . , qK). (5)

To evaluate optimal threshold levels and optimised value for the mean average cost
per unit of time the policy-iteration Algorithm 1 is used. This algorithm constructs a
sequence of improved policies until the average cost optimal is reached. It consists of three
main steps: value evaluation, policy improvement and threshold evaluation. The Value
evaluation is based on solving, for a given policy f , a system of linear equations

Mathematics 2021, 9, 1267 5 of 14

v f (x) =
1

λx(a)

(
c(x) + ∑

y 6=x
λxy(a)v f (y)− g f

)
. (6)

Algorithm 1 Policy-iteration algorithm

1: procedure PIA(K, W, λ, µj, cj, j = 1, 2, . . . , K, c0)

2: f (0)(x) = argminj∈J0(x)

{ cj
µj

}
. Initial policy

3: n← 0
4: g f (n) = λv f (n)(e1) . Value evaluation
5: for x = (0, 1, 0, . . . , 0) to (N, 1, 1, . . . , 1) do
6:

v f (n)(x) =
1

λ + ∑j∈J1(x) µj

[
c(x)− g f (n) + λv f (n)(x + e f (n)(x))

+ ∑
j∈J1(x)

µjv f (n)(x− ej)1{q(x)=0}

+ ∑
j∈J1(x)

µjv f (n)(x− ej − e0 + e f (n)(x−ej−e0)
)1{q(x)>0}

]

7: end for
8: . Policy improvement

f (n+1)(x) = argmina∈A(x) v f (n)(x + ea)

9: if f (n+1)(x) = f (n)(x), x ∈ E f then return f (n+1)(x), v f (n)(x), g f (n)

10: else n← n + 1, go to step 4
11: end if
12: . Threshold evaluation

qk : f (n+1)(q, 1, . . . , 1, 0, dk+1, . . . , dK) =

{
0 q ≤ qk − 2
k q > qk − 2

, k = 2, . . . , K

13: end procedure

For the dynamic-programming value function v f : E f → R, which indicates a
transition effect of an initial state x to the total average cost and satisfies the following
asymptotic relation,

V f (x, t) = g f t + v f (x) + o(1), t→ ∞, x ∈ E f .

In order to make the system (6) solvable, one of the values v(x) must be set to zero,
e.g., for x0 = (0, . . . , 0) we set v(x0) = 0. Since in our case c(x0) = 0, the first equation of
the system (6) is of the form g f = ∑y 6=x0

λx0y(a)v f (y). In the policy improvement step a
new policy f ′ is calculated by minimising the value function v(x + ea) for any state x ∈ E f

and any admissible control action a ∈ A(x). The algorithm converges if the policies f
and f ′ on neighbouring iterations are equal. In the threshold evaluation we calculate the
optimal thresholds qk, k = 2, . . . , K, based on optimal policy f . As an initial policy we select
the policy which prescribes in any state the usage of a server j with the minimal value
of the mean operating cost

cj
µj

per customer. More detailed information on deriving the
dynamic programming equations for the heterogeneous queueing system and calculating
the corresponding optimal allocation control policy can be found in [9]. For existence of

Mathematics 2021, 9, 1267 6 of 14

an optimal stationary policy and convergence of the policy-iteration algorithm we refer
to [12,20–22].

To realise the policy-iteration algorithm we convert the K + 1-dimensional state space
E f of the Markov decision process to a one-dimensional equivalent state space. Let ∆ :
E f → N0 be a one-to-one mapping of the vector state x = (q(x), d1(x), . . . , dK(x)) ∈ E f to
a value from N0 which is of the form

∆(x) = q(x)2K +
K

∑
i=1

di(x)2i−1. (7)

A new state after transition involving the addition or removal of customer in some
state x ∈ E f , in a one-dimensional state space is calculated by

∆(x± e0) = (q(x)± 1)2K +
K

∑
i=1

di(x)2i−1 = ∆(x)± 2K,

∆(x± ej) = q(x)2K +
K

∑
i=1

di(x)2i−1 ± 2j−1 = ∆(x)± 2j−1.

Further in the algorithm, an infinite buffer system must be approximated by an
equivalent system where the number of waiting places is finite but at the same time is
sufficiently large. As a truncation criterion, we use the loss probability which should not
exceed some small value ε > 0.

Remark 1. If the buffer size is W, the number of states is

|E f | = 2K(W + 1).

In case the number of waiting customers is getting larger as the level qK, all servers must be occupied
and the system dynamics is the same as in a classical queue M/M/1 with arrival rate λ and service
rate ∑K

j=1 µj. The stationary state probabilities for the states x where the component q(x) ≥ qK
satisfy the following difference equation

λπ(q−1,1,...,1) −
(

λ +
K

∑
j=1

µj

)
π(q,1,...,1) +

K

∑
j=1

µjπ(q+1,1,...,1) = 0,

which has a solution in a geometric form, π(q,1,...,1) = π(qK ,1,...,1)ρ
q−qK , q ≥ qK. For details and

theoretical substantiation see, e.g., [23]. Note that the value of qK included in this formula can be
estimated by a heuristic solution (9). Then the truncation parameter W of the buffer size can be
evaluated from the following constraint for the loss probability

∞

∑
q=W

π(q,1,...,1) = πqK

∞

∑
q=W

ρq−qK ≤
∞

∑
q=W

ρq−qK =
ρW−qK

1− ρ
< ε,

where ρ = λ

∑K
j=1 µj

. After simple algebra, it implies

W >
log ε(1− ρ)

log(ρ)
+ qK.

Example 1. Consider the system M/M/5 with K = 5 and λ = 15. All other parameters take the
following values

Mathematics 2021, 9, 1267 7 of 14

j 0 1 2 3 4 5

cj 1 5 4 3 2 1

µj - 20 8 4 3 1

cjµ
−1
j - 0.25 0.50 0.75 0.67 1.00

The truncation parameter W of the buffer size is chosen at value 80 which for ε = 0.0001
guarantees that W >

log 0.0001(1−14/36)
log(14/36) + q5 = 22.2734. Here q5 = 12 was calculated by (9). In a

control table, we summarise the functions f (x) which specify the control actions at time of arrivals
to a certain state x:

System State x Queue Length q(x)

d = (d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1,0,*,*,*) 0 0 2 2 2 2 2 2 2 2 2 2 2 2

(1,1,0,*,*) 0 0 0 3 3 3 3 3 3 3 3 3 3 3

(1,1,1,0,*) 0 0 0 0 4 4 4 4 4 4 4 4 4 4

(1,1,1,1,0) 0 0 0 0 0 0 0 0 0 0 0 5 5 5

(1,1,1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Threshold levels qk, k = 1, . . . , K = 5, can be evaluated by comparing the optimal actions
f (q, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

) < f (q + 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

) for q = 0, . . . , W − 1. In this example the

optimal policy f ∗ is defined here through a sequence of threshold levels (q2, q3, q4, q5) = (3, 4, 5, 12)
and g∗ = 4.92897. The bold and underline format in a control table is used to label the change of
the control action in a certain system state.

In the next example we give some arguments that allow us to work further only with
the threshold-based control policies.

Example 2. Consider the system M/M/3 with K = 3 servers. The aim of this example consists in
the following: With respect to the system states x = (q, 1, 0, 0) and y = (q, 1, 0, 1) the assignment
to the second server can in general depend not only on the number of customers in the queue but
also on the state of the third server. In this example it is optimal to make an assignment in state x
but not in state y. We solve optimisation problem for the following parameters:

• λ = 0.238 , µ1 = 0.621 , µ2 = 0.071 and µ3 = 0.070,
• λ = 0.477 , µ1 = 0.356 , µ2 = 0.096 and µ3 = 0.070.

The of optimal solution for the first and second group of system parameters are represented in
Tables 1 and 2, respectively.

Table 1. Control table.

System State x Queue Length q(x)

(d1, d2, d3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .
(0,0,0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,0) 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,1,0) 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3
(0,0,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,1) 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

We notice that for most parameter values the optimal decision can be made independently of
the states of the slower servers. However, it is interesting to consider the reasons for such possible
dependence. It is evident that in our optimisation problem, the optimal policy assigns a customer to

Mathematics 2021, 9, 1267 8 of 14

the fastest free server in states for which this would not be optimal if there were no arrivals. This is
because the system should be ready for possible arrivals, which, if they occur, will wish to see a less
congested system.

Table 2. Control table.

System State x Queue Length q(x)

(d1, d2, d3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .
(0,0,0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,0) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,1,0) 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(0,0,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Consider now the system with three servers in the states x + e0 + e1 and x + e1 + e2, where
x = (0, 0, 0, 0). Let us consider the case of potential service completion at the second server, taking
into account a large number q of accompanied arrivals. Because of large q, it is optimal to occupy
all accessible idle servers. The states mentioned above become x + (q− 1)e0 + e1 + e2 + e3 and
x+(q− 2)e0 + e1 + e2 + e3. Thus, the difference v(x+(q− 1)e0 + e1 + e2 + e3)− v(x+(q−
2)e0 + e1 + e2 + e3) of value functions measures the advantage that will be obtained in the case of
the assignment to the second processor x+ e0 + e1 → x+ e1 + e2. The events of service completion
on the second server provide the incentive to make an assignment to the second server. However,
if the two initial states are x + e0 + e1 + e3 and x + e1 + e2 + e3, the measure of advantage if
service completion takes place is v(x + qe0 + e1 + e2 + e3)− v((q− 1)e0 + e1 + e2 + e3). Since
we expect that the value function v(qe0 + e1 + e2 + e3) is convex in q, it is plausible that the
incentive to make an assignment to the second server is greater in state x + e0 + e1 + e3 than in
x + e0 + e1. Numerical examples proposed in Table 3 confirm our expectations.

Table 3. Value function for system states.

System State x Value Function v(x)

(q, d1, d2, d3) example 1 example 2
(0,0,0,0) 0 0
(0,1,0,0) 2.6034 19.4480
(0,0,1,0) 14.0865 28.3810
(0,0,0,1) 14.2872 33.7009
(1,1,0,0) 7.7979 51.3142
(0,1,1,0) 16.6905 51.4444
(0,1,0,1) 16.8910 55.9981
(0,0,1,1) 28.3747 65.9866
(2,1,0,0) 15.5520 96.1454
(1,1,1,0) 21.8874 90.3521
(1,1,0,1) 22.0873 93.2714
(0,1,1,1) 30.9798 93.2581
(3,1,0,0) 25.7823 154.6580
(2,1,1,0) 29.6487 142.7630
(2,1,0,1) 29.8469 145.4230
(1,1,1,1) 36.1809 140.4050

. -
(6,1,0,0) 68.3382 -
(5,1,1,0) 66.8622 -
(5,1,0,1) 66.9946 -
(4,1,1,1) 66.9830 -
(7,1,0,0) 85.9322 -
(6,1,1,0) 82.9672 -
(6,1,0,1) 83.0730 -
(5,1,1,1) 81.9234 -

Mathematics 2021, 9, 1267 9 of 14

The further numerical examples show that the threshold levels have a very weak dependence of
slower servers’ states. According to our observations, the optimal threshold may vary by at most 1
when the state of a slower server changes.

The data needed either to verify the heuristic solution or for training and verification
of the neural network was generated by a policy-iteration algorithm in form of the list

S =
{
(λ, µ1, . . . , µK, c0, c1, . . . , cK)→ (q2, . . . , qK) : (8)

λ ∈ [1, 45], µ1, . . . , µK ∈ [1, 40], c0 ∈ [1, 3], c1, . . . , cK ∈ [1, 5],

λ <
K

∑
j=1

µj, µ1 ≥ · · · ≥ µK, c1µ−1
1 ≤ · · · ≤ cKµ−1

K

}
.

Example 3. Some elements of the list S for the M/M/5 queueing system are

(1, 20, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1)→ (2, 5, 13, 30), (10, 20, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1)→ (1, 4, 9, 21),

(1, 20, 8, 4, 2, 1, 1, 5, 4, 3, 2, 1)→ (5, 12, 20, 20), (10, 20, 8, 4, 2, 1, 1, 5, 4, 3, 2, 1)→ (3, 8, 13, 13).

3. Heuristic Solution

In this section, we want to obtain a heuristic solution (HS) to calculate the optimal
thresholds qk, k = 2, . . . , K for the arbitrary K in explicit form. For this purpose, we will
use a simple deterministic approximation for the dynamic behaviour of the number of
customers in the queue as illustrated in Figure 2.

Mathematics 2021, 1, 0 9 of 14

The further numerical examples show that the threshold levels have a very weak dependence of
slower servers’ states. According to our observations, the optimal threshold may vary by at most 1
when the state of a slower server changes.

The data needed either to verify the heuristic solution or for training and verification
of the neural network was generated by a policy-iteration algorithm in form of the list

S =
{
(λ, µ1, . . . , µK, c0, c1, . . . , cK)→ (q2, . . . , qK) : (8)

λ ∈ [1, 45], µ1, . . . , µK ∈ [1, 40], c0 ∈ [1, 3], c1, . . . , cK ∈ [1, 5],

λ <
K

∑
j=1

µj, µ1 ≥ · · · ≥ µK, c1µ−1
1 ≤ · · · ≤ cKµ−1

K

}
.

Example 3. Some elements of the list S for the M/M/5 queueing system are

(1, 20, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1)→ (2, 5, 13, 30), (10, 20, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1)→ (1, 4, 9, 21),

(1, 20, 8, 4, 2, 1, 1, 5, 4, 3, 2, 1)→ (5, 12, 20, 20), (10, 20, 8, 4, 2, 1, 1, 5, 4, 3, 2, 1)→ (3, 8, 13, 13).

3. Heuristic Solution

In this section, we want to obtain a heuristic solution (HS) to calculate the optimal
thresholds qk, k = 2, . . . , K for the arbitrary K in explicit form. For this purpose, we will
use a simple deterministic approximation for the dynamic behaviour of the number of
customers in the queue as illustrated in Figure 2.

Figure 2. Queue length approximation.

Let qk is an optimal threshold used to dispatch the customer to server k in state
(qk − 1, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

), where the first k − 1 servers are busy. Now we compare the

queues of the system given initial state is x0 = (qk, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, 0, . . . , 0︸ ︷︷ ︸
K−k

), where the kth server

is not used for a new customer, and y0 = (qk − 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
K−k

), where the kth server

is occupied by a waiting customer. It is assumed that the stability condition holds. The
initial queue lengths are labelled in Figure 2 by A = qk and B = qk − 1. The proposed
deterministic approximation is based on an assumption that the queue length of the system
with the first k − 1 busy servers decreases with the rate ∑k−1

j=1 µj − λ. When this rate is

keeping until the queue is empty, it occurs at time points D = qk

∑k−1
j=1 µj−λ

and C = qk−1
∑k−1

j=1 µj−λ

respectively for the given initial queue length A and B. The total (accumulated) holding

Figure 2. Queue length approximation.

Let qk is an optimal threshold used to dispatch the customer to server k in state
(qk − 1, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

), where the first k − 1 servers are busy. Now we compare the

queues of the system given initial state is x0 = (qk, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, 0, . . . , 0︸ ︷︷ ︸
K−k

), where the kth server

is not used for a new customer, and y0 = (qk − 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
K−k

), where the kth server

is occupied by a waiting customer. It is assumed that the stability condition holds. The
initial queue lengths are labelled in Figure 2 by A = qk and B = qk − 1. The proposed
deterministic approximation is based on an assumption that the queue length of the system
with the first k − 1 busy servers decreases with the rate ∑k−1

j=1 µj − λ. When this rate is

keeping until the queue is empty, it occurs at time points D = qk

∑k−1
j=1 µj−λ

and C = qk−1
∑k−1

j=1 µj−λ

respectively for the given initial queue length A and B. The total (accumulated) holding

Mathematics 2021, 9, 1267 10 of 14

times of all customers in the queue with lengths qk and qk − 1 are equal respectively to
the number of square blocks of dimension 1× 1

∑k−1
j=1 µj−λ

within the areas AOD and BOC

multiplied by the mean service time of the approximated model:

FAOD = (qk + (qk − 1) + (qk − 2) + · · ·+ 1)
1

∑k−1
j=1 µj − λ

=
qk(qk + 1)

2
· 1

∑k−1
j=1 µj − λ

and

FBOC = ((qk − 1) + (qk − 2) + · · ·+ 1)
1

∑k−1
j=1 µj − λ

=
qk(qk − 1)

2
· 1

∑k−1
j=1 µj − λ

.

The mean operating cost of the first k − 1 servers during the time period until the
queue becomes empty given the initial state is x0 can be calculated by

qk

(c1

µ1

µ1

∑k−1
j=1 µj

+ · · ·+ ck−1
µk−1

µk−1

∑k−1
j=1 µj

)
= qk

∑k−1
j=1 cj

∑k−1
j=1 µj

.

The expression µi

∑k−1
j=1 µj

means the probability of the service completion at the ith

server, and the mean operating cost given the initial state is y0, which can be defined as

(qk − 1)
∑k−1

j=1 cj

∑k−1
j=1 µj

.

Now using the deterministic approximation we can formulate the following proposition.

Proposition 1. The optimal thresholds qk, k = 2, . . . , K, are defined by

qk ≈ q̂k = min
{

1,
⌊∑k−1

j=1 µj − λ

c0

[ck
µk
−

∑k−1
j=1 cj

∑k−1
j=1 µj

]⌋}
. (9)

Proof. Let V(x) be the overall average system cost until the system becomes empty given
the initial state is x ∈ E f . This value can be represented as a sum of the total holding cost
of customers waiting in the queue and mean operating cost of all servers which remain
busy in state x. Assume that the controller performs a decision to allocate the customer
to the kth server in state (qk − 1, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

). As a result, it leads to a reduction of the

overall system costs according to the proposed deterministic approximation, i.e.,

V(x0)−V(y0) > 0. (10)

where

V(x0) = c0FAOD + qk
∑k−1

j=1 cj

∑k−1
j=1 µj

+ V(0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

), (11)

V(y0) =
ck
µk

+ V(qk − 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, 0, . . . , 0︸ ︷︷ ︸
K−k

)

=
ck
µk

+ c0FBOC + (qk − 1)
∑k−1

j=1 cj

∑k−1
j=1 µj

+ V(0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

).

Mathematics 2021, 9, 1267 11 of 14

After substitution of (11) into (10) we get

c0(FAOD − FBOC) +
∑k−1

j=1 cj

∑k−1
j=1 µj

− ck
µk

= c0
qk

∑k−1
j=1 µj − λ

+
∑k−1

j=1 cj

∑k−1
j=1 µj

− ck
µk

> 0.

Now, expressing qk after some simple manipulations we obtain the heuristic solution
for the optimal value of qk in form (9).

Example 4. Consider a queueing system from the previous example for K = 5. We select randomly
from the data set S (8) a list of system parameters~α = (λ, µ1, . . . , µK, c0, c1, . . . , cK) and calculate
by means of the HS (9) threshold levels qk, k = 1, . . . , K. Figure 3 illustrates the efficiency of the
proposed heuristic solution respectively for threshold levels (q2, q3, q4, q5) by confusion matrices.
The matrix row represents the elements including a predicted value while each column represents
the elements for an actual value. As a metric for the closeness of the measurements to a specific
value and to the interval with possible deviation of threshold by ±1 from the real value, the overall
accuracy and accuracy ±1 are used. The results are summarised in Table 4.

Table 4. Accuracy for prediction with HS.

HS q2 q3 q4 q5

Accuracy 0.8430 0.8778 0.7899 0.6282
Accuracy ± 1 0.9861 0.9884 0.9871 0.9769

(a) (b)

1
1
6
4
5

2
8
0
0

1
0
5
5

3
7
9

2
5
1

1
2
3

9
3

5
3

4
4 5

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

9723

4228

1336

514

281

150

94

63

49

10

predicted

a
c
tu
a
l

0

0

0

0

0

0

0

125

1797

9723

0

0

0

0

0

0

41

328

2431

0

0

0

0

0

0

36

136

883

0

0

0

0

0

0

10

32

337

0

0

0

0

0

0

6

32

213

0

0

0

0

0

0

5

10

108

0

0

0

0

0

0

5

10

78

0

0

0

0

0

0

1

4

48

0

0

0

0

0

0

0

4

40

0

0

0

0

0

0

0

0

5

0

0

0

0

0

0

0

0

0

5
1
0
9

3
5
7
5

2
2
5
4

1
6
6
7

1
0
8
4

9
0
5

6
6
7

5
1
9

3
8
7

4
3
4

4

5

6

7

8

9

10

11

12

13

4 5 6 7 8 9 10 11 12 13

5261

3406

2239

1672

1111

899

664

563

351

435

predicted

a
c
tu
a
l

0

0

0

0

0

0

0

68

279

4762

0

0

0

0

0

0

19

179

2929

448

0

0

0

0

0

11

106

1894

192

51

0

0

0

0

19

85

1459

98

6

0

0

0

0

16

46

934

88

0

0

0

0

0

14

28

782

81

0

0

0

0

0

3

14

598

52

0

0

0

0

0

4

12

481

22

0

0

0

0

0

0

15

318

54

0

0

0

0

0

0

0

416

18

0

0

0

0

0

0

0

0

(c) (d)

4
9
8
4

4
8
5
9

4
6
0
7

3
6
9
2

3
2
3
2

2
5
9
3

2
3
9
8

2
0
9
6

1
6
6
0

2
0
0
1

6

7

8

9

10

11

12

13

14

15

6 7 8 9 10 11 12 13 14 15

5953

5056

4211

3707

3004

2695

2209

2012

1656

1619

predicted

a
c
tu
a
l

0

0

0

0

0

0

0

31

94

4859

0

0

0

0

0

0

10

33

3798

1018

0

0

0

0

0

11

44

3378

1098

76

0

0

0

0

10

18

2858

740

66

0

0

0

0

21

41

2405

736

29

0

0

0

0

10

21

1955

548

59

0

0

0

0

9

12

1691

664

22

0

0

0

0

5

15

1585

466

25

0

0

0

0

0

16

1249

385

10

0

0

0

0

0

0

1598

383

20

0

0

0

0

0

0

0

2
6
7
3

3
7
7
0

3
7
6
9

3
6
8
4

3
3
8
3

3
2
1
8

3
1
7
6

3
0
3
0

3
6
3
8

2
6
6
8

8

9

10

11

12

13

14

15

16

17

8 9 10 11 12 13 14 15 16 17

4006

3898

3742

3599

3311

3335

3026

2912

2610

2570

predicted

a
c
tu
a
l

0

0

0

0

0

0

0

14

34

2625

0

0

0

0

0

0

0

15

2456

1299

0

0

0

0

0

0

4

2356

1327

82

0

0

0

0

0

2

2342

1259

81

0

0

0

0

5

8

2100

1172

98

0

0

0

0

0

6

2021

1110

81

0

0

0

0

0

1

1860

1216

99

0

0

0

0

33

1

1844

1062

90

0

0

0

0

0

986

1580

979

93

0

0

0

0

0

0

1551

1029

88

0

0

0

0

0

0

0

Figure 3. Confusion matrices (a–d) for prediction of q2, q3, q4 and q5 using HS.

Mathematics 2021, 9, 1267 12 of 14

4. Artificial Neural Networks

Artificial Neural Networks (NN) belong to a set of supervised machine learning
methods. It is most popular in different applied problems including data classification,
pattern recognition, regression, clustering and time series forecasting. Here we show that
the NN can give even more positive results compared to the HS that indicates the possibility
to use it for predicting the structural control policies.

The data set S (8) is used to explore predictions for the optimal threshold levels
through the NN. The multilayer neural network is used for the data classification. It can
be formally defined as a function f :~α→ ~y, which maps an input vector~α of dimension
2m + 1 to an estimate output ~y ∈ RNc of the class number N = 1, . . . , Nc. The network is
decomposed into 6 layers as illustrated in Figure 4, each of which represents a different
function mapping vectors to vectors. The successive layers are: a linear layer with an
output vector of size k, a nonlinear elementwise activation layer, other three linear layers
with output vectors of size k and a nonlinear normalisation layer.

Figure 4. Architecture of the neural network.

The first layer is an affine transformation

~q1 = W1~α +~b1,

where~q1 = R2m+1 is the output vector, W ∈ R2m+1×k=30 is the weight matrix,~b1 ∈ R2m+1

is the bias vector. The rows in W1 are interpreted as features that are relevant for differen-
tiating between corresponding classes. Consequently, W1~α is a projection of the input~α
onto these features. The second layer is an elementwise activation layer which is defined
by the nonlinear function ~q2 = max(0,~q1) setting negative entries of q1 to zero and uses
only positive entries. The next three layers are other affine transformations,

~qi = Wi~qi−1 + ~bi,

where~qi ∈ Rk, Wi ∈ Rk×k, and bi ∈ Rk, i = 3, 4, 5. The last layer is the normalisation layer
~y = softmax(~q5), whose componentwise is of the form

yN =
eq5N

∑N eq5N
, N = 1, . . . , Nc.

The last layer normalises the output vector ~y with the aim to get the values between
0 and 1. The output ~y can be treated as a probability distribution vector, where the Nth
element yN represents the likelihood that~α belongs to class N.

We use 70% of the same data S which was not used to verify the quality of the
HS in a training phase of the NN and the rest of S—as validation data. We train a
multilayer (6-layer) NN using an adaptive moment estimation method [24] and the
neural network toolbox in Mathematica© of the Wolfram Research. Then we verify the
approximated function

q̂k := q̂k(λ, µ1, . . . , µK, c0, c1, . . . , cK),

Mathematics 2021, 9, 1267 13 of 14

which should be accurate enough to be used to predict new output from verification data.
The algorithm was ran many times on samples and networks with different sizes. In
all cases the results were quite positive and indicate the potential of machine learning
methodology for optimisation problems in the queueing theory.

Example 5. The results of estimations of the optimal threshold values using the trained NN are
summarised again in form of confusion matrices, as is shown in Figure 5. The overall accuracy of
classification and accuracies for the values with deviations are given in Table 5. We can see that the
NN methodology exhibits even more accurate estimations for the optimal thresholds if the results
are compared with the corresponding HS.

Table 5. Accuracy for prediction with NN.

NN q2 q3 q4 q5

Accuracy 0.9700 0.8785 0.8708 0.7977
Accuracy ± 1 0.9991 0.9951 0.9874 0.9962

(a) (b)

9
7
6
5

4
1
3
9

1
3
3
6

5
4
8

3
0
1

1
5
3

7
0

8
0

4
8 8

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

9723

4228

1336

514

281

150

94

63

49

10

predicted

a
c
tu
a
l

0

0

0

0

0

0

0

0

102

9663

0

0

0

0

0

0

0

32

4047

60

0

0

0

0

0

0

7

1250

79

0

0

0

0

0

0

17

477

54

0

0

0

0

0

0

23

248

30

0

0

0

0

0

0

20

118

15

0

0

0

0

0

2

6

55

6

1

0

0

0

0

2

9

53

13

3

0

0

0

0

0

1

37

4

6

0

0

0

0

0

0

7

1

0

0

0

0

0

0

0

0

5
0
5
4

3
5
2
9

2
3
0
3

1
5
6
4

1
0
9
4

1
0
7
7

5
4
9

6
3
9

3
2
7

4
6
5

4

5

6

7

8

9

10

11

12

13

4 5 6 7 8 9 10 11 12 13

5261

3406

2239

1672

1111

899

664

563

351

435

predicted

a
c
tu
a
l

0

0

0

0

0

0

0

5

100

4949

0

0

0

0

0

0

2

94

3121

312

0

0

0

0

0

5

104

2010

184

0

0

0

0

0

10

62

1363

128

1

0

0

0

0

5

41

845

201

2

0

0

0

0

7

83

787

198

2

0

0

0

0

1

27

466

54

1

0

0

0

0

9

65

455

103

7

0

0

0

0

0

51

213

56

7

0

0

0

0

0

0

375

72

18

0

0

0

0

0

0

0

(c) (d)

6
0
9
5

4
8
2
4

3
8
7
0

4
1
0
1

2
8
1
1

2
9
3
5

2
1
7
3

1
9
8
7

1
6
2
5

1
7
0
1

6

7

8

9

10

11

12

13

14

15

6 7 8 9 10 11 12 13 14 15

5953

5056

4211

3707

3004

2695

2209

2012

1656

1619

predicted

a
c
tu
a
l

0

0

0

0

0

0

0

37

450

5608

0

0

0

0

0

0

43

223

4236

322

0

0

0

0

0

17

60

3460

310

23

0

0

0

0

37

175

3356

473

60

0

0

0

0

27

59

2483

224

18

0

0

0

0

44

128

2420

319

24

0

0

0

0

27

109

1851

176

10

0

0

0

0

27

82

1674

201

3

0

0

0

0

0

75

1368

180

2

0

0

0

0

0

0

1517

179

5

0

0

0

0

0

0

0

5
2
1
0

3
6
2
8

3
6
7
6

3
6
6
7

2
7
8
4

3
5
3
2

2
8
0
0

2
7
6
3

2
7
2
6

2
2
2
3

8

9

10

11

12

13

14

15

16

17

8 9 10 11 12 13 14 15 16 17

4006

3898

3742

3599

3311

3335

3026

2912

2610

2570

predicted

a
c
tu
a
l

0

0

0

0

0

0

0

16

1234

3960

0

0

0

0

0

0

6

960

2622

40

0

0

0

0

0

1

883

2746

40

6

0

0

0

0

10

940

2695

20

2

0

0

0

0

38

452

2282

12

0

0

0

0

0

15

579

2847

88

3

0

0

0

0

12

398

2366

24

0

0

0

0

0

11

295

2412

43

2

0

0

0

0

0

399

2242

85

0

0

0

0

0

0

0

2160

61

2

0

0

0

0

0

0

0

Figure 5. Confusion matrices (a–d) for prediction of q2, q3, q4 and q5 using NN.

5. Conclusions

We combine classic methodology of analysing controllable queues with a heuristic
solution and machine learning to study the possibility to estimate the values of optimal
thresholds. Due to the fact that the results were quite positive, we can make the following
general conclusion. With this study we confirm that the analysis of controlled queueing
systems and the solution of optimisation problems using classical Markov decision theory
can be successfully combined with machine learning techniques. These approaches do not
contradict each other; on the contrary, combining them provides new results.

Mathematics 2021, 9, 1267 14 of 14

Author Contributions: Conceptualization, D.E.; formal analysis, investigation, methodology, soft-
ware and writing, D.E. and N.S. Both authors have read and agreed to the published version of
the manuscript.

Funding: Open Access Funding by the University of Linz. This research has been supported by the
RUDN University Strategic Academic Leadership Program (recipient D. Efrosinin).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper has been supported by the RUDN University Strategic Academic
Leadership Program (recipient D. Efrosinin), Open Access Funding by the University of Linz.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, W.; Kumar, P.R. Optimal control of a queueing system with two heterogeneous servers. IEEE Trans. Autom. Control 1984, 29,

696–703. [CrossRef]
2. Koole, G. A simple proof of the optimality of a threshold policy in a two-server queueing system. Syst. Control. Lett. 1995, 26,

301–303. [CrossRef]
3. Walrand, J. A note on: “Optimal control of a queuing system with two heterogeneous servers”. Syst. Control Lett. 1984, 4, 131–134.

[CrossRef]
4. Rykov, V. Monotone Control of Queueing Systems with Heterogeneous Servers. QUESTA 2001, 37, 391–403.
5. Crabill, T.; Gross, D.; Magazine, M.J. A classified bibliography of research on optimal design and control of queues. Oper. Res.

1977, 25, 219–232. [CrossRef]
6. Nobel, N. Hysteretic and Heuristic Control of Queueing Systems. Ph.D. Thesis, Vrije University Amsterdam, Amsterdam,

The Netherlands, November 1998.
7. Nobel, R.; Tijms, H.C. Optimal control of a queueing system with heterogeneous servers and set-up costs. IEEE Trans. Autom.

Control 2000, 45, 780–784. [CrossRef]
8. Le Ny, L.-M.; Tuffin, B. A Simple Analysis of Heterogeneous Multi-Server Threshold Queues with Hysteresis; Institut National de

Recherche en Informatique: Nancy, France, 2000.
9. Efrosinin, D. Controlled Queueing Systems with Heterogeneous Servers: Dynamic Optimization and Monotonicity Properties of Optimal

Control Policies in Multiserver Heterogeneous Queues; VDM Verlag: Saarbrücken, Germany, 2008.
10. Rykov, V.; Efrosinin, D. On the slow server problem. Autom. Remote. Control 2010, 70, 2013–2023. [CrossRef]
11. Howard, R. Dynamic Programming and Markov Processes; Wiley Series; Wiley: London, UK, 1960.
12. Puterman, M.L. Markov Decision Process; Wiley Series in Probability and Mathematical Statistics; Wiley: London, UK, 1994.
13. Tijms, H.C. Stochastic Models. An Algorithmic Approach; John Wiley and Sons: New York, NY, USA, 1994.
14. Gershenson, C. Artificial Neural Networks for Beginners; 2003. Available online: http://arxiv.org/abs/cs/0308031 (accessed on 20

August 2003).
15. Rätsch, G. A Brief Introduction into Machine Learning; Friedrich Miescher Laboratory of the Max Planck Society: Tuebinger,

Germany, 2004.
16. Russel, S.J.; Norvig, P. Artificial Intelligence. A Modern Approach; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1995.
17. Kyritsis, A.I.; Deriaz, M. A machine learning approach to waiting time prediction in queueing scenarios. In Proceedings of

the Second International Conference on Artificial Intelligence for Industries, Laguna Hills, CA, USA, 25–27 September 2019;
pp. 17–21.

18. Stintzing, J.; Norrman, F. Prediction of Queuing Behaviour through the Use of Artificial Neural Networks. Available online:
http://www.diva-portal.se/smash/get/diva2:1111289/FULLTEXT01.pdf (accessed on 18 June 2017).

19. Xia, L.; Zhang, Z.G.; Li, Q.-L.; Glynn, P.W. A c/µ-Rule for Service Resource Allocation in Group-Server Queues. arXiv 2018,
arXiv:1807.05367.

20. Aviv, Y.; Federgruen, A. The value-iteration method for countable state Markov decision processes. Oper. Res. Lett. 1999, 24,
223–234. [CrossRef]

21. Özkan, E.; Kharoufeh, J.P. Optimal control of a two-server queueing system with failures. Probab. Eng. Inform. Sci. 2014, 28,
489–527. [CrossRef]

22. Sennott, L.I. Stochastic Dynamic Programming and the Control of Queueing Systems; Wiley: New York, NY, USA, 1999.
23. Efrosinin, D.; Sztrik, J. An algorithmic approach to analyzing the reliability of a controllable unreliable queue with two heteroge-

neous servers. Eur. J. Oper. Res. 2018, 271, 934–952. [CrossRef]
24. Kingma, D.P.; Adam, J.B. A Method for Stochastic Optimization; 2015. Available online: https://arxiv.org/abs/1412.6980 (accessed

on 30 January 2017).

http://doi.org/10.1109/TAC.1984.1103637
http://dx.doi.org/10.1016/0167-6911(95)00015-1
http://dx.doi.org/10.1016/S0167-6911(84)80014-6
http://dx.doi.org/10.1287/opre.25.2.219
http://dx.doi.org/10.1109/9.847122
http://dx.doi.org/10.1134/S0005117909120091
http://arxiv.org/abs/cs/0308031
http://www.diva-portal.se/smash/get/diva2:1111289/FULLTEXT01.pdf
http://dx.doi.org/10.1016/S0167-6377(99)00015-2
http://dx.doi.org/10.1017/S0269964814000114
http://dx.doi.org/10.1016/j.ejor.2018.06.007
https://arxiv.org/abs/1412.6980

	Introduction
	Mathematical Model
	Heuristic Solution
	Artificial Neural Networks
	Conclusions
	References

