
mathematics

Article

Defect Detection in Atomic Resolution Transmission Electron
Microscopy Images Using Machine Learning

Philip Cho 1,*, Aihua Wood 1,*, Krishnamurthy Mahalingam 2 and Kurt Eyink 2

����������
�������

Citation: Cho, P.; Wood, A.;

Mahalingam, K.; Eyink, K. Defect

Detection in Atomic Resolution

Transmission Electron Microscopy

Images Using Machine Learning.

Mathematics 2021, 9, 1209. https://

doi.org/10.3390/math9111209

Academic Editor: Amir Mosavi

Received: 09 April 2021

Accepted: 24 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Air Force Institute of Technology, Department of Mathematics & Statistics, 2950 Hobson Way,
Wright-Patterson AFB, OH 45433, USA

2 Air Force Research Lab, Material and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA;
krishnamurthy.mahalingam.ctr@us.af.mil (K.M.); kurt.eyink@us.af.mil (K.E.)

* Correspondence: philip.cho@afit.edu (P.C.); aihua.wood@afit.edu (A.W.)

Abstract: Point defects play a fundamental role in the discovery of new materials due to their
strong influence on material properties and behavior. At present, imaging techniques based on
transmission electron microscopy (TEM) are widely employed for characterizing point defects in
materials. However, current methods for defect detection predominantly involve visual inspection of
TEM images, which is laborious and poses difficulties in materials where defect related contrast is
weak or ambiguous. Recent efforts to develop machine learning methods for the detection of point
defects in TEM images have focused on supervised methods that require labeled training data that is
generated via simulation. Motivated by a desire for machine learning methods that can be trained
on experimental data, we propose two self-supervised machine learning algorithms that are trained
solely on images that are defect-free. Our proposed methods use principal components analysis
(PCA) and convolutional neural networks (CNN) to analyze a TEM image and predict the location of
a defect. Using simulated TEM images, we show that PCA can be used to accurately locate point
defects in the case where there is no imaging noise. In the case where there is imaging noise, we
show that incorporating a CNN dramatically improves model performance. Our models rely on a
novel approach that uses the residual between a TEM image and its PCA reconstruction.

Keywords: transmission electron microscopy (TEM); convolutional neural networks (CNN); anomaly
detection; principal component analysis (PCA); machine learning; deep learning; neural networks;
Gallium-Arsenide (GaAs)

1. Introduction

Point defects are zero-dimensional defects in crystalline materials that have a strong
influence on their atomic structure and properties. The engineering of point defects in
materials, by creation of specific defect types and by the control of spatial location and
number density, is foundational in the development of novel materials for advanced
electronic and photonic applications. Transmission electron microscopy (TEM) is a widely
used technique for imaging defects, due to its versatility for many different modes of
imaging and spectroscopy at high spatial resolution. However, detection of point defects
in TEM images continues to remain a challenge in many material systems, since the
contrast due to the defect is affected by various factors such as its local environment and
imaging conditions.

Recent efforts to develop machine learning methods for the detection of point defects
in TEM images focused on supervised methods that require labeled training data that is
generated via simulation. These methods treat the defect detection problem as a pixel-
level classification problem [1,2]. In contrast, we treat the defect detection problem as an
anomaly detection problem and propose two self-supervised machine learning methods
that can be trained solely using defect-free TEM images. Importantly, since our models only
require defect-free images for training, it allows for our models to be trained directly on
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experimental images of samples that are manufactured to be defect-free. The first method
we propose uses principal components analysis (PCA) and the second method uses both
PCA and convolutional neural networks (CNN). We assess the performance of these
methods by introducing hypothetical anomalies that mimic point defects of different types
in simulated images of defect-free GaAs (Figure 1) [3] and examining the detection accuracy
of our proposed algorithms. We use GaAs as the test material. We also note that atomic
resolution TEM imaging is performed in two different modes, wherein the electron beam is
in parallel illumination (conventional high-resolution transmission electron microscopy) or
as a focused probe (scanning transmission electron microscopy). The present work is based
on parallel beam mode, since images simulated for this mode exhibits widely varying
(although distinct) patterns for different imaging conditions, providing a large dataset for
training and testing purposes. However, the results are also applicable to focused probe
mode images.

Figure 1. Examples of different types of defects that could occur. Green corresponds to A and red
corresponds to B. Blue represents a dopant [3].

Related Works

In recent years, CNNs have proven to be a highly effective tool for image analysis.
Applications include image classification, object detection, pose estimation, and text recog-
nition [4,5]. Given the data-intensive nature of TEM imagery, there have been recent efforts
to employ CNNs in the analysis of TEM images. Examples of using neural networks for
analyzing TEM images include using CNNs for denoising TEM images [6,7], generating
TEM images from partial scans [8], enhancing TEM images [9,10], classifying types of crys-
talline structures [11], locating defects in non-crystalline materials [12], mapping atomic
structures and defects [1], and mapping general structures of interest [2].

The latter two studies [1,2] are of particular interest because they propose CNN models
that can be used to identify point defects in TEM images of crystalline materials. In both
studies, the framework is to train a CNN using simulated TEM images and then apply the
trained models to experimental images. Additionally, both propose training a multi-class
classification CNN that outputs pixel-wise classifications, i.e., every pixel in a TEM image is
assigned a predicted class. The classes can be vacancies, dopants, and defect-free lattice [1]
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or general, non-overlapping structural characteristics such as the column height of the
sample [2]. Both of these models require extensive simulated data where the true label for
each pixel is known. After training the pixel-wise classification model with pixel-by-pixel
truth data, the models are shown to produce strong results on experimental TEM images.

Similar to the aforementioned work, we seek to develop a model that can detect local
structures of interest in TEM images, namely defects, in crystalline materials. However,
we choose to take an approach that does not rely on a training data set with pixel-by-pixel
truth labels. Rather, we rely on a training set of TEM images that are only known to be
free of defects. In both prior works, the authors acknowledge the difficulty in acquiring
experimental images where the true defect locations are known and, therefore, propose
models that are solely trained on simulated data with known defect locations. Since we
only use a training set consisting of TEM images without defects, the proposed methods
can be trained on simulated images or experimental images. Using TEM images of samples
that are known to be free of defects, the proposed methods seek to locate areas of a TEM
image that are anomalous and, thus, are most likely to contain a defect.

Due to a wide range of applications, anomaly detection has been well studied and
there are numerous proposed anomaly detection techniques. Anomaly detection methods,
also known as novelty detection methods, are trained using only “normal” observations
and the goal is to accurately determine whether a new observation is anomalous or normal.
Anomaly detection problems commonly arise in practice when there is an abundance
of normal training data and a limited number of anomalous observations. Examples of
well-known applications include medical imaging [13–15] and fraud detection [16–18]. A
thorough review and taxonomy of machine learnings methods for anomaly is provided by
Pimentel, et al. [19].

In recent years, CNNs have become a leading tool for anomaly detection in image data.
Many of these efforts have been focused on benchmark datasets such as CIFAR-10 and
ImageNet where the general approach is to use a subset of classes as normal data and then
testing whether an image from a new class is correctly identified as an anomaly [20–22]. In
this approach, a new image is considered an anomaly if the object in the new image does not
match the objects included in the training data. For example, an anomaly detection model
would attempt to distinguish between an airplane and a bird. One common framework for
anomaly detection uses autoencoders to generate anomaly scores based on reconstruction
error [23,24]. A thorough survey of deep learning methods for anomaly detection are
provided in several works [25,26].

Defect detection can be considered a more specific type of anomaly detection problem
where the goal is recognize subtle abnormalities in an image where the background object
is normal. For example, a defect detection model would attempt to distinguish between a
piece of fabric with and without a tear. While much progress has been made on general
anomaly detection methods, recent work has shown that these methods do not generalize
well to defect detection problems [27]. Tailored methods for defect detection [27,28] have
been shown to outperform general anomaly detection models when using the MVTec
benchmark dataset, a dataset specifically designed for defect detection [29]. Given that
anomaly detection methods may generalize poorly to defect detection problems, our
contribution is a novel method that is specifically intended for point defect detection in
TEM images. While our methods are specifically tailored for defect detection in TEM
images, our proposed PCA-CNN model has several parallels to recently proposed state-of-
the-art defect detection methods [27].

In addition to our PCA-CNN model, we also propose a baseline defect detection
method that uses principal components analysis (PCA) and reconstruction error to locate
point defects in TEM images. The PCA model serves primarily as a performance baseline
for the PCA-CNN model. PCA is a commonly used method for anomaly detection and
is preferred for its simplicity [30–32]. PCA-based anomaly detection methods generally
involve measuring the reconstruction error between a data point and its reconstruction. The
reconstruction is generated via a linear transformation that is fitted on a training data set
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of normal observations [33]. The PCA method is presented in more detail in a later section.
The concept of using reconstruction error for anomaly detection is also applicable to deep
learning models that generate reconstructions via an autoencoder instead of PCA [20,23,24].

2. Materials and Methods

In this section, we introduce the simulated data used for model development and
propose two methods for detecting defects in TEM images of GaAs. We specifically
consider defect detection using high-resolution transmission electron microscopy (HRTEM)
images, hereafter referred to as TEM images. The first method involves using PCA and
reconstruction error, measured by mean squared error (MSE), to detect defects. The second
method involves using PCA in combination with a weakly supervised CNN classification
model to detect defects. Both models are trained using simulated TEM images of GaAs
samples that are free of defects and then used to determine the location of a point defect in
a simulated image of a GaAs sample. For each of the models, we consider the case when
imaging noise is present and when there is no imaging noise.

2.1. Data Processing

The first step in developing a model for predicting the location of point defects is
to generate simulated TEM images. We note that atomic resolution TEM imaging is
performed in two different modes, wherein the electron beam is in parallel illumination
(conventional high-resolution transmission electron microscopy) or as a focused probe
(scanning transmission electron microscopy). The present work is based on parallel beam
mode, since images simulated for this mode exhibits widely varying patterns for different
imaging conditions, providing a large dataset for training and testing purposes. However,
the results are also applicable to focused probe mode images. TEM images for GaAs were
simulated using the TempasTM software. The TempasTM software has been developed in
collaboration with the Material and Manufacturing Directorate, Air Force Research Lab
(AFRL) and AFRL has validated the simulation results against experimental images of
GaAs. The output of the simulation for a crystal projected along the [110] zone axis for
TEM accelerating voltage of 300 kV and up to specimen thickness of 15 nm. The imaging
parameters for the objective lens were set such that the spherical aberration coefficient was
−15 µm and defocus ranging from −20 nm to +20 nm.

Ideally, experimental data would be used for this study, but due to the difficulty in
acquiring experimental data, we use simulated TEM images to train and test our defect
detection models. The use of simulated data is a start towards developing a method that can
be trained directly on experimental data. A key consideration, then, is an understanding of
the extent to which we can control defects in experimental images. As discussed earlier,
it is possible to produce experimental GaAs samples that are defect-free so we assume
it is feasible to acquire experimental TEM images that are known to be defect-free. In
contrast, when defects, such as dopants, are added to experimental GaAs samples during
the production process, the true locations of the dopant atoms in the GaAs sample are
unknown. Thus, it is infeasible to generate a set of TEM images for which we know the
true location of the point defects. The lack of knowledge about the true location of the
defects in an experimental image is crucial. In light of this lack of defect truth data, the goal
is to develop a defect detection method that is trained solely on defect-free TEM images.

Our dataset consists of simulated TEM images of GaAs using 8 different thickness
conditions and 21 different defocus conditions. The thickness is varied from 1 nm to 15 nm
in 2 nm steps. The defocus condition ranges from −20 nm to 20 nm in 2 nm steps. Thus,
there are a total of 168 unique imaging conditions. These 168 imaging conditions are split
into a set of 112 train conditions (66%) and 56 test conditions (33%). The splitting of the
train and test conditions is done in a nonrandom manner. A third of the defocus conditions,
{−18 nm,−12 nm,−6 nm, 0 nm, +6 nm, +12 nm,+18 nm}, are assigned to the test set and
the remaining are assigned to the training set. The imaging conditions have a significant
impact on the resulting TEM image so splitting on the imaging conditions ensures that
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model performance generalizes beyond conditions only in the set of training conditions.
For the remainder of the paper, we refer to these sets as the train and test conditions.

We use the train and test conditions to further generate the training and tests data
for our models. For each of the 112 train conditions, we simulate a single TEM image of
dimension 1007× 1024. The image is represented as a matrix of dimension 1007× 1024
where each entry represents a grayscale pixel value. Since the TEM image consists of a
repeating lattice structure, we choose to analyze the TEM images in smaller segments of
dimension 84× 118. Each of these image segments is large enough to include two sets of
GaAs pairs in both the vertical and horizontal direction. At the same time, these image
segments are small enough such that accurately identifying the presence of a defect in a
particular image segment is nearly equivalent to determining the location of the defect.
Thus, after generating the larger simulated TEM images, we generate 50 random crops
from each training set image where each crop is an image segment of dimension 84× 118.
Please note that the crops are random so the location of the GaAs atoms differs within
each image segment. These 5600 image segments constitute the training data for the PCA
and form the basis for the training data for the CNN. During the training of the CNN, we
apply data augmentation and randomized circular defects to the 5600 image segments to
generate labeled training data. This process is described in more detail when we present
the PCA-CNN model.

Next we use the test conditions to generate the test data. For each of the 56 test
conditions, we generate 30 TEM images that are each 1007 × 1024. Specifically, each
simulated image contains a single point defect that can be one of three defect types. For
each of these three defect types, 10 replicates are generated where the defect location is
randomized for each replicate. This results in a total of 1680 test images that are each
1007× 1024. The three types of defects are (1) an antisite complex where the Gallium and
Arsenic atoms are reversed, (2) substitutional defect where a dopant has an approximately
5% larger radius, (3) an arbitrary circular defect. Figure 2a shows an example of each
of the three defect types. We choose to consider these three types of defects because it
includes a very subtle defect in the substitutional defect, a more obvious defect in the
antisite defect, and a general defect in the circular defect. The circular defect is located
randomly in an image segment while the other two located appropriately. The circular
defect is meant to capture any general point defect such as an interstitial defect or a vacancy.
The circular defect is unique in that it is easily added to any TEM image, either simulated
or experimental. This flexibility plays an important role in the CNN model that introduced
in a later section. For each combination of imaging condition and defect type, we generate
10 simulated TEM images with a randomly located defect. This results in 1680 test images
where the defect location is known. Unlike the smaller image segments used in the training
set, the images in the test set are 1007× 1024. The test set images are used to evaluate
whether or not the defect detection methods can accurately predict the location of the
defect in the test image. Specifically, a 84× 118 sliding window is used to determine the
likelihood that each image segment in the 1007× 1024 image contains a defect. Using
a stride length of 4, each 1007× 1024 image results in over 50,000 image segments that
must be individually analyzed. The process for generating the training and test data is
summarized in Figure 3.

The simulated TEM images do not include imaging noise. However, experimental
TEM images can have varying degrees of noise that make it difficult to identify defects
in a TEM image. Therefore, it is desirable for our proposed defect detection methods to
be robust to imaging noise. To account for the presence of imaging noise in experimental
images, Gaussian noise is used in both the training and test sets. Specifically, Gaussian
noise with ε ∼ N (µ = 0, σ2 = 0.05) is added to each pixel value for images in the training
set. For the test set, varying levels of Gaussian noise, where σ2 = 0.00, 0.05, 0.10, are added
to the TEM images and model performance is evaluated for each noise level. Figure 2b
shows the effect of the Gaussian noise on a TEM image.
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(a) Examples of defect types

(b) Examples of effect of increasing imaging noise

Figure 2. (a) Three different types of defects are considered. For each imaging condition in the test
set, each of the three defect types is added to the test image. (b) Examples of increasing levels of
Gaussian noise. The noise percentage level corresponds to the variance, σ2, of the Gaussian noise
that is added the image. A circular defect is shown for reference.

Figure 3. The methodology of the PCA-based defect detection method is summarized by the steps
bordered in blue. The steps outside the blue border are the additional necessary to incorporate the
CNN classification model into the defect detection methodology.

2.2. PCA Model

We present a method of detecting defects using PCA reconstructions. We fit a PCA
transformation on the 5600 defect-free 84× 118 image segments in the training set. Then
we apply an 84× 118 sliding window across each 1007× 1024 test set image and, for each
window, we generate a PCA reconstruction of the image segment in the window. Since the
PCA transformation (and inverse transformation) is only fitted on defect-free TEM images,
the assumption is that PCA will struggle to reconstruct an image with a defect. Thus, we
expect that the reconstruction error of image segments with a defect to be greater than the
reconstruction error of images without defects. We can predict the location of a defect by
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identifying the image segment with the highest MSE. With this framework in mind, we
present the method in more detail below.

In general, PCA is a method for transforming a data matrix, X, with dimensions
m× n to a lower-dimensional representation, Xk, with dimensions m× k where k < n.
Specifically, PCA involves a linear transformation, Xk = XWk, where the transformation
matrix is defined as Wk = arg maxWk

∥∥∥X− XkWk
T
∥∥∥ with the constraint that Wk is orthog-

onal, Wk
TWk = I. Notice that XkWk

T is an m × n matrix that can be interpreted as a
reconstruction of the original data using the lower-dimensional representation. Thus, Wk
is a transformation matrix that minimizes reconstruction error for a given data matrix X
and dimension k [33].

In our PCA-based model, the training data consists of 50 randomly cropped image
segments from each of the 112 larger TEM images in the training set. These 5600 training
image segments can be represented by the data matrix Q ∈ R5600×9912 where the rows rep-
resent individual image segments and the columns represent mean-centered values at each
pixel location. The orthogonal linear transformation Qk = QWk projects the original data,
Q, to a lower k-dimensional representation, Qk. In PCA, the weight matrix Wk ∈ R9912×k

is constructed such that the reconstruction MSE,
∥∥∥Q−QkWk

T
∥∥∥2

F
, is minimized. Notice

that Q̂ = QkWT
k , a matrix of dimension 5600× 9912 represents the reconstructed images.

The projection to the lower-dimensional space and the reconstruction back to the original
dimensional space are both determined by Wk. Once Wk is fit using the training data, it
can be used to generate the reconstruction of any 84× 118 image segment.

We set the value of k using reconstruction mean-squared error (MSE) of a test set.
Specifically, we fit the PCA using the 5600 image segments in the training set and then
apply the fitted PCA to image segment from the test conditions to compute the average
reconstruction MSE. For each of the 56 test conditions, 50 random crops are taken where
each crop is known to be free of defects. Figure 4 shows the effect of increasing the number
of components on MSE. To prevent overfitting to the noise in the training set, we set
k = 150. Figure 4 shows several examples of image segments under various imaging
conditions as well as the associated reconstruction with k = 150. Figure 5 also shows
examples of circular defects and the effect of the PCA reconstruction on the defect. The
circular defects in the raw image are not visible in the PCA reconstruction which indicates
that PCA reconstruction struggles to accurately reconstruct anomalous point defects.

Figure 4. The number of components used to fit the PCA is determined using the average reconstruc-
tion MSE of the test set images. The average reconstruction MSE for test set images falls rapidly and
levels off after the number of components exceeds 150.
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Figure 5. The first three rows show (1) the defect-free image segments with noise, (2) the PCA
reconstruction, and (3) the residual between the raw and reconstructed image, respectively, for a
range of imaging conditions. The bottom three rows show the same sequence images except the raw
image contains a circular defect that has been randomly inserted. Notably, the PCA reconstructed
image does not accurately reconstruct the defect since the PCA transformation was fitted only on
images without defects.

The difference between an image segment and its reconstruction is referred to as
the residual image. The residual image, intuitively, shows what is remaining when the
general lattice structure is “subtracted” from the original image. Thus, the residual images
consists of noise and any anomalies in the lattice structure. The reconstruction MSE can be
regarded as a scalar that summarizes the residual image. For each of the 5600 images in the
training set, we can compute the reconstruction MSE with and without a circular defect to
understand the distribution of reconstruction MSE. Figure 6a shows how the presence of a
defect changes the reconstruction MSE for each training example. In addition, Figure 6b
shows how the addition of imaging noise affects the reconstruction MSE distribution with
and without a defect. The concept of a residual image plays an important role in the CNN
model that is presented in the next section.

After fitting the PCA transformation, we apply the resulting Wk to the test set images
via a sliding window. Recall that each test set image is of dimension 1007× 1024 and
contains a single point defect with known location. We use a 84× 118 sliding window
across the 1007× 1024 image and, for each window, we complete the following three steps:
(1) generate the PCA reconstruction, (2) generate the residual between the original image
segment and the reconstruction, (3) compute the pixel-wise mean squared error (MSE).
We then generate a heatmap that shows the average reconstruction MSE for each pixel in
the full-size TEM image. The predicted location of the defect corresponds to the area of
the heatmap that has the largest reconstruction MSE. Figure 7 shows an example of a test
image and the corresponding MSE heatmap. The defect in the test image is a substitutional
defect where a single Gallium atom is replaced with a dopant atom that has a 5% larger
radius. The defect is difficult to identify visually, but the heatmap accurately locates the
defect. This method is applied to all imaging conditions in the test set and we evaluate the
accuracy in predicting the location of each type of defect. Figure 3 summarizes the process
for predicting defect location using PCA.
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(a) without noise (b) with noise σ2 = 0.10
Figure 6. The scatterplot shows the reconstruction MSE of 5600 defect-free image segments (x-axis)
in the PCA training set and the corresponding reconstruction MSE for the same image segment with
a circular defect inserted. Points that are close to the x = y represent image segments where the
reconstruction MSE does not differ much with or without a defect. The marginal plots show the
distribution of reconstruction MSEs with and without defects. On left, without imaging noise. On
right, with imaging noise.

Figure 7. Heatmap that shows the pixels with the largest average MSE based on the PCA reconstruc-
tion. Bright spots correspond to areas that are mostly likely to have a defect.

2.3. PCA-CNN Model

In this section, we supplement the PCA-based detection method with a CNN classifier
to improve the accuracy of the defect location predictions. This combined method signif-
icantly improves the prediction accuracy of the PCA model, especially in the case when
there is imaging noise.

The PCA-based defect detection method has the benefit of being straightforward.
However, in the presence of imaging noise, using PCA reconstruction error can lead to
issues. Figure 5 shows the PCA residual images of segments with and without defects. In
these particular examples, the reconstruction MSE for the defect images is actually lower
than the reconstruction of the MSE for the defect-free images. Notably, if we visually
inspect the residual images, the residual images clearly show the presence of a point defect.
To address this shortcoming, we introduce a CNN classification model fitted on the PCA
residual images. Intuitively, reconstruction MSE is equivalent to adding up the squared
values in the residual image and it ignores any local patterns in the residual image. A
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CNN, on the other hand, can be trained to look for the presence of local patterns in the
residual image that may be evidence of a defect. To the best of our knowledge, the use of
the residual image for defect detection is a novel approach.

A CNN is a type of neural network that is commonly used for analyzing image
data ([4]). The key concept in a CNN involves the use of small filters or kernels to extract
local information from an image. A filter, often of dimension 3× 3, is a matrix consisting of
weights. The filter is applied to an image by sliding the filter across the image and taking
the sum of the element-wise product between the filter weights and the image pixel values.
The sums of these element-wise products are then stored in a new matrix, commonly
referred to as a feature map, which can once again be analyzed using another set of filters.
The training process of a CNN involves optimizing the filter weights to minimize a given
loss function. In our application, our goal is to train a CNN to identify the presence of a
defect within a residual image.

The training data for the CNN model begins with the same set of defect-free training
images used to fit the PCA. Recall that 50 random crops from each of the 112 training
images were used to fit the PCA. These same 5600 images are used to build a set of labeled
training data for the CNN classifier. Since the training data only includes image segments
that are defect-free, a set of labeled training data with defects is generated by adding
random, circular defects to each of the 5600 training images. These circular defects could
be representative of an interstitial defect or a vacancy, but they are not necessarily meant
to represent a realistic defect that would be observed in an experimental image. Instead,
the hope is that the CNN will learn to classify any residual image with an abnormal local
pattern as one containing a defect. Since the circular defects are arbitrary and are added
post-hoc to the simulated image, this method can easily be applied to experimental TEM
images as well. After generating the labeled training, a CNN classification model is trained
such that for an input PCA residual image, the model outputs a scalar ŷ = P(defect) where
P(defect) ∈ [0, 1] is the probability that the image segment contains a defect. A summary
of the CNN model development process is visualized in Figure 3.

Our primary CNN architecture is adapted from the classic LeNet-5 architecture [34]
and has 58,000 trainable parameters. Figure 8 shows the details of each layer of the CNN. It
contains four convolutional layers with max-pooling following by two dense layers. We use
a binary cross-entropy loss function and is optimized using nAdam. The model is trained
for 200 epochs. Importantly, the training data are generated randomly for each batch so
the location of the circular defects and noise patterns in the training set are randomized
during training. The CNN is trained using Python 3.7 and Keras 2.3 with a TensorFlow
2.4.1 backend. The model achieves >99% training accuracy and test accuracy in less than
100 epochs. At the completion of 200 epochs, the test accuracy is 99.8% (Figure 9. Since the
test set images are generated using a separate set of imaging conditions (focal length and
thickness), the strong performance on the test set suggests that the trained CNN generalizes
well to imaging conditions that were not included in the training set.

In addition to the LeNet based architecture, a VGG-16 architecture [35] was also
implemented for comparison. The VGG-16 model was pretrained on ImageNet and the
top dense layers were retrained using the TEM images. This resulted in 14.7 million fixed
parameters and 3.2 million trainable parameters. After training for 100 epochs, the VGG-16
model achieved an accuracy of 98.2%. Given the much smaller size of the LeNet-based
model and the better test set performance, the LeNet-based model was chosen as the
preferred model.
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Figure 8. CNN architecture motivated by LeNet-5.

Figure 9. Train and test set accuracy during the CNN training process. The input to the CNN model
is a residual image of dimension 84× 118 and the output is the probability that the image contains a
defect, P(defect).

After training the CNN, an 84× 118 sliding window is applied to each of the 168 test
images that are 1007× 1024 with one hidden point defect. Using a stride of four pixels,
this process results in 50,000 image segments that must be classified as having a defect or
not. For each 84× 118 window, we apply the following three steps: (1) generate a PCA
reconstruction, (2) generate a residual image between the original image segment and the
PCA reconstruction, and (3) pass the residual image into the trained CNN to generate
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P(defect). For each pixel in the 1007× 1024 test image, we compute the average P(defect)
for all sliding windows that contain the pixel. This results in a smoothed heatmap for the
entire test image. The location of the defect is then predicted to be the area of the heatmap
that has the highest average P(defect). The heatmap shown earlier in Figure 3 is an example
of a heatmap generated using the CNN classification model with a sliding window.

In many applications of CNNs for anomaly detection, the output of the CNN classifier,
P(defect), is compared to a fixed threshold value to determine if a particular input contains
an anomaly or not [19]. Please note that a threshold is not necessary here since the predicted
defect location is simply the pixel value with the largest average P(defect). If we generalize
to the case where there are n defects in a GaAs sample, then the locations corresponding to
the n largest average P(defect) would be the predicted locations of the defects.

3. Results

In this section, we compare the performance of the two defect detection methods
discussed above. Recall that there are 56 imaging conditions that were reserved for the test
set and there are three defect types. For each combination of imaging condition and defect
type, we generate 10 simulated TEM images, each of dimension 1007× 1024, where the
defect location is randomized. This results in 1680 test images where the defect location
is known. For each of the 1680 test images (540 images for each of the three defect types),
we apply the PCA and PCA-CNN defect detection methods to predict the location of the
defect. We compare the predicted defect location to the true defect location to determine
whether the model successfully located the defect.

Table 1 shows the accuracy of both methods in predicting the defect location for
various levels of imaging noise. The PCA defect detection method performs particularly
well in the case of no imaging. It accurately locates all three defects types at nearly >97%
and generally outperforms the CNN model. However, as the imaging noise increases, we
observe the superior performance of the CNN model. Specifically, when imaging noise
rises to σ2 = 0.10, the PCA model achieves an accuracy of 56% and 57% on antisite and
circular defects, respectively, while the CNN model achieves 75% and 93% accuracy.

Table 1. Accuracy of the PCA and PCA-CNN model in locating point defects in the test set images.
Table (a) shows the accuracy results when including all images in the test set. Table (b) shows the
accuracy results when only the nominal defocus conditions are included. In both cases, the CNN
model is more robust to imaging noise.

(a) Location detection accuracy including all imaging conditions

Method Noise Substitution
n = 560

Antisite
n = 560

Circular
n = 560

PCA
σ2 = 0.00 0.97 1.00 1.00
σ2 = 0.05 0.16 0.80 0.94
σ2 = 0.10 0.04 0.56 0.57

PCA-CNN
σ2=0.00 0.71 0.86 1.00

σ2 = 0.05 0.64 0.90 0.99
σ2 = 0.10 0.14 0.75 0.93

(b) Location detection accuracy for central defocus conditions, {−6 nm, 0 nm, +6 nm}

Method Noise Substitution
n = 240

Antisite
n = 240

Circular
n = 240

PCA
σ2 = 0.00 1.00 1.00 1.00
σ2 = 0.05 0.24 0.91 0.92
σ2 = 0.10 0.04 0.70 0.61

PCA-CNN
σ2 = 0.00 1.00 0.98 1.00
σ2 = 0.05 0.89 0.99 0.99
σ2 = 0.10 0.23 0.89 0.91



Mathematics 2021, 9, 1209 13 of 16

The results in Table 1a report the performance of the two methods under all test imag-
ing conditions. Recall that the test set includes an equal number of TEM images for a range
of defocus conditions. In practice, extreme defocus conditions are relatively uncommon
and are actively avoided. Narrowing the focus on the central range of defocus conditions,
{−6 nm, 0 nm, +6 nm}, provides a better representation of expected performance on
experimental images. Table 1b shows the defect location accuracy of both methods under
nominal defocus conditions. Under the restricted set of defocus conditions, the CNN model
remains more robust in the presence of imaging noise. Specifically, when σ2 = 0.10, the
CNN model achieves 89% and 91% accuracy for antisite and circular defects, respectively,
while the PCA model achieves 70% and 61% accuracy.

Based on these preliminary results, it appears that the substitution defects are more
challenging to identify compared to the antisite and circular defect. This is unsurprising
given that the substitution defects are also the most challenging to identify from visual
inspection. The substitution defects were purposely subtle so as to determine the effec-
tiveness of the proposed methods for a wide range of defects. In practice, the substitution
defects are unlikely to sit precisely in a gallium or arsenic site. If the substitution defect is
slightly misaligned, then it is likely that the proposed methods would be more effective in
locating the defect. The antisite and random circular defects are more readily identified
visually which is reflected in the accuracy results. Although the circular defect is not repre-
sentative of a particular defect, the circular defect could be representative of an interstitial
defect or a vacancy.

4. Discussion

In this paper, we introduce two methods for determining the location of a point defect
in a TEM image of GaAs. Compared to recent applications of using CNNs for defect
detection ([1,2], and references therein), the proposed PCA and PCA-CNN methods of
defect detection are unique in that they can be trained on TEM images that are defect-
free. Unlike prior approaches to defect detection, this opens the door to training these
models using experimental data. After training both models using a set of simulated
images that are free of defects, we demonstrate the performance of both methods in
locating a simulated defect in an HRTEM image. In the case of no imaging noise, we
show the PCA method is sensitive to minor defects such as a subtle substitution defect
(97% accuracy). However, as imaging noise is introduced, the performance of the PCA
method declines rapidly. Supplementing the PCA method with a CNN classification
model improves the performance of the model dramatically. The CNN classification model
achieves >89% accuracy for both antisite and circular defects at the highest level of imaging
noise (σ2 = 0.10). These results suggest that the CNN approach has the potential to be
highly effective in analyzing experimental images.

Our PCA-CNN classification model is unique in that it is trained on PCA residual
images. Using the PCA reconstruction to generate a residual image is a novel approach that
has notable benefits. One of the benefits is that it allows for a single pre-trained CNN to be
used for a wide range of imaging conditions. This is in contrast to prior studies that rely
on condition-specific models for defect detection. Imaging conditions, such as thickness
and defocus condition, change the overall “pattern” that is visible in an TEM image. By
taking the difference between an image segment and its reconstruction, we are, intuitively,
“subtracting” the pattern that is associated with a set of imaging conditions. The residual
images are then less correlated with the imaging conditions used to generate the TEM
image and can be analyzed using a single pre-trained CNN. Another benefit is that using
the residual images allows a CNN to more effectively classify defects. Specifically, when we
trained a CNN classification model directly on image segments in the training set without
using residual images, the trained model far underperformed our model that uses residual
images. This suggests that the use of residual images is a key step in training an effective
CNN classification model in the context of TEM images.
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The results presented in this paper are based on simulated TEM images. However,
the goal is to implement and adapt these methods for experimental images as they become
available. We observe that experimental images pose unique challenges compared to
simulated images. In the simulated TEM images, the imaging conditions and the imaging
noise were assumed to be consistent across the entire image. In contrast, the thickness
of a sample can vary in an experimental image and the imaging noise is unlikely to be
consistent across an entire image. While additional steps will be necessary to account
for these variations, we believe the key ideas of using PCA reconstructions and residual
images will remain an integral part of analyzing defects in experimental TEM images.

5. Conclusions

In this paper, we propose an anomaly detection method for locating point defects
in crystalline materials using TEM images. The proposed method involves using a PCA
reconstruction to generate a residual image and then a self-supervised CNN classifier to
detect the presence of an anomaly in the residual image. Unlike earlier works that rely on
extensive pixel-by-pixel labeled training data via simulation ([1,2]), our proposed method
is a self-supervised method that only requires defect-free TEM images in the training set.
Since the method only requires defect-free TEM images, it allows for the possibility of
training a defect detection model directly on experimental TEM images that are defect-free.
Additionally, our novel use of a residual image allows for strong results using a simple,
computationally efficient CNN architecture that generalizes well to imaging conditions
that are not included in the training set. Using simulated TEM images with a single point
defect, we show that our PCA-CNN method is able to accurately locate point defects and
it outperforms reconstruction error-based methods, particularly in the case when there is
significant imaging noise.
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