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Abstract: A simultaneous-approximation term is a non-reflecting boundary condition that is usually
accompanied by summation-by-parts schemes for provable time stability. While a high-order con-
vective flux based on reconstruction is often employed in a finite-volume method for compressible
turbulent flow, finite-volume methods with the summation-by-parts property involve either equally
weighted averaging or the second-order central flux for convective fluxes. In the present study, a cell-
centered finite-volume method for compressible Naiver–Stokes equations was developed by combin-
ing a simultaneous-approximation term based on extrapolation and a low-dissipative discretization
method without the summation-by-parts property. Direct numerical simulations and a large eddy
simulation show that the resultant combination leads to comparable non-reflecting performance
to that of the summation-by-parts scheme combined with the simultaneous-approximation term
reported in the literature. Furthermore, a characteristic boundary condition was implemented for the
present method, and its performance was compared with that of the simultaneous-approximation
term for a direct numerical simulation and a large eddy simulation to show that the simultaneous-
approximation term better maintained the average target pressure at the compressible flow outlet,
which is useful for turbomachinery and aerodynamic applications, while the characteristic boundary
condition better preserved the flow field near the outlet.

Keywords: Navier–Stokes equations; non-reflecting boundary condition; finite volume method;
simultaneous approximation term

1. Introduction

Compressible turbulent flows are encountered in many engineering applications
such as airplanes, high-speed vehicles, and turbomachinery. High-fidelity simulations of
turbulence such as direct numerical simulations (DNS) or large eddy simulations (LES)
require minimal numerical dissipation as upwind-biased schemes artificially dampen
small-scale turbulent structures [1]. The adoption of low-dissipative schemes, however,
leads to requiring non-reflecting boundary conditions at the subsonic compressible outlet,
as the lack of numerical dissipation leads to the accumulation of incoming acoustic waves
affecting the internal flow field unless exact outlet boundary conditions are imposed [2].

A simultaneous-approximation term (SAT) is a non-reflecting boundary condition
that is often used with summation-by-parts (SBP) schemes, as the combination of an SBP
scheme and an SAT (SBP–SAT approach) leads to provable time stability, meaning that the
resultant numerical method is stable for long-time numerical integration [3–6].

The SBP–SAT approach was extensively studied for high-order finite-difference meth-
ods (FDMs) [5,6], but only a few studies regarding SBP–SAT approaches for finite-volume
methods (FVMs) are available, while most research for FVMs concerns node-based FVMs.
Nordström et al. [7] showed that the first derivative for unstructured node-centered FVM
is on an SBP form given that equally weighted averaging is used for convective flux
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calculation, which led to the development of a node-based unstructured FVM solver by
Shoeybi et al. [8]. Concerning a cell-centered FVM, a paper by Nordström and Björck [9]
studied the SBP-SAT approach for a cell-centered FVM using scalar hyperbolic problems
in one and two dimensions, but at the cost of introducing data nodes at the boundaries,
and it was limited to the second-order central convective flux. An SBP–SAT approach for
three-dimensional compressible Navier–Stokes equations in a cell-centered FVM was not
reported in the literature.

While complex geometries encountered in practical engineering applications favor an
FVM over an FDM due to geometrical flexibility and computational efficiency, DNS and
LES often employ high-order convective fluxes based on the polynomial reconstruction
of variables for FVMs [10–12], and the use of equally weighted averaging for convective
flux calculation is not always possible due to the introduction of an upwind-biased flux
for shock capturing [13]. Furthermore, while the SAT can be readily used in FDMs and
node-based FVMs where unknowns are solved at the boundaries, SAT application for a cell-
centered FVM is not straightforward as the cell-centered FVM does not have unknowns at
the cell faces where the boundary conditions are imposed; this issue motivated Nordström
and Björck [9] to introduce unknowns at the boundary.

In this paper, the SAT for compressible Navier–Stokes equations by Svärd et al. [4] is
implemented by extrapolating cell-centered variables to cell faces instead of introducing
additional unknowns at the boundaries. Rather than insisting on the SBP–SAT approach,
which is not viable for high-order convective fluxes, a non-SBP cell-centered FVM by
Khalighi et al. [10] was combined with the SAT based on extrapolation. While the re-
sultant combination will be referred to as NSBP–SAT approach, it showed comparable
non-reflecting performance to that of the SBP–SAT approach reported in the literature [8]
for DNSs of a two-dimensional acoustic pulse and low Reynolds number flow around a
two-dimensional circular cylinder, and an LES of flow over a circular cylinder at Ma = 0.4.
Moreover, the non-reflecting performance of the SAT was compared with that of the char-
acteristic boundary condition (CBC) for a DNS of convecting two-dimensional inviscid
vortex and an LES of flow over a von Karman Institute (VKI) turbine cascade.

The present paper is organized as follows. Section 2 introduces governing equa-
tions for DNS and LES, and describes a subgrid-scale model employed for LES. Section 3
addresses details of numerical methods employed in the present study, and the implemen-
tation is verified and validated against numerical tests without non-reflecting boundary
conditions. In Section 4, the SBP–SAT and the NSBP–SAT approaches are introduced and
compared in numerical tests. A conducted comparative study of the SAT in the NSBP–SAT
approach and the CBC for numerical tests is described in Section 5, followed by concluding
remarks in Section 6.

2. Governing Equations and Turbulence Modeling
2.1. Unfiltered Navier–Stokes Equations

Navier–Stokes equations for compressible flows are written as follows [14]:

∂

∂t
ρ +

∂

∂xj

(
ρuj
)
= 0, (1)

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj + pδij

)
=

∂

∂xj

(
σij
)
, (2)

∂

∂t
(ρE) +

∂

∂xj

[
(ρE + p)uj

]
=

∂

∂xj

(
σijui

)
− ∂

∂xj
qj, (3)

where t and xi are independent variables representing time and spatial coordinates. The
summation convention over repeated indices is used. ρ, ui, p, E, σij, and qj denote density,
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velocity vector, pressure, total energy per unit mass, shear-stress tensor, and heat flux,
respectively. E, σij, and qj are given as follows:

ρE =
p

γ− 1
+

1
2

ρuiui, (4)

σij = 2µ(T)Sij −
2
3

µ(T)δijSkk, (5)

qj = −κ
∂T
∂xj

, (6)

where the heat-capacity ratio is given as γ = Cp/Cv. Cp and Cv are specific heat at constant
pressure and constant volume, respectively. The rate of strain tensor Sij is given as

Sij =
1
2
(

∂ui
∂xj

+
∂uj

∂xi
). (7)

Assuming the ideal gas model for air, the equation of state is given as

p = ρRT, (8)

where the gas constant is R = Cp − Cv.
Variation of µ with T is approximated by a power law µ(T) = µ(T0)(T/T0)

0.76, which
is valid between 150 and 500 K. κ is given as κ = µCp/Pr, where Pr is the Prandtl number.

Navier–Stokes equations are solved for DNS, which does not need a turbulence model
given that flow structures are resolved by the Kolmogorov scale [15].

2.2. Spatially Filtered Navier–Stokes Equations

While DNS is prohibitively expensive for high Reynolds number flows encountered
in practical applications, LES is an alternative high-fidelity simulation technique where
large-scale turbulent eddies are directly solved, and small-scale eddies are modeled by a
subgrid-scale (SGS) model.

A low-pass filter operation is defined as

φ(x) =
∫

Ω
G(x, ξ)φ(ξ)dξ, (9)

where x and ξ are spatial coordinate vectors in the flow domain of Ω. Filter kernel G
satisfies the normalization condition and depends on the filter width defined as ∆. A Favre
filter is also defined as φ̃ ≡ ρφ/ρ. For the definition of filter width, the definition of an
element size in three-dimensional space [16] is as follows:

∆ = 3
√

∆1∆2∆3, (10)

where ∆i denotes the filter width in the i direction.
Low-pass-filtered Navier–Stokes equations are given as follows [17]:

∂

∂t
ρ +

∂

∂xj

(
ρũj
)
= 0, (11)

∂

∂t
(ρũi) +

∂

∂xj

(
ρũiũj + pδij

)
− ∂

∂xj

(
σ̃ij
)
= − ∂

∂xj
τij +

∂

∂xj

(
σij − σ̃ij

)
, (12)
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∂

∂t

(
ρẼ
)
+

∂

∂xj

[(
ρẼ + p

)
ũj

]
− ∂

∂xj

(
σ̃ijũi

)
+

∂

∂xj
q̃j

=− ∂

∂xj
ζ j −

∂

∂xj

(
τijũi

)
+

∂

∂xj

(
σijui − σ̃ijui

)
− ∂

∂xj

(
qj − q̃j

)
,

(13)

where ρuiuiuj− ρuiuiũj ≈ 2τijũi is assumed following the work by Okong’o and Bellan [17].
Ẽ, σ̃ij, q̃j, S̃ij, τij, and ζ j are given as follows:

ρẼ =
p

γ− 1
+

1
2
(ρũiũi + τii), (14)

σ̃ij = 2µ(T̃)S̃ij −
2
3

µ(T̃)δijS̃kk, (15)

q̃j = −κ(T̃)
∂T̃
∂xj

, (16)

S̃ij =
1
2
(

∂ũi
∂xj

+
∂ũj

∂xi
). (17)

τij = ρ(ũiui − ũiũi), (18)

ζ j = Cpρ(T̃uj − T̃ũj). (19)

Last, it is assumed that σij = σ̃ij, σijui = σ̃ijui, and qj = q̃j following the work by
Okong’o and Bellan [17].

2.3. Subgrid-Scale Modeling

For LES, τij and ζ j are modeled by using eddy viscosity closures as follows:

τij −
1
3

τkkδij = −2CρΠ(S̃ij −
1
3

Skkδij), (20)

ζ j = −Cp
ρCΠ
Prt

∂T̃
∂xj

. (21)

where τkk and Π are modeled using Yoshizawa parameterization [18] and the Vreman
kernel [19], given as follows:

τkk = 2CIρ∆2|S̃|2, (22)

Π =

√
Bβ

α̃ijα̃ij
, (23)

where Bβ, βij, and α̃ij are defined as follows:

Bβ = β11β22 − β12β12 + β11β33 − β13β13 + β22β33 − β23β23, (24)

βij =
3

∑
m=1

∆2α̃miα̃mj, (25)

α̃ij =
∂ũj

∂xi
. (26)
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3. Numerical Methods, Verification, and Validation

The present numerical implementation uses Equations (1)–(3) for DNS, and
Equations (11)–(13) for LES. As identical numerical methods were employed for both
DNS and LES, descriptions of the numerical schemes are given for DNS.

Equations (1)–(3) are solved in cell-centered finite-volume form:

∂U
∂t

Vcv + ∑
f

Fe A f −∑
f

Fv A f = 0, (27)

where U = [ρ, ρu1, ρu2, ρu3, ρE] is the vector of conserved variables averaged in the control
volume. Fe and Fv are the face-normal Euler and viscous flux vectors, respectively, cor-
responding to the right-hand sides of Equations (1)–(3). Vcv is the volume of the control
volume, ∑ f is the summation over the cell faces per cell, and A f is the area of the cell face.
The volume and the surface integrals are approximated with the second-order midpoint
quadrature rule.

Following Khalighi et al. [10], biased polynomial reconstruction, which is maximal
third-order accurate to the face centroid, is performed for primitive variables (ρ, ui, and
p) on both sides of each cell face. Using the face-reconstructed values on the left- and the
right-hand sides of a cell face, φl and φr, a central flux is calculated in skew-symmetric
form [8], while dissipative essentially non-oscillatory (ENO) flux [20] is calculated by using
the HLLC Riemman solver [13]. For more details regarding face reconstruction for fluxes,
refer to Khalighi et al. [10].

A blended flux is expressed as follows:

Fe, blended = (1− α)Fe, central + αFe, dissipative, (28)

where 0 ≤ α ≤ 1 is a blending parameter. Unlike the implicit LES where a global constant
of α = 0.25 [21] or α = 0.1 [22,23] is used, Khalighi et al. [10] computed α using the row
norm of the symmetric part of the differencing operator for Euler fluxes D, as follows:

α = c||D + DT ||, (29)

where c = 2 was chosen from numerical tests [10]. The motivation to use Equation (29)
was that a skew-symmetric operator (D = −DT) is stable and non-dissipative (energy-
conserving) in the inviscid limit on a periodic domain [10]. The blending scheme by
Khalighi et al. [10] is cost-effective, as α is precomputed using grid information prior to
the main calculation while the use of high-order spatial filter requires filtering at each time
step in addition to the calculation of fluxes. A relative solution switch [10] is employed
to activate dissipative ENO fluxes in regions with shocks by setting α = 1. A third-order
low-storage Runge–Kutta scheme [24] is employed to advance the equations in time.

3.1. Two-Dimensional Propagating Inviscid Vortex

The accuracy of the present numerical scheme was verified by using an exact vortex
solution to the Euler equations, which is given as follows [8]:

u
c∞

= M∞(cosθ − Γ
2π

(y− y0 − ṽt)e
f (x,y,t)

2 ), (30)

v
c∞

= M∞(sinθ +
Γ

2π
(x− x0 − ũt)e

f (x,y,t)
2 ), (31)

ρ

ρ∞
= (1− Γ2(γ− 1)M2

∞
8π2 e f (x,y,t))

1
γ−1 , (32)

p
ρ∞c2

∞
=

1
γ
(1− Γ2(γ− 1)M2

∞
8π2 e f (x,y,t))

γ
γ−1 , (33)
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f (x, y, t) = 1− (x− x0 − ũt)2 − (y− y0 − ṽt)2, (34)

where c∞ and ρ∞ are the reference speed of sound and reference density, respectively.
A vortex of radius one and Γ = 5.65 is initially located at (x0 = −1, y0 = −1) and is

diagonally convected to (x f = 1, y f = 1) with the speed of M∞ = 0.5. A 10× 10 box is
discretized on 50× 50, 100× 100, 200× 200, and 400× 400 cell uniform Cartesian grids.
The exact solution is used for the initial condition, and periodic boundary conditions
are imposed. The constant Courant–Friedrichs–Lewy (CFL) number of 0.3 is set for all
calculations, such that both spatial and temporal convergence rates are measured [8].

L2 and L∞ norm error norms at (x f = 1, y f = 1) are shown against the grid width ∆
in Figure 1. L2 and L∞ norm errors both exhibit second-order convergence rates.

Δ

E
rr
or

0.1 0.2

 7

 6

 5

-

10

10

10

-

-

Figure 1. Error convergence study for a 2D propagating vortex. �, L2 error; ©, L∞ error; ,
second-order convergence.

3.2. LES of Supersonic Turbulent Channel Flow

To assess the predictive capability of the present method for compressible near-wall
turbulence, LES is performed for supersonic turbulent channel flow at Mb = 1.5 and
Reb = 3000, where Mb = Ub/cw, Reb = (ρbUbδ)/µb, ρb =

∫ δ
−δ〈ρ〉dy/2δ, and Ub =∫ δ

−δ〈u〉dy/2δ. cw is the speed of sound at the wall and 〈·〉 denotes an average over time,
and streamwise and spanwise directions. Periodic boundary conditions are imposed in the
streamwise and the spanwise directions, while no-slip isothermal wall boundary conditions
are imposed at y = δ and y = −δ, where δ is the channel half width. The spatially uniform
body force is imposed in the streamwise direction to drive channel flow, and is adjusted
each time-step to conserve the global mass rate.

Two grids of 40× 48× 32 and 80× 64× 64 cells in the streamwise, wall-normal, and
spanwise directions are used similarly to those of Lenormand et al. [25].

To close the SGS models given in Equations (20) and (21), a C of 0.07 and Prt of
0.5 obtained from an a priori study of Moin et al. [26] are used. CI in Equation (22) is
assumed to be negligible due to the DNS study of supersonic channel flow [27], where the
contribution of the dilatation to the turbulent kinetic energy dissipation rate was found to
be insignificant.

Profiles of the mean and the root mean square (RMS) of velocity and temperature
obtained from the present LES are shown against DNS data by Coleman et al. [27] in
Figures 2 and 3, respectively. While the overprediction of the mean velocity in the core
region and the peak of the RMS near the wall are well-known deficiencies of the eddy-
viscosity SGS models [28], both the mean and the RMS of temperature showed favorable
agreement with those of the DNS by Coleman et al. [27]. All the results show more accurate
results on the fine grid (80× 64× 64) compared with those on the coarse grid (40× 48× 32).
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Figure 2. (a) Mean velocity profiles in wall units and (b) RMS velocity profiles in wall coordinates.
©, DNS of Coleman et al. [27]; , LES with 40× 48× 32 cells; , LES with 80× 64× 32 cells.
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(b)
Figure 3. (a) Mean temperature profiles in wall units and (b) RMS temperature profiles in wall
coordinates. Notations are the same as those in Figure 2.

4. Simultaneous Approximation Term
4.1. SBP–SAT Approach

The SBP–SAT approach is first briefly introduced. A one-dimensional linear advection
equation for a scalar variable φ(x, t) with a positive unit advection speed is given by

∂φ

∂t
+

∂φ

∂x
= 0, (35)

on domain 0 ≤ x ≤ 1 with an initial condition φ(x, 0) = f (x) and a boundary condition
φ(0, t) = g(t). By multiplying φ to Equation (35) and applying integration by parts,
one obtains

∂

∂t
||φ||2 = −φ(1, t)2 + g(t)2. (36)

where ||φ||2 ≡
∫ 1

0 φ2dx. Equation (36) suggests that ||φ||2 remains bounded for g(t) = 0.
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Next, consider a uniform grid with N nodes indexed from 1 to N for 0 ≤ x ≤ 1. For
φ = [φ1, ..., φN ]

T , ∂φ/∂x can be approximated by using a second-order central difference
method as ∂φ/∂x ≈ Dxφ where Dx = P−1Q,

Q =


− 1

2
1
2

− 1
2 0 1

2
. . .
− 1

2 0 1
2

− 1
2

1
2

 and P = ∆x


1
2

1
. . .

1
1
2

. (37)

P is a diagonal positive definite matrix that defines a norm such that ||φ||2P ≡ φT Pφ. Q
is a skew-symmetric matrix except at boundaries such that Q + QT = diag(−1, 0, ..., 0, 1).
Then, Dx is called an SBP operator.

If a penalty term, which is called SAT and expressed as 2σ
∆x [φ1 − g(t)], is imposed at

x = 0, discrete equations for Equation (35) become

∂φ

∂t
+ P−1Qφ = σP−1e1[φ1 − g(t)], (38)

where e1 = (1, 0, ..., 0)T . By multiplying φT P to Equation (38), one obtains

φT P
∂φ

∂t
+ φTQφ = σφ1[φ1 − g(t)]. (39)

Adding the transpose of Equation (39) to Equation (39) results in the energy estimate

∂

∂t
||φ||2P + φ2

N − φ2
1 = 2σφ1[φ1 − g(t)]. (40)

From Equation (40), given that g(t) = 0, ∂
∂t ||φ||

2
P ≤ 0 for σ ≤ − 1

2 . In other words,
discretization is stable for long-time integration.

4.2. NSBP–SAT Approach for a Cell-Centered Finite-Volume Method

Usage of the SAT with non-SBP schemes (NSBP–SAT approach) was not reported in
the literature, to the best of the authors’ knowledge, presumably because SAT is coupled
with the SBP for provable time stability, and partially due to successful applications of the
CBC to compressible Navier–Stokes equations.

While both FDMs and nodal FVMs have data nodes at boundaries where the SAT
can be imposed, the cell-centered FVM does not have data nodes where variables are
advanced in time. Regarding this issue, Nordström and Björck [9] introduced data nodes
at boundaries to prove time stability for the cell-centered FVM.

In the present work, the SAT is imposed on the reconstructed variables at boundaries
using extrapolation. It is subsequently shown for numerical tests that the NSBP–SAT
approach leads to comparable non-reflecting performance at outlets to that of the SBP–SAT
approach by Shoeybi et al. [8].

While cell-volume-averaged variables are stored at cell centers for the cell-centered
FVM, variable distribution within a cell can be reconstructed using gradients. For example,
for the scalar variables φL, φP, and φB shown in Figure 4, distributions of φ within cells can
be reconstructed piecewise constantly (Figure 4a) or piecewise polynomially (Figure 4b). If
an expression of the SAT at the boundary face b is given as 2σ

∆x [φB − g(t)], it is equivalent
to assume a piecewise constant profile of φ for the cell B and impose an SAT at the
boundary face b. For a more accurate representation of variables at the boundary, the
piecewise polynomial reconstruction used for Equation (28) was employed. As variables
outside boundaries are not available, linear extrapolations from the variables interior to the
boundaries are used to calculate gradients required for the reconstruction. As a result, an
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SAT given as 2σ
∆x [φb − g(t)] is used to drive the face-reconstructed variable φb at boundary

b to boundary data given as g(t).

(a) (b)
Figure 4. (a) Piecewise constant profile and (b) piecewise linear profile for reconstructed distributions
of a scalar variable φ within cells. L, P, and B denote cells. l and r denote internal faces between cells
while b is a boundary face.

For a two-dimensional acoustic pulse, low Reynolds number flow around a two-
dimensional circular cylinder and LES of flow over a circular cylinder at Ma = 0.4, it
was demonstrated that the NSBP–SAT approach for a cell-centered FVM performs as well
as the SBP–SAT reported in Shoeybi et al. [8], while both the present cell-centered FVM
method and the node-based FVM method of Shoeybi et al. are formally second-order
accurate [8,10].

4.3. Two-Dimensional Acoustic Pulse

To test the non-reflecting capability of the NSBP–SAT approach, a two-dimensional
acoustic pulse [29] was simulated using the present cell-centered FVM. A 10× 10-sized
two-dimensional box was uniformly discretized using 64 cells in each direction. The initial
field is given as follows:

ρ = ρ∞(1 +
A
γ

e−αr2
), (41)

u = v = 0, (42)

p =
ρ∞c2

∞
γ

(a + Ae−αr2
), (43)

where r =
√

x2 + y2, and origin (x, y) = (0, 0) is located at the center of the box for
Cartesian coordinates. The amplitude of a Gaussian isentropic pulse A was set to 0.05,
and α = 1.023 was used. While the SAT is applied to all boundaries, reference values
are used for the boundary data required for the SAT (ρb = ρ∞, ub = vb = 0, and
pb = (ρ∞c2

∞)/γ). The simulation was run until t = 10/c∞, when the acoustic wave entirely
left the computational domain.

Figure 5 shows instantaneous contours of p′/p∞ at t = 5/c∞ and t = 10/c∞, while
p′/p∞ = (p − p∞)/p∞. At t = 5/c∞, the acoustic pulse exited the domain without a
noticeable sign of reflection. At t = 5/c∞, the acoustic pulse exited the domain and the
remaining perturbations were observed. While Shoeybi et al. [8] reported the maximal
value of p′/p∞ to be about 1% of the initial amplitude of the acoustic pulse at t = 10/c∞,
the NSBP–SAT approach resulted in 1.6% of the initial amplitude of the acoustic pulse.
Therefore, the non-reflecting performance of the NSBP–SAT approach was observed to be
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comparable to that of the SBP–SAT approach by Shoeybi et al. [8] for a two-dimensional
acoustic pulse.

(a) (b)
Figure 5. Two-dimensional acoustic pulse (a) at t = 5/c∞ for −0.004 ≤ p′/p∞ ≤ 0.004 and (b) at
t = 10/c∞ for −0.001 ≤ p′/p∞ ≤ 0.001. 10 contour levels are shown.

4.4. Low Reynolds Number Flow around a Two-Dimensional Circular Cylinder

To further test the performance of the NSBP–SAT approach, unsteady compressible
laminar flow around a two-dimensional circular cylinder was simulated. A Reynolds
number ReD = U∞D/ν of 100 was employed, where U∞ is freestream velocity and D is
the diameter of the cylinder.

Two grids of 260 × 150 and 400 × 200 cells in the circumferential and the radial
directions were employed for the coarse- and fine-grid cases, respectively, and the coarse
grid is shown in Figure 6. The computational domain was a circle of radius 30D, and the
first grid spacing in the radial direction was 3× 10−3D [8]. The no-slip isothermal wall
boundary condition was imposed around the cylinder, and the SAT with the freestream
boundary data was imposed at the far field.

Figure 6. Grid for flow around two-dimensional circular cylinder.

Figure 7 shows the contour of the instantaneous spanwise vorticity. Oscillatory shear
layers are separated behind the cylinder forming Karman vortex streets.
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Figure 7. Contour of instantaneous spanwise vorticity ωzD/c∞ in the near wake of flow over a
circular cylinder; 10 contour levels from −0.05 to 0.05 are shown.

Table 1 shows the time-averaged drag coefficient CD, maximal and minimal lift coeffi-
cients CL, and Strouhal number St for the present simulations with the coarse and the fine
grids; simulations by Svärd and Nordström [30], and Shoeybi et al. [8]; and experimental
data obtained by Fey et al. [31]. Svärd and Nordström [30] employed the 5th-order accurate
scheme with a fine grid of 401× 201, and Shoeybi et al. [8] employed a 2nd-order accurate
scheme with 260 grids in the circumferential direction. Both Shoeybi et al. [8] and Svärd
and Nordström [30] employed the SBP–SAT approach. As results from the coarse grid were
as accurate as those reported by Shoeybi et al. [8], and results from the fine grid converged
to results by Svärd and Nordström [30], the NSBP–SAT approach performed as well as the
SBP–SAT approaches did in terms of non-reflecting performance at the outlet.

Table 1. Average drag coefficient CD, minimal and maximal values of lift coefficient CL, and Strouhal
number St for flow over a two-dimensional circular cylinder at ReD = 100.

Average CD Max. CL Min. CD St

Coarse-grid case 1.346 0.3249 −0.3249 0.167
Fine-grid case 1.344 0.3258 −0.3258 0.167

Svärd and Nordström [30] 1.341 0.3268 −0.3268 0.165
Shoeybi et al. [8] 1.347 0.168

Fey et al. [31] 0.165 ± 0.001

4.5. LES of Flow over a Circular Cylinder at M = 0.4

To assess the non-reflecting performance of the NSBP–SAT approach for compressible
turbulent flow, LES of flow over a circular cylinder at M∞ = 0.4 and ReD = 3900 was per-
formed. A circle of radius 35D with spanwise length of πD was used for the computational
domain where the cylinder of a diameter of 1D was located at the center of the radial and
circumferential plane. A sponge layer [32] with thickness of 15D was applied at the outer
boundary to damp out vortices [33]. A grid of 288× 400× 64 cells in the radial, circumfer-
ential, and spanwise directions, respectively, was used. Grid resolution was similar to that
of Mani et al. [33] except for the finer grid resolution in the spanwise direction, considering
that Mani et al. [33] used a 6th-order compact finite-difference code [34].

For SGS models, C of 0.07 and Prt of 0.9 were used for Equations (20) and (21), while
CI in Equation (22) was assumed to be zero due to the low Mach number [35].

Figure 8 shows the contour of the instantaneous spanwise vorticity to indicate the
separating laminar shear layers. While coarse spanwise resolution is known to result in
transition to turbulence in the separating shear layers closer to the cylinder [36], sufficient
grid resolution in the spanwise direction for the present simulation could be confirmed
from the elongated separating laminar shear layers.
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Figure 8. Contour of instantaneous spanwise vorticity ωzD/c∞ in the near wake of flow over a
circular cylinder; 20 contour levels from −6 to 6 are shown.

Table 2 shows a comparison of CD and St calculated from the present LES with LES
results by Mani et al. [33]. Although the present simulation used a similar number of grids,
except for the finer spanwise resolution, to those of Mani et al. [33], CD and St from the
present simulation were quite close to those of Mani et al. [33] despite the lower order of
accuracy for the present numerical method.

Table 2. Average drag coefficient CD and Strouhal number St for flow over a two-dimensional
circular cylinder at ReD = 3900.

Average CD St

Present results 1.18 0.199
Mani et al. [33] 1.17± 0.01 0.200± 0.002

Figure 9 shows density spectra in the wake for both LES results. While good agreement
of low-frequency components, including the location of the peak, explains the accurate
prediction of the Stouhal number in Table 2, slight overpredictions at high frequencies
are attributed to the low order of accuracy of the present solver. Note that the present
solver predicted high-frequency components that are qualitatively similar to those pre-
dicted by the high-order low-dissipative solver [33]. As Mittal and Moin [1] showed that
even 5th-order accurate upwind-biased schemes lead to significant underprediction for
high-wavenumber components of the energy spectra compared with the second-order
central difference, effects of the SAT are found to be limited near the boundary; therefore,
the present numerical method remained low-dissipative for the main flow feature of in-
terest. For reference, temporal and spatial scales for small turbulent eddies in large eddy
simulation are implicitly associated [37].
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Figure 9. Density spectra at wake centerline x = 2D. E(ρ) denotes nondimensionalized density
spectra using freestream velocity, freestream density, and D, while nondimensional frequencies are
normalized by the Strouhal number. , the present LES; , LES by Mani et al. [33].

5. Comparative Study of the SAT and the CBC
5.1. Description of the Characteristic Boundary Condition

The characteristic boundary condition (CBC) is arguably the most well-known non-
reflecting boundary condition for compressible Navier–Stokes equations. By applying
one-dimensional characteristic analysis by Thompson [38] to the inviscid parts of the
compressible Navier–Stokes equations, Poinsot and Lele [2] obtained

∂ρ

∂t
+

[
1

2c2 L1 +
1
c2 L2 +

1
2c2 L5

]
+

∂

∂x2
(ρu2) +

∂

∂x3
(ρu3) = 0,

(44)

∂

∂t
(ρu1)+

[
u1 − c
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c2 L2 +
u1 + c

2c2 L5

]
+

∂
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∂
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,
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∂
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]
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∂
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∂
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,

(47)



Mathematics 2021, 9, 1206 14 of 21

∂
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(ρE)+
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1
2(γ− 1)

− u1

2c
)L1 +

ukuk
2c2 L2 + ρu2L3 + ρu3L4

+(
ukuk
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1
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u1
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]
+

∂

∂x2
[(ρE + p)u2] +

∂

∂x3
[(ρE + p)u3]

=
∂σijui

∂xj
−

∂qj

∂xj
,

(48)

where Li are the amplitudes of characteristic waves that are defined as follows:

L1 = λ1(
∂p
∂x1
− ρc

∂u1

∂x1
), (49)

L2 = λ2(c2 ∂ρ

∂x1
− ∂p

∂x1
), (50)

L3 = λ3
∂u2

∂x1
, (51)

L4 = λ4
∂u3

∂x1
, (52)

L5 = λ5(
∂p
∂x1

+ ρc
∂u1

∂x1
), (53)

where λi are the characteristic velocities associated with Li that are defined as follows:

λ1 = u1 − c, (54)

λ2 = λ3 = λ4 = u1 (55)

λ5 = u1 + c. (56)

Because the characteristic velocity for Equation (49) is negative for subsonic flows,
while upwind differencing requires data outside the computational domain, numerical
calculations of spatial derivatives in Equation (49) involve downwind differencing, which
is unstable [2]. To avoid this problem, Poinsot and Lele [2] modeled L1 as follows:

L1 = σ
c(1−M2)

Lx
(p− pt), (57)

where σ is a tunable parameter, c is the speed of sound, M is the reference Mach number,
and pt is the target pressure at the outlet.

While the CBC by Poinsot and Lele [2] was limited to one-dimensional outward flows,
Yoo et al. [39] proposed adding a transverse term to Equation (57) to account for the
multidimensionality of outward flows (i.e., vortices):

L1 = σ
c(1−M2)

Lx
(p− pt) + (1− β)T1, (58)

where β is another tunable parameter, and T1 is defined as follows:

T1 = −u2
∂p
∂x2
− u3

∂p
∂x3
− γp(

∂u2

∂x2
+

∂u3

∂x3
) + ρc(u2

∂u1

∂x2
+ u3∂

∂u1

∂x3
). (59)

5.2. Characteristic Boundary Condition for a Cell-Centered FVM

Regarding the CBC for a cell-centered FVM, Gross and Fasel [40], and Motheau et al. [41]
used spatial gradients modified by characteristic analysis to impose boundary conditions
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using ghost cells, which is referred to as a gradient-based CBC (GBCBC). For instance, an
expression for a density gradient was given by Poinsot and Lele [2]:

∂ρ

∂x1
=

1
c2

[
L2

u1
+

1
2
(

L5

u1 + c
+

L1

u1 − c
)

]
, (60)

where L1 is modified using Equation (58). Using such modified gradients of variables
required at outlets, one can calculate all variables required at ghost cells.

Alternatively, one can extrapolate variables to the boundary, and directly integrate
Equations (44)–(48) at the boundary, which is referred to as the extrapolated original CBC
(EOCBC) [42]. Kang and You [42] showed that the EOCBC performed better than the
GBCBC for a convecting two-dimensional vortex and LES of a subsonic turbine cascade
when the EOCBC and the GBCBC are implemented in a cell-centered FVM. Therefore, the
EOCBC was implemented in the present study.

For the rest of the Section 5, the SAT refers to the SAT in the NSBP–SAT approach.

5.3. Convecting Two-Dimensional Inviscid Vortex

A convecting two-dimensional inviscid vortex is a well-known benchmark test for
non-reflecting boundary conditions [2,39–41,43–45]. A single vortex is superimposed on a
uniform flow aligned with the x1 direction. The initial velocity field is given as follows [45]:

ψ(x1, x2) = Γe
(x1−x1c)

2+(x2−x2c)
2

2R2
c (61)

where Γ is the strength of the vortex, and (x1c, x2c) is the coordinate for the center of a
computational domain. The computational domain is a square of dimension L of 0.013
that is discretized by 80× 80 uniform cells. Initially, uniform pressure and temperature
of 101,300 Pa and 300 K, respectively, were assumed. While the SAT was imposed at
boundaries in the streamwise direction, periodic boundary conditions were imposed for
the rest of the boundaries.

While a vortex case at a low Mach number (close to 0) presents a greater challenge
than that of a case at a high Mach number (close to 1) for the non-reflecting outlet [43,44],
a case with M∞ = u1/c∞ = 0.028 (U0 = 10 (m/s)) and Γ = 0.011 [45] was chosen for the
present test.

Figure 10 shows the exact solution, and obtained results using the CBC and the SAT
from the top to the bottom row, respectively. For each case, streamwise velocity isocontours
with normalized pressure field p∗ at t∗ = 0.45, 1.12, and 1.43 are shown, where t∗ = t/τ,
τ = L/(2U0), and p∗ is given as follows:

p∗(xi, t) =
p(xi, t∗)− p∞

p(0, 0)− p∞
(62)

Compared with the reference solution, the CBC allowed for the vortex to pass the
outlet with small distortion, which was confirmed by the similar minimal and maximal
pressure values at t∗ = 1.12 and 1.43, respectively, along with vortex structures shown by
the streamwise velocity isocontours.

The SAT, on the other hand, seemed to destroy the vortex at the outlet, along with
significant deviations of the streamwise velocity and the pressure fields from those of the
reference solution. However, at t∗ = 1.12 and 1.43, spatially averaged pressure p∗ was
maintained at 0.0, which is the target pressure imposed by the SAT. Results obtained using
the CBC showed slightly larger deviations of p∗ = 0.03 from the reference value.

These observations can be understood from the difference between the CBC and the
SAT. While the CBC utilizes linear characteristic analysis to model the local incoming
characteristic wave, the SAT utilizes a linear characteristic analysis to impose a given
boundary dataset, which is usually given to be either reference values or averaged values
at the outlet [4]. In other words, while the CBC attempts to preserve flow structures at
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outlets by modeling the incoming wave, the SAT ignores such details and enforces variables
at outlets to become closer to what is prescribed as boundary values.

Figure 10. Simulation results for two-dimensional vortex case using SAT and CBC compared with
reference solutions. (top row) Reference solutions, (middle row) obtained results by using CBC, and
(bottom row) obtained results by using SAT for three time instants.

The observation that the SAT slightly better keeps the spatially averaged pressure
field close to the target pressure is encouraging as the accurate imposition of the mean
pressure at the outlet is a particular interest for turbomachinery and aerodynamic applica-
tions. For example, while the performance of a compressor is often investigated through
a thermodynamic-efficiency versus mass-flow rate graph for a multiple of operation con-
ditions [46] obtained from a Reynolds-averaged Navier–Stokes technique [47], the mean
mass-flow rate is determined by the mean pressure ratio at the inlet and the outlet [46].
Because LES is often performed at a specific operation condition due to computational
cost [47], keeping the mean pressure at the outlet as close to a prescribed value as pos-
sible is desirable to simulate a certain operation condition. Time-averaged drag and lift
coefficients are also often the primary interests for aerodynamic applications such as an
airfoil [48] where the accurate imposition of the mean pressure is closely related to the
accurate calculation of the drag and the lift.
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The CBC, on the other hand, produces a more accurate flow field near the boundary
along with more accurate pressure fluctuations from Figure 10. This is beneficial for flow
simulations in which an accurate description of unsteady flow physics is more important
than mean quantities such as the drag and the lift.

Another interesting aspect for the NSBP–SAT approach is that, unlike the SBP–SAT
approach, which guarantees linear time stability, the NSBP–SAT approach does not allow
for such provable stability, but it was found to be stable for the vortex test.

Last, the dissipative characteristic of the SAT observed in Figure 10 does not necessarily
mean that it renders the present numerical method dissipative for the entire flow field
if the outlet is sufficiently far from the flow feature of interest. For instance, the density
spectrum shown in Figure 9 shows that the internal field was not noticeably affected by the
SAT, as high-frequency components are qualitatively well-captured.

5.4. LES of Flow through the VKI Subsonic Turbine Cascade

To further test the NSBP–SAT approach, subsonic flow over a VKI turbine cascade at
a Reynolds number of 2.8× 106 based on chord length was simulated by employing the
SAT at the outlet. The LES result with the SAT was compared with the LES result obtained
using the CBC and the experimental data by [49]. The VKI turbine cascade was also used
by Granet et al. [45] to assess the non-reflecting capabilities of several variants of CBCs.

A blade with a chord length C of 140 mm was located from the inlet and the outlet by
0.5 and 2C, respectively. The three-dimensional domain was discretized by 8.16× 106 hexa-
hedral cells in total, and the mesh is shown in Figure 11. The thickness of the domain in the
spanwise direction was 0.1C, for which 64 cells were used. While synthetic turbulence [50]
is added to the uniform incoming flow at the Mach number of 0.19, uniform thermody-
namic variables were assumed at the inlet. Either the CBC or the SAT was imposed at
the outlet. Periodic conditions were applied to the rest of the boundaries. Statistics were
collected for 10C/Ub, where Ub is bulk streamwise velocity. For further details regarding
the geometry of the cascade, refer to Sieverding et al. [49].

Figure 11. Grid for simulating VKI turbine cascade.

The isentropic Mach number is defined as follows:

Mis(x) =

√√√√√ 2
γ− 1

( p0

pw(x)

) γ−1
γ

− 1

, (63)

where p0 is the total pressure given at the inlet and pw denotes pressure along the wall of
the cascade.

For SGS models, C of 0.07 and Prt of 0.9 were used for Equations (20) and (21), while
CI in Equation (22) was assumed to be zero due to a low Mach number [35].

The isentropic Mach number distribution along the cascade, which is averaged in
time, and the spanwise direction for simulations using the CBC and the SAT are shown
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in Figure 12. While both the SAT and the CBC produced reasonably accurate results,
the SAT performed as well as the CBC did as a non-reflecting boundary condition. At
the peak of the isentropic Mach number, the SAT result even showed slightly improved
performance, which may have been due to the capability of the SAT to keep the time and
spatially averaged pressure field closer to the target pressure, which was also observed in
the two-dimensional inviscid vortex case.

X/C

Is
en

tr
o

p
ic

 M
ac

h
 n

u
m

b
er

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 12. Time and spanwise-averaged isentropic Mach number distribution along blade. Black
circle, experimental data of Sieverding et al. [49]; red squares, obtained results using CBC; green
circles, obtained results using SAT.

6. Concluding Remarks

A cell-centered finite-volume method for compressible turbulent flow was developed
by combining a non-SBP low-dissipative discretization method and an SAT based on
extrapolation, leading to an NSBP–SAT approach. Although the NSBP–SAT approach does
not lead to provable time stability, it showed comparable non-reflecting performance to
that of the SBP–SAT approach reported in the literature for a two-dimensional acoustic
pulse, flow around a two-dimensional circular cylinder at a low Reynolds number, and
LES of compressible flow over a circular cylinder at a Mach number of 0.4. The CBC
was also implemented in the present finite-volume method and compared with the SAT
in the NSBP–SAT approach against a convecting two-dimensional inviscid vortex and a
subsonic turbine cascade in terms of non-reflecting performance. The SAT maintained the
mean pressure field near the outlet slightly closer to the prescribed value than the CBC
did, rendering the SAT slightly more beneficial for turbomachinery where accurate mean
pressure imposition at the outlet is important for simulating a certain operation condition
and airfoils where time-averaged drag and lift are the primary interests. The CBC, on
the other hand, better preserved flow structures, leading to more accurate predictions of
pressure fluctuations near the outlet. This is attractive for flow simulations where accurate
descriptions of unsteady flow features are more important than accurate predictions of
mean quantities are, such as the drag and the lift.
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