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Abstract: In the present paper, a novel approach is introduced for the study, estimation and exact
tracking of the finite precision error generated and accumulated during any number of multipli-
cations. It is shown that, as a rule, this operation is very “toxic”, in the sense that it may force the
finite precision error accumulation to grow arbitrarily large, under specific conditions that are fully
described here. First, an ensemble of definitions of general applicability is given for the rigorous
determination of the number of erroneous digits accumulated in any quantity of an arbitrary algo-
rithm. Next, the exact number of erroneous digits produced in a single multiplication is given as a
function of the involved operands, together with formulae offering the corresponding probabilities.
In case the statistical properties of these operands are known, exact evaluation of the aforementioned
probabilities takes place. Subsequently, the statistical properties of the accumulated finite precision
error during any number of successive multiplications are explicitly analyzed. A method for exact
tracking of this accumulated error is presented, together with associated theorems. Moreover, nu-
merous dedicated experiments are developed and the corresponding results that fully support the
theoretical analysis are given. Eventually, a number of important, probable and possible applications
is proposed, where all of them are based on the methodology and the results introduced in the
present work. The proposed methodology is expandable, so as to tackle the round-off error analysis
in all arithmetic operations.

Keywords: finite precision error in a single multiplication; finite precision error in successive multi-
plications; exact tracking of round-off error; finite precision error; multiplication with finite word
length; statistical properties of finite precision error; loss of significance during multiplication

1. Introduction

All contemporary computing machines store both integer and floating-point numbers
with a finite number of digits. This piece of fixed-sized data that is handled as a unity by
the instruction set or the processor’s hardware is called finite word; the number of bits that
form this piece of data, is frequently called “finite word length” or “employed precision”.
In addition, on the hardware level, a computer performs fundamental operations, using
a finite word length. Nowadays, dedicated software programs have been developed,
which perform operations with a finite number of digits, the value of which is chosen
by the programmer and/or the user, the only limitation being the memory and time
constraints. We shall also use for this number of digits the term “finite word length” or
“employed precision”.

Due to the fact that the precision with which all arithmetic operations are made
is always limited, a numerical error is, as a rule, accumulated during the execution of
most algorithms. In particular, in various algorithms and corresponding applications, the
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obtained results may be totally erroneous and/or unreliable due to the aforementioned
reasons, which are inherent to all computing machines. We stress that this problem exists
even when an arbitrarily large finite word length is employed for the execution of the
algorithm, as it will become evident from the analysis introduced in the present paper. For
this reason, we will use the term “finite precision error” for this numerical error; various
authors and researchers also use the term “quantization error”, “round-off error” or other
equivalent terms.

Consequently, a number of articles address the associated issues and the problems
they generate. Thus, for example, authors in [1] study the finite precision error in the
least mean square (LMS) adaptive algorithm and they show that the error’s mean squared
value is inversely proportional to the adaptation step size µ. Reference [2] introduces a fast
algorithm for exponentially weighted least squares Kalman filtering, which suffers less from
finite precision error drawbacks, intrinsic to this class of algorithms. Reference [3] presents
algorithms for accurately converting floating-point numbers to decimal representation.
Article [4] studies the finite precision effects on the execution of the Lanczos algorithm for
solving the standard non-symmetric eigenvalue problem. The authors of [5] study round-
off error propagation in an algorithm which computes the orthonormal basis of a Krylov
subspace with Householder orthonormal matrices. Authors in [6] study the propagation of
round-off error near the periodic orbits of a discretized linear area-preserving map. The
round-off error probability distribution, considered as a function of time, is shown to be
a calculable algebraic number. In [7] it is shown that there are theoretically convergent
schemes that solve non-linear partial differential equations, which can produce numerical
steady state solutions that do not correspond to steady state solutions of the boundary value
problem. In [8], it is pointed out that the convergence of Gegenbauer polynomials at the
endpoints is affected by round-off error; the article proposes both parameter optimization
and reduction of the round-off error for the Gegenbauer reconstruction method. In [9], a
set of specific semantics is introduced which describes the propagation of round-off error
during a calculation. The authors of [10] give an estimation of the round-off error generated
in long-time integration in a number of standard, nonlinear systems. Authors in [11]
introduce an algorithm for the computation of the orthogonal Fourier–Mellin moments
which is of linear complexity and is resistant to finite precision error effects. Reference [12]
proposes a method for dealing with the instability of the digital frequency synthesis (DFS),
caused by the round-off error. Article [13] presents bounds for round-off error, generated
in various algorithms. Moreover, another approach is presented in [14], according to
which, the evolution of round-off error in chaotic maps is treated as an additive noise
to the expected exact solutions; the introduced method spots a threshold below which
global errors may be ignored. Article [15] studies the round-off error generated during
computation of Hardy’s multiquadric and its related interpolators and proposes the use of
arbitrary precision arithmetics to circumvent the associated finite precision error problems.
Authors of [16] propose a fast, resistant to finite precision error method for evaluation
of high order Zernike moments. Article [17] proposes a method for an improved scaling
of finite precision error analysis. Finally, in [18,19], a preliminary form of the approach
introduced here is presented.

In the present paper, we introduce a novel approach for studying and evaluating the
finite precision error generated during the operation of multiplication. It is shown that,
as a rule, this operation is very “toxic”, in the sense that it may force the finite precision
error accumulation to grow arbitrarily large. The exact amount of the generated number
of erroneous digits added or subtracted to the result (product) of this operation is given.
Consequently, the probabilities the number of erroneous digits of the product differ by k
from the maximum number of erroneous digits of the operands are explicitly computed. In
the process of doing so, a set of general definitions is given, applicable to all operations
performed with finite word length by a computing machine. Then, the accumulation of
erroneous digits after an arbitrary number of successive multiplications is extensively
analyzed. Statistical properties of this accumulated error are stated that allow for exact
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error prediction when the distribution of the associated operands are given. In addition,
a number of theoretical results are introduced, which allow for the exact tracking of the
generated and accumulated finite precision error during any number of multiplications in
general. Numerous experimental results are presented, which fully support the presented
theoretical analysis. We stress that the introduced methodology is expandable, so as to
tackle all arithmetic operations.

2. A Set of Basic Definitions, Notations and Abbreviations

The entire analysis will be mainly made in the decimal arithmetic system, only because
this system is far more familiar to most users. However, all results referred to in the present
work hold perfectly well for the binary system too, or any other radix; the corresponding
analysis and deductions may be obtained by means of a quite straightforward and slight
modification of the approach introduced here.

In any arithmetic system, we assume that all numbers are expressed in scientific/canonical
form. Thus, any number x is written as mantissa·10τ , in the decimal arithmetic system,
where |mantissa| ∈ [1, 10), τ ∈ Z ; in the binary system, the same number is expressed as
mantissa·2τ , where |mantissa| ∈ [1, 2), τ ∈ Z . Independently of the employed radix, we
will use the symbols man(x) and E(x) for the mantissa and the exponent of any quantity
x respectively. We shall demonstrate in the following that the analysis introduced here
based on the decimal radix offers accurate results and prediction for the multiplication(s)
performed by computing machines.

Abbreviations 1. We will use the acronym e. d. d. in place of “erroneous decimal digits” and
c. d. d. for “correct decimal digits”. In general, abbreviation “d. d.” stands for “decimal digits”.
The abbreviation f. p. e. stands for “finite precision error”. The symbols #edd(x) and #cdd(x)
stand for the number of e. d. d. accumulated in quantity x, due to f. p. e., and its number of c. d.
d. respectively.

Notation 1. The expressions the algorithm “has failed” or it “has been destroyed due to f. p. e.”
mean that the algorithm in hand offers completely unreliable results, at a certain iteration.

Suppose that any two numbers α and β are given, both written in canonical form.
In order to unambiguously verify if these two numbers share a common number of ini-
tial digits (i.e., stem of digits), starting from the most significant one, we shall employ
the following:

Definition 1. Consider two numbers, α, β of the same sign, written in scientific form, with the
same number, n, of decimal digits in the mantissa:

α = man(α)·10τ , β = man(β)·10ρ

where τ = E(α) and ρ = E(β). Let us assume, without any loss of generality, that τ ≥ ρ holds.
Then, these two numbers share the first µ, µ ∈ N digits (they have the first µ digits in common) if
and only if:

|α− β| = w·10τ−µ , w ∈ [1, 10).

Consequently, α and β differ in the last λ, λ ∈ N digits if and only if:

|α− β| = z·10τ−(n−λ) , z ∈ [1, 10). (2.1)

Evidently, in the binary system, the two numbers share the first µ, µ ∈ N bits if and only if

|α− β| = w·2E(α)−µ , w ∈ [1, 2), (2.2)

where n is the finite word length, while they differ in the last λ, λ ∈ N digits if and only if

|α− β| = z·2E(a)−(n−λ) , z ∈ [1, 2). (2.3)
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If the aforementioned relation offers a negative λ, then, by definition, λ = 0, namely α and β are
identical as far as all their n digits are concerned.

Now, we shall give a couple of examples in order to clarify the content of Definition 1.

Example 1.

n1 = 4.269587962400597·104

n2 = 4.269587962393951·104

A simple inspection might lead someone to deduce that these two numbers differ by six (6) decimal
digits. Actually and according to Definition 1, the following holds:

τ = ρ = 4

n = 16

where the absolute difference is |n1 − n2| = 6.6459·10−8

Hence,

τ − (n− k) = −8 ⇔ k = 4

Therefore, the two aforementioned numbers differ in four (4) decimal digits, contrary to a probable
initial expectation.

Example 2. According to Definition 1, the two numbers with 32 decimal digits in the mantissa,

n1 = 6.9876543212345678977777777777777·101,

n2 = 6.9876543212345678901523451234533·101 ,

differ by 14 decimal digits, shown in bold, since τ = ρ = 1, n = 32, while their absolute difference
is |n1 − n2| = 7.6254326543244·10−17; hence, τ − (n− k) = −5 ⇔ k = 14 .

Additionally, the two numbers n1 = 1.112324567422342·104 and n2 = 1.112324567421112·104

differ by 4 decimal digits in the mantissa, since τ = ρ = 4, n = 16 and |n1 − n2| =
1.230000634677708·10−8; therefore, τ − (n− k) = −8 ⇔ k = 4 .

Similarly, the two numbers n1 = 1.00000000·10τ and n2 = 9.99999999·10τ−1 do not differ at
all, since |n1 − n2| = 9.999999717180685·10−10; hence τ− (n− k) = −10 ⇔ k = −1− τ < 0.

Suppose, moreover, that all operations were made with infinite precision; then, let
an arbitrary quantity α have the value ãc, where superscript c indicates the ideally correct
value of α. Next, suppose that the very same quantity α is calculated in a computing
machine which performs the same operations as in the infinite case, using n digits in
the mantissa; suppose that this machine generates the representation αn for the specific
quantity a. Then, a rigorous relation between αn and ãc is obtained via the following:

Definition 2. Let us assume that we restrict the infinite precision quantity ãc to its first n digits,
obtaining quantity ac. Let us also assume that comparison of αn and ac by means of Definition 1,
manifests that these two quantities differ by λα digits. Then, we deduce that quantity αn has the
first λc = (n− λα) digits correct and all its other digits erroneous. The aforementioned statement
holds for both the binary system, which is the base of contemporary computing machines, as well as
for the decimal radix.

A number of practical examples associated with the above Definition, will be given in
Section 6.

It is known that a mantissa represented by a number of bits, say ν, ν ∈ N, in a
computing machine is approximated in the decimal radix by a number n of d. d., pretty
close to the nearest integer of ν·log102. Since ν·log102 is, as a rule, not an integer, then the
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number of correct digits of a quantity’s decimal representation may fluctuate by one digit
at most.

3. Generation of Finite Precision Error in a Single Multiplication and
Corresponding Probabilities

This Section presents a solution to the following problem: consider two arbitrary num-
bers, say αn, βn found in a computing machine that uses a finite word length of n decimal
digits in the mantissa. Moreover, suppose due to an ensemble of previous calculations αn has
been computed with λα erroneous decimal digits (e. d. d.) in its mantissa, while βn with λβ e.
d. d. in the mantissa. In addition, consider that multiplication γn = αnβn is executed in this
computing machine. Then, so far, it has been an open question to determine the exact number
of e. d. d. with which γn is evaluated; moreover, the corresponding probabilities that γn is
computed with a specific number of e. d. d. must be evaluated.

3.1. Bounds and Evaluation of the Finite Precision Error Produced in a Single Multiplication

Consider any two quantities α, β having ãc and β̃c ideally correct digits, should all
operations and representations be made with infinite precision. Next, suppose that quanti-
ties α and β have been evaluated in a computing machine using n d. d. in the mantissa;
we let the representations of these two numbers in this computing machine be an and βn,
respectively. In addition, following Definition 2, we let the restriction of ãc and β̃c in this
machine be αc, βc respectively. We would like to emphasize that the difference between an
and ac is the following: quantity αn may have been evaluated with finite precision error,
due to previous calculations. On the contrary, ac is free of finite precision error since it is
always considered to be a restriction of the ideally correct value of ãc in n decimal digits.

Consider, moreover, the product γ = α·β, executed both with infinite precision
yielding product γc = αc·βc, as well as in a computing machine using n digits in the
mantissa, generating γn = αn·βn. In addition, suppose that, due to previous calculations,
αn has been computed with λα erroneous decimal digits (e. d. d.), (⇔ λc

a = n− λα correct
decimal digits), while βn with λβ e. d. d. (⇔ λc

β = n− λβ c. d. d.) due to the fact that all
operations have been made with a finite word length. We note, as it will become evident
in the following analysis, that the finite precision error generated in the multiplication
process is located only in the mantissae of the involved terms. Hence, we may assume
that αn, βn, αc and βc are plain mantissae, namely that E(αn) = E(βn) = τ = 0. In
order to study the finite precision error generated in the computation of the product γ,
we distinguish a number of cases, which are analytically presented below; in addition, a
concise presentation of all these cases takes place in Tables 1 and 2, positioned in the end of
the present sub-section. Thus:

Table 1. This refers to Case 1, with λc
α = λc

β = λc. The first column under the title “sub-cases”, the eventual values of
M1 = |αnx + βny| are shown. In Line 3, in the right of the same title, the possible values of the product |man(αn)man(βn)|
are presented. The obtained number of correct decimal digits (c. d. d.) of product γn = anβn is shown in bold in each
corresponding square.

Case 1: Number of c. d. d. of Product γn When λc
α=λc

β=λc.

Let M1=|αnx+βny|.

Sub-Cases (1.i)|man(αn)man(βn)|<10 (1.ii)|man(αn)man(βn)|≥10

(a) 100 ≤ M1 < UB λc − 2 λc − 1

(b) 10 ≤ M1 < 100 λc − 1 λc

(c) 1 ≤ M1 < 10 λc λc + 1

(d) 10−1 ≤ M1 < 1 λc + 1 λc + 2

(e) 10− k ≤ M1 < 10−(k−1),
k = 2, 3, 4

λc + k λc + k + 1
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Table 2. It refers to Case 2, where λc
α 6= λc

β and in particular λc
α > λc

β, without any loss of generality. The first column under

the title “sub-cases”, the eventual values of M2 =
∣∣∣αnx + βny·10−(λ

c
a−λc

β)
∣∣∣ are shown. In Line 3, in the right of the same title,

the possible values of the product |man(αn)man(βn)| are presented. The obtained number of correct decimal digits (c. d. d.)
of product γn = anβn is shown in bold in each corresponding square.

Case 2: Number of c. d. d. of Product γnWhen λc
α>λc

β.

Let M2=
∣∣∣αnx+βny·10−(λ

c
a−λc

β)
∣∣∣.

Sub-Cases (2.i)|man(αn)man(βn)|<10 (2.ii)|man(αn)man(βn)|≥10

(a) 100 ≤ M1 λc
β − 2 λc

β − 1

(b) 10 ≤ M1 < 100 λc
β − 1 λc

β

(c) 1 ≤ M1 < 10 λc
β λc

β + 1

(d) 10−1 ≤ M1 < 1 λc
β + 1 λc

β + 2

(e)10− k ≤ M1 < 10−(k−1),
k = 2, 3, 4

λc
β + k λc

β + k + 1

Case 1. Quantities αn and βn share the same number of correct decimal digits(
λc

a = λc
β

)
.

Therefore, according to Definition 2, it holds that

|αn − ac| = z·100−(n−λa) , z ∈ [1, 10),

from which we deduce that we can express quantities αc and βc as follows:

αc = αn + y·10−λc
a βc = βn + x·10−λc

β , (3.1)

where x and y are the signed mantissae of the finite precision error. Taking (3.1) into
consideration, we may write:

γc = αc·βc (3.1)
= αnβn + αnx·10−λc

β + βny·10−λc
a + xy·10−(λ

c
a+λc

β).

Since, by hypothesis, λc
a = λc

β = λc, the above expression becomes

γc = αnβn + (αnx + βny)·10−λc
+ xy·10−2λc

(3.2)

Thus, according to Definition 2, the finite precision error (f. p. e.) with which product
γn has been evaluated is

εγ = (αnx + βny)·10−λc
+ xy·10−2λc

. (3.3)

We point out that the subsequent analysis may use (3.3) with slight, straightforward
modifications; in fact, in practice, it is sufficient to keep the first-order terms when λc ≥ 3,
since term xy·10−2λc

is practically negligible. Should the algorithm tend to fail, i.e., if
λc < 3, then, εγ of (3.3) can be used in the subsequent analysis, in a very straightforward
manner. To compute the number of erroneous decimal digits (e. d. d.) of γn, it is absolutely
necessary to distinguish the cases |man(αn)man(βn)| < 10 and |man(αn)man(βn)| ≥ 10,
for reasons that will become evident in the following. In fact:

Case 1.i. It refers to inequality

|man(αn)man(βn)| < 10. (3.4)

Immediately below we will show that, in this case, the maximum number of additional
erroneous decimal digits generated in the multiplication γn = αn·βn is 2. Indeed, here,
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since we have assumed that all involved quantities have zero exponents, the product αnβn,
is given by αnβn = man(αn)man(βn) = man(αnβn); now, (3.2) becomes

γc = αcβc = man(αnβn) + (αnx + βny)·10−λc
(3.5)

using the aforementioned first-order approximation. Hence, given that |man(αn)man(βn)| <
10, it is rather straightforward to show that the supremum of quantity |αnx + βny| may
acquire is UB = 110, since all terms, αn, βn, x, y, are mantissae. Therefore, we distinguish
the following sub-cases:

Case 1.i.a:

100 ≤ |αnx + βny| < UB. (3.6)

Then, αnx + βny = man(αnx + βny)·102, which implies that

man(αcβc) = man(αnβn) + man(αnx + βny)·10−(λ
c−2). (3.7)

The above relation (3.7) implies that

|man(αcβc)−man(αnβn)| = |man(αnx + βny)|·10−(λ
c−2),

Which according to Definition 2 shows that quantity γn = αnβn has been computed
with two less correct decimal digits, namely with (λc − 2) correct decimal digits (c. d. d.)
or equivalently with two additional erroneous decimal digits than those of the operands
αn and βn.

Case 1.i.b:

10 ≤ |αnx + βny| < 100. (3.8)

In this sub-case, αnx + βny = man(αnx + βny)·10, which implies that

γc = man(αnβn) + man(αnx + βny)·10−(λ
c−1). (3.9)

Consequently, Definition 2, implies that γn has been computed with one less c. d. d.
than αn and βn.

Case 1.i.c:

1 ≤ |αnx + βny| < 10. (3.10)

Now, αnx + βny = man(αnx + βny), implying that

γc = man(αnβn) + man(αnx + βny)·10−λc
. (3.11)

Together with Definition 2, this means that γn has the same number of c. d. d. with αn
and βn, namely λc.

Case 1.i.d:

10−1 ≤ |αnx + βny| < 1. (3.12)

Here it holds that αnx + βny = man(αnx + βny)·10−1, implying that

γc = man(αnβn) + man(αnx + βny)·10−(λ
c+1). (3.13)

Consequently, one may deduce that the number of γn’s erroneous decimal digits (e. d.
d.) has been reduced by one.

Case 1.i.e. This constitutes a generalization of Case 1.i.d.; in fact, now, we assume that
the following inequality holds:

10−k ≤ |αnx + βny| < 10−(k−1), k = 2, 3, 4. (3.14)
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In this, more general case, it holds that αnx + βny = man(αnx + βny)·10−k, therefore,

γc = man(αnβn) + man(αnx + βny)·10−(λ
c+k). (3.15)

Hence, the number of correct decimal digits (c. d. d.) of γn has been increased
by k. The same approach may be applied for k ≥ 5; however, we will show that the
corresponding probabilities are negligible in practice.

Case 1.ii, which concerns inequality

|man(αn)man(βn)| ≥ 10. (3.16)

Since αn, βn, x, y are mantissae, |αnx + βny| < 200 holds. Therefore, we distinguish
the following cases:

Case 1.ii.a:

100 ≤ |αnx + βny| < 200. (3.17)

In this case, αnx + βny = man(αnx + βny)·102, which implies that

γc = man(αnβn) + man(αnx + βny)·10−(λ
c−2). (3.18)

However, αnβn = man(αn)man(βn) = man(αnβn)·10⇒ αcβc = man(αcβc)·10 , if the
algorithm has not failed, which means that E(αcβc) = E(αnβn). Thus, (3.18) now reads:

γc = αcβc = man(αcβc)·10 = man(αnβn)·10 + (αnx + βny)·10−λc

= man(αnβn)·10 + man(αnx + βny)·102·10−λc ⇔
man(αcβc) = man(αnβn) + man(αnx + βny)·10−(λ

c−1) ⇒
|man(αcβc)−man(αnβn)| = |man(αnx + βny)|·10−(λ

c−1).

(3.19)

The above equality (3.19), together with Definition 2 dictates that γn has been evalu-
ated with (λc − 1) correct decimal digits (c. d. d.). Even though (3.6) and (3.17) are quite
similar, now, the number of erroneous decimal digits (e. d. d.) of γn has been reduced by
one, due to the right shift the computing machine has performed, to represent γn in its
canonical form.

Case 1.ii.b:

10 ≤ |αnx + βny| < 100. (3.20)

In this case, αnx + βny = man(αnx + βny)·10 holds. However, now, once more,
provided that the algorithm has not failed, one obtains αnβn = man(αnβn)·10 and αcβc =
man(αcβc)·10. Hence,

γc = αcβc = man(αcβc) · 10 =
(

man(αnβn) + man(αnx + βny)·10−λc
)
·10

⇔ man(αcβc) = man(αnβn) + man(αnx + βny)·10−λc
.

(3.21)

Definition 2 indicates that γn has been evaluated with λc c. d. d. (i.e., with no
additional finite precision error (f. p. e.)).

Case 1.ii.c:

1 ≤ |αnx + βny| < 10. (3.22)

Now it holds that αnx + βny = man(αnx + βny). Supposing that the algorithm has
not failed, one deduces

γc = αcβc = man(αcβc)·10 = man(αnβn)·10 + man(αnx + βny)·10−λc

⇔ man(αcβc) = man(αnβn) + man(αnx + βny)·10−(λ
c+1) ⇒

|man(αcβc)−man(αnβn)| = |man(αnx + βny)|·10−(λ
c+1).

(3.23)
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The later implies that quantity αnβn has been computed with an additional correct
decimal digit, i.e., that the multiplication operation has relaxed the finite precision error (f.
p. e.) by one decimal digit.

Case 1.ii.d:

10−k ≤ |αnx + βny| < 10−(k−1), k = 1, 2, 3, 4. (3.24)

In this case, it holds that αnx + βny = man(αnx + βny)·10−k, hence,

γc = man(αcβc)·10 = man(αnβn)·10 + man(αnx + βny)·10−(λ
c+k) ⇔

man(αcβc) = man(αnβn) + man(αnx + βny)·10−(λ
c+k+1).

(3.25)

Consequently, the number of correct decimal digits (c. d. d.) of product γn has been
increased by k + 1 in this case.

Case 2. αn and βn have been calculated with different number of correct decimal digits(
λc

a 6= λc
β· λα 6= λβ

)
Without any loss of generality, we may assume that λα

〈
λβ ⇔ λc

a
〉
λc

β.
Consequently, once more it holds that:

αc = αn + y·10−λc
a βc = βn + x·10−λc

β ⇒
γc = αc·βc = αnβn + αnx·10−λc

β + βny·10−λc
a + xy·10−(λ

c
a+λc

β).
(3.26)

As in Case 1, we will use a first-order approximation in (3.26).
Again, the introduced analysis may be extended in a straightforward manner to

incorporate the higher order term, too; however, as it will become clear from the subsequent
sections, the accuracy improvement is negligible, given also the dramatic increase in
complexity. Thus, we may safely assume that γc = αnβn + αnx·10−λc

β + βny·10−λc
a ·αcβc =

αnβn +
(

αnx + βny·10−(λ
c
a−λc

β)
)
·10−λc

β . After setting δ = λc
a − λc

β ≥ 1, we obtain:

αcβc = αnβn +
(

αnx + βny·10−δ
)
·10−λc

β . (3.27)

We must now repeat the analysis previously made in connection with Case 1, by letting(
αnx + βny·10−δ

)
play the role of αnx + βny and λc

β play the role of λc. Hence, we again
distinguish the cases |man(αn)man(βn)| < 10 and |man(αn)man(βn)| ≥ 10, thus getting:

Case 2.i: |man(αn)man(βn)| < 10
Case 2.i.a:

100 ≤
∣∣∣αnx + βny·10−δ

∣∣∣. (3.28)

In this case, man(αcβc) = man(αnβn) + man
(
αnx + βny·10−δ

)
·10−(λ

c
β−2).

Namely, product γn is computed with two additional erroneous decimal digits (e. d.
d.) than λβ.

Case 2.i.b:

10 ≤
∣∣∣αnx + βny·10−δ

∣∣∣ < 100. (3.29)

Now man(αcβc) = man(αnβn) + man
(
αnx + βny·10−δ

)
·10−(λ

c
β−1) which means that

product γn is calculated with one additional erroneous decimal digits (e. d. d.) than βn.
Case 2.i.c:

1 ≤
∣∣∣αnx + βny·10−δ

∣∣∣ < 10. (3.30)

Here, it holds that man(αcβc) = man(αnβn) + man
(
αnx + βny·10−δ

)
·10−λc

β .
Hence, product γn is calculated with no additional e. d. d. when compared to βn,

namely λβ.
Case 2.i.d:
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10−k ≤
∣∣∣αnx + βny·10−δ

∣∣∣ < 10−(k−1), k = 1, 2, 3. (3.31)

In this case, man(αcβc) = man(αnβn) + man
(
αnx + βny·10−δ

)
·10−(λ

c
β+k).

Then, γn is computed with k less e. d. d. than λβ = max
{

λα, λβ

}
. The same approach

may be applied for k ≥ 4, however, the probability that such a case holds, is negligible
in practice.

Case 2.ii: |man(αn)man(βn)| ≥ 10
For this case, we distinguish the following sub-cases:
Case 2.ii.a:

100 ≤
∣∣∣αnx + βny·10−δ

∣∣∣ < 200. (3.32)

In this case we obtain man(αcβc) = man(αnβn) + man
(
αnx + βny·10−δ

)
·10−(λ

c
β−1).

The above equation dictates that product γn has been evaluated with
(

λc
β − 1

)
correct

decimal digits (c. d. d.).
Case 2.ii.b:

10 ≤
∣∣∣αnx + βny·10−δ

∣∣∣ < 100. (3.33)

Then, man(αcβc) = man(αnβn) + man
(
αnx + βny·10−δ

)
·10−λc

β . Consequently, Defini-
tion 2 implies that γn has exactly the same number of erroneous decimal digits (e. d. d.)
as βn.

Case 2.ii.c:

1 ≤
∣∣∣αnx + βny·10−δ

∣∣∣ < 10. (3.34)

Now man(αcβc) = man(αnβn) + man
(
αnx + βny·10−δ

)
·10−(λ

c
β+1). Therefore, quan-

tity αnβn has been computed with an additional c. d. d., as compared to λc
β.

Case 2.ii.d:

10−k ≤
∣∣∣αnx + βny·10−δ

∣∣∣ < 10−(k−1), k = 1, 2, 3. (3.35)

Here, it holds that man(αcβc) = man(αnβn) + man
(
αnx + βny·10−δ

)
·10−(λ

c
β+k+1).

Hence, the number of c. d. d. of γ is greater by (k + 1) than λc
β = min

{
λc

α, λc
β

}
.

3.2. Probabilities for Obtaining a Specific Number of Erroneous Digits in the Execution of a
Single Multiplication

We once more adopt the distinction in cases made in Section 3.1, which are presented
in Tables 1 and 2 below, in a very concise manner. In fact,

Case 1: λa = λβ = λ.
Moreover, in connection with Case 2 (λc

α 6= λc
β), we cite the following Table 2:

Consider any multiplication of two numbers αn and βn sharing the same number
λ of e. d. d. Thus, quantity γn = αnβn is computed with λ + ξ e. d. d. If ξ > 0, γn
is computed with ξ additional e. d. d., while if ξ < 0, γn is computed with ξ less e. d.
d. Then, following Section 3.1, ξ is a random variable, independent of λ. Therefore, the
probabilities for obtaining a specific value of ξ are independent of λ; this suggests the use
of the following notation:

Notation 2. Let γn = αnβn; then, quantity γn is computed with λ + ξ e. d. d., ξ =
2, 1, 0,−1,−2, . . .. We denote the corresponding probabilities by PEQ(ξ; αn, βn).

As before, αn and βn are mantissae and x, y are the mantissae of the f. p. e. stochastic
part. Hence, for the evaluation of PEQ(ξ; αn, βn), it is necessary to know the joint probability
density function (pdf) of the random variables X, Y, which express the f. p. e. of the
mantissae x, y respectively; we shall symbolize this joint pdf as fXY(x, y). We shall give the
general formulae of the sought-for probabilities for a generic pdf. Later on, we shall specify
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a class of pdfs encountered in practice, we shall calculate the corresponding probabilities
and present the associated numeric results. At this point, since |x|, |y| ∈ [1, 10), we form
the square shown in Figure 1, where every mantissae couple (x, y) corresponds to a certain
point of the sub-domain

J = (AΛ1T1Λ8 A) ∪ (BΛ3T2Λ2B) ∪ (ΓΛ5T3Λ4Γ) ∪ (∆Λ7T4Λ6∆)

Figure 1. Geometric representation of all pairs of finite precision error mantissae (x, y). Since these
pairs do not belong to the cross Λ1Λ2T2Λ3Λ4T3Λ5Λ6T4Λ7Λ8T1Λ1, the corresponding joint probabil-
ity function is restricted within J = (AΛ1T1Λ8 A) ∪ (BΛ3T2Λ2B) ∪ (ΓΛ5T3Λ4Γ) ∪ (∆Λ7T4Λ6∆).

We point out that the joint probability fXY(x, y) is a conditional pdf, where (x, y) ∈ J,
in the sense that it satisfies relation

s
J fXY(x, y)dxdy = 1. If the initial pdf f I

XY(x, y) is
defined in a superset of J, then, we restrict it to J by means of the conditional probability
rule. Notice that the points of the “cross” C = Λ1Λ2T2Λ3Λ4T3Λ5Λ6T4Λ7Λ8T1Λ1 do not
belong to J, since x and y are mantissae. We again distinguish the sub-cases introduced in
Section 3.1.

Case 1.i: |man(αn)man(βn)| < 10, namely relation (3.4).
Case 1.i.a: 100 ≤ |αnx + βny| < UB, which is (3.6).
In order to determine the sub-domain of J, where inequality (3.6) holds, we assume,

first, that both αn, βn are positive mantissae and we draw the straight lines:

E100 : αnx + βny = 100, Eub : αnx + βny = UB.

Let Pi
a be the set of points (x, y) of J that lie between E100 and Eub, where superscript

i and subscript a express the last two letters of the Case in hand. Further, consider the
straight lines:

E−100 : αnx + βny = −100, E−ub : αnx + βny = −UB.

Let Ni
a be the set of points (x, y) of J lying between E−100 and E−ub and Di

a = Pi
a ∪

Ni
a; Di

a includes all points of J satisfying (3.6). Then, probability PEQ{(x, y) ∈ Di
a
}

=s
Di

a
fXY(x, y)dxdy. However, in this case only, according to the analysis of Section 3.1,

γn = αnβn is computed with ξ = 2 additional e. d. d. than λ. Hence,

PEQ(2; αn, βn) =
x

Di
a

fXY(x, y)dxdy. (3.36)
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Case 1.i.b: 10 ≤ |αnx + βny| < 100, namely inequality (3.8).
For an arbitrary pair of multiplication operands (αn, βn), consider, now, the straight lines:

E10 : αnx + βny = 10 and E−10 : αnx + βny = −10.

Let Pi
b be the set of points (x, y) ∈ J lying between E100 and E10 and Ni

b be the set of
points (x, y) ∈ J lying between E−100 and E−10. Di

b = Pi
b ∪ Ni

b is the entire ensemble of
points in J satisfying (3.8), depicted in magenta in Figure 2. Then, probability

PEQ
{
(x, y) ∈ Di

b

}
≡ PEQ(1; αn, βn) =

x

Di
b

fXY(x, y)dxdy. (3.37)

Figure 2. Depiction of the various sub-domains of J, which give rise to different numbers of erroneous
decimal digits of γ5 = α5β5, where |man(α5)man(β5)| < 10. In this example, we have selected
α5 = 2.3912 and β5 = 3.2578; consequently: (a) the sub-region generating one additional e. d. d. is
depicted in magenta, (b) the sub-domain that does not increase the f. p. error is shown in cyan (c)
the sub-region relaxing the e. d. d. number by one is depicted in green and (d) the one relaxing the
number of e. d. d. by two is shown in yellow. Sub-domains that represent an even greater relaxation
of the f. p. e. are too small to appear.

Case 1.i.c: 1 ≤ |αnx + βny| < 10, that is (3.10).
Next, in accordance with the previous analysis, we draw the straight lines:

E1 : αnx + βny = 1andE−1 : αnx + βny = −1.

Then, Pi
c is the sub-domain of J bounded by E1 and E10, while Ni

c is the sub-region
bounded by E−1 and E−10. Setting Di

c = Pi
c ∪ Ni

c (cyan area in Figure 2), the probability
that a pair (x, y) of error mantissae satisfies (3.10) is:

PEQ
{
(x, y) ∈ Di

c

}
≡ PEQ(0; αn, βn) =

x

Di
c

fXY(x, y)dxdy. (3.38)

Finally, concerning the remaining Case 1.i.d, it holds that:
Case 1.i.d: 10−k ≤ |αnx + βny| < 101−k, k = 1, 2, 3, namely the condition (3.14).
With a similar reasoning, we define the lines E0.1 : αnx + βny = 10−1, E0.01 : αnx +

βny = 10−2, E0.001 : αnx + βny = 10−3, E−0.1 : αnx + βny = −10−1, E−0.01 : αnx + βny =
−10−2, E−0.001 : αnx + βny = −10−3 which in turn give rise to the sub-domains Di

d1,
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Di
d2 and Di

d3. Sub-domains Di
d1 and Di

d2 are depicted in green and yellow respectively in
Figure 2. Eventually, the corresponding probabilities are

PEQ{(x, y) ∈ Di
d1

}
≡ PEQ(−1; αn, βn) =

s
Di

d1
fXY(x, y)dxdy

PEQ{(x, y) ∈ Di
d2

}
≡ PEQ(−2; αn, βn) =

s
Di

d2
fXY(x, y)dxdy

PEQ{(x, y) ∈ Di
d3

}
≡ PEQ(−3; αn, βn) =

s
Di

d3
fXY(x, y)dxdy.

(3.39)

Case 1.ii: |man(αn)man(βn)| ≥ 10, specifically inequality (3.16).
This case may be treated as Case 1.i; however, here, as stated in Section 3.1, the

computing machine performs a right shift in order to restore the product γn = αnβn in its
canonical form. Therefore, product γn is computed with a number of e.d.d. reduced by
one with respect to the previous Case 1.i. Thus, briefly, we note the following:

Case 1.ii.a: 100 ≤ |αnx + βny| < 200, which is (3.17).
Once again, lines E100 and Eub, confine Pii

a ⊂ J, and lines E−100 and E−ub, confine
Nii

a ⊂ J. Let, again, Dii
a = Pii

a ∪ Nii
a (shown in magenta in Figure 3, for a specific pair of

multiplication operands (αn, βn)). When (x, y) ∈ Dii
a , product γn is computed with exactly

one additional e. d. d. with probability

PEQ
{
(x, y) ∈ Dii

a

}
≡ PEQ(1; αn, βn) =

x

Dii
a

fXY(x, y)dxdy. (3.40)

Figure 3. Depiction of the various sub-domains of J, which give rise to different numbers of erroneous
decimal digits of γ5 = α5β5, where |man(α5)man(β5)| ≥ 10. In this example, we have selected
α5 = 4.6812 and β5 = −6.3178: therefore (a) the sub-domain generating one additional e. d. d. is
depicted in magenta, (b) the sub-region that does not increase the f. p. error is shown in cyan, (c) the
sub-domain relaxing the e. d. d. number by one is depicted in green, (d) the one relaxing the number
of e. d. d. by two is shown in yellow, while (e) the one relaxing the number of e. d. d. by three is
depicted in blue. The sub-domains that represent an even greater relaxation of the f. p. e. are too
small to appear.

Case 1.ii.b: 10 ≤ |αnx + βny| < 100, i.e., (3.20).
We draw the straight lines E100, E10 to obtain Pii

b , lines E−100, E−10 to confine Nii
b and

we let Dii
b = Pii

b ∪ Nii
b (shown in cyan in Figure 3). The probability is

PEQ(0; αn, βn) ≡ PEQ
{
(x, y) ∈ Dii

b

}
=

x

Dii
b

fXY(x, y)dxdy. (3.41)
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Case 1.ii.c: 1 ≤ |αnx + βny| < 10, that is condition (3.22).
We select points (x, y) ∈ J lying between E10 and E1, forming Pii

c and points (x, y) ∈ J
lying between E−10 and E−1, forming Nii

c ; again, we let Dii
c = Pii

c ∪ Nii
c (green area in

Figure 3). Now, the probability that f. p. e. is relaxed by one digit is

PEQ
{
(x, y) ∈ Dii

c

}
≡ PEQ(−1; αn, βn) =

x

Dii
c

fXY(x, y)dxdy. (3.42)

Case 1.ii.d: 10−k ≤ |αnx + βny| < 10−(k−1), k = 1, 2, namely the condition (3.24).
Along very similar lines we define sub-domains of J, Dii

d1 and Dii
d2 (shown in yellow

and blue respectively in Figure 3 for a specific pair of operands (αn, βn) and n = 5). We
eventually evaluate

PEQ{(x, y) ∈ Dii
d1

}
≡ PEQ(−2; αn, βn) =

s
Dii

d1
fXY(x, y)dxdy

PEQ{(x, y) ∈ Dii
d2

}
≡ PEQ(−3; α, β) =

s
Dii

d2
fXY(x, y)dxdy.

(3.43)

Case 2: λa 6= λβ.

Suppose that without any loss of generality λa < λβ

(
⇔ λc

a > λc
β

)
and that λγ is the

number of erroneous d. d. with which product γn = αnβn; let, moreover, ξ = λγ − λβ.

Notation 3. In this case, the f. p. error also depends on δ (see Section 3.1). Hence, for the
corresponding probability, we use the notation PUN(ξ, δ; αn, βn), where as always, without any loss
of generality, we assume that αn and βn are mantissae and that λa < λβ. If the opposite inequality
λα > λβ holds, then we use the notation PUN(ξ, δ; βn, αn).

We once more consider straight lines Eδ
100, Eδ

−100, Eδ
10, Eδ

−10, Eδ
1, Eδ

−1, Eδ
0.1, Eδ

−0.1, Eδ
0.01,

Eδ
−0.01, Eδ

0.001, Eδ
−0.001, which confine the corresponding sub-domains of J: G i

a, G i
b, G i

c, G i
d1,

G i
d2, G i

d3, G ii
a , G ii

b , G ii
c , G ii

d1, G ii
d2. The probabilities that a pair of mantissae (x, y) lies in one

of the aforementioned domains are:
Case 2.i: |man(αn)man(βn)| < 10, namely condition (3.4).
Case 2.i.a: 100 ≤

∣∣αnx + βny10−δ
∣∣ , i.e., (3.28).

PUN
{
(x, y) ∈ Gi

α

}
=

x

Gi
α

fXY(x, y)dxdy = PUN(2, δ; an, βn) (3.44)

Case 2.i.b: 10 ≤
∣∣αnx + βny·10−δ

∣∣ < 100, that corresponds to (3.29)

PUN
{
(x, y) ∈ Gi

b

}
=

x

Gi
b

fXY(x, y)dxdy = PUN(1, δ; an, βn). (3.45)

Case 2.i.c: 1 ≤
∣∣αnx + βny·10−δ

∣∣ < 10, which is the one of (3.30)

PUN
{
(x, y) ∈ Gi

c

}
≡

x

Gi
c

fXY(x, y)dxdy = PUN(0, δ; αn, βn). (3.46)

Case 2.i.d: 10−k ≤
∣∣αnx + βny·10−δ

∣∣ < 10−(k−1), k = 1, 2, 3, i.e. (3.31)

PUN{(x, y) ∈ Gi
d1

}
≡ PUN(−1, δ; αn, βn) =

s
Gi

d1
fXY(x, y)dxdy

PUN{(x, y) ∈ Gi
d2

}
≡ PUN(−2, δ; αn, βn) =

s
Gi

d2
fXY(x, y)dxdy

PUN{(x, y) ∈ Gi
d3

}
≡ PUN(−3, δ; αn, βn) =

s
Gi

d3
fXY(x, y)dxdy.

(3.47)

Case 2.ii: |man(αn)man(βn)| ≥ 10 (3.16).
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Case 2.ii.a: 100 ≤
∣∣αnx + βny·10−δ

∣∣ < 200, i.e., the inequality of (3.32).

PUN
{
(x, y) ∈ G ii

a

}
≡ PUN(1, δ; αn, βn) =

x

G ii
a

fXY(x, y)dxdy. (3.48)

Case 2.ii.b: 10 ≤
∣∣αnx + βny·10−δ

∣∣ < 100, that corresponds to (3.33)

PUN
{
(x, y) ∈ G ii

b

}
≡ PUN(0, δ; αn, βn) =

x

G ii
b

fXY(x, y)dxdy. (3.49)

Case 2.ii.c: 1 ≤
∣∣αnx + βny·10−δ

∣∣ < 10 , namely inequality (3.34)

PUN
{
(x, y) ∈ G ii

c

}
≡ PUN(−1, δ; αn, βn) =

x

G ii
c

fXY(x, y)dxdy. (3.50)

Case 2.ii.d: 10−k ≤
∣∣αnx + βny·10−δ

∣∣ < 10−(k−1), k = 1, 2, 3, i.e. the case of (3.35)

PUN{(x, y) ∈ G ii
d1

}
≡ PUN(−2, δ; αn, βn) =

s
G ii

d1
fXY(x, y)dxdy

PUN{(x, y) ∈ G ii
d2

}
≡ PUN(−3, δ; αn, βn) =

s
G ii

d2
fXY(x, y)dxdy.

(3.51)

3.3. Experimental Confirmation of the Previous Theoretical Results

In order to test the validity of the analysis and the results of previous Sections 3.1 and 3.2,
we have performed the following experiment:

First, we have chosen a set Σ16 consisting of 100,000 couples of randomly chosen
mantissae

(
αi

16, βi
16
)
, having n = 16 d. d. in the mantissa. We assume that these numbers

are all correct, concerning the first 16 d. d.
We have “contaminated” all

(
αi

16, βi
16
)
, each one with a different error obtained from a

normal population, with various values σ of the std. In fact, for each σ, we have produced
25,000 normally distributed error values

(
θN

α,i, θN
β,i

)
that will play the role of f. p. e. of αi

16

and βi
16, should all operations had been made with n = 16 d. d. precision and the set of

contaminated pairs
(

α̃i
16, β̃i

16

)
=
(

αi
16 + θN

α,i, βi
16 + θN

β,i

)
. In addition, we have extended α̃i

16

and β̃i
16 into a representation of n = 64 d. d., by simply zeroing all decimal digits from the

seventeenth one up to 64-th digit.
We have performed all multiplications γ̃i

16 = α̃i
16·β̃i

16 , evidently in 16 d. d. precision,
as well as multiplications γ̃i

64 = α̃i
64·β̃i

64, in 64 d. d. precision. Then, using Definition 2 and
Theorem 5, we have obtained the number of e. d. d. of quantity γ̃i

16 , with respect to the e. d.

d. of α̃i
16 and β̃i

16 and the set of f. p. e. differences #edd
(
γ̃16

i
)
−max

{
#edd

(
α̃i

16
)
, #edd

(
β̃i

16

)}
.

Using this set, we have compared the corresponding experimental frequencies with the
theoretical probabilities predicted in the present section, for various standard deviations
of f. p. e. Representative results are shown in Tables 3–6; Table 4 refers to the case where
#edd

(
α̃i

16
)
= #edd

(
β̃i

16

)
, for four arbitrarily chosen pairs (αi, βi), shown in Table 3. On

the contrary, Tables 5 and 6 refer to the case where #edd
(

β̃i
16

)
− #edd

(
α̃i

16
)
< 0. Table 5

corresponds to the case in which δ = 1, while Table 6 corresponds to the one in which δ = 2.
From both tables, the excellent agreement between theory and experiment is pretty evident.
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Table 3. Four arbitrarily chosen pairs of
(

αi
16, βi

16

)
.

αi
16 βi

16

α1 = 1.505791937075619 β1 = 5.526986816293506
α2 = 2.675404049994100 β2 = 2.778498218867048
α3 = 7.946881519204984 β3 =4.557506835434298
α4 = 5.557116785741900 β4 = 5.549129305868777

Table 4. The theoretical probabilities PEQ
(

ξ; α̃i
16, β̃i

16

)
numerically evaluated, as compared to the

actually observed corresponding experimental frequencies of ξ = #edd
(
γ̃ι

16
)
− #edd

(
α̃ι16
)
.

PEQ
(

ξ;
~
α

i
16,

~
β

i

16

)
Verification. Normally Distributed Contamination σ = 2.2(

~
α

i
16,

~
β

i

16

) (
~
α

1
16,

~
β

1

16

) (
~
α

2
16,

~
β

2

16

) (
~
α

3
16,

~
β

3

16

) (
~
α

4
16,

~
β

4

16

)

Generation of
2 Additional

e. d. d.

Theoretical
Probability 0 0 0 0

Experimental
Frequency 0 0 0 0

Generation of
1 Additional

e. d. d.

Theoretical
Probability 0.648 0.373 10−5 3.74·10−9

Experimental
Frequency 0.647 0.389 10−5 0

Generation of
No

Additional e.
d. d.

Theoretical
Probability 0.338 0.517 0.702 0.622

Experimental
Frequency 0.339 0.503 0.704 0.623

Relaxation of
Product’s e.
d. d. by 1

Theoretical
Probability 0.012 0.099 0.264 0.325

Experimental
Frequency 0.012 0.096 0.262 0.321

Relaxation of
Product’s e.
d. d. by 2

Theoretical
Probability 0.001 0.009 0.031 0.046

Experimental
Frequency 0.001 0.010 0.030 0.049

Table 5. The theoretical probabilities PUN
(

ξ, 1; α̃i
16, β̃i

16

)
, namely for the case where #edd

(
β̃i

16

)
−

#edd
(

α̃i
16

)
= 1, numerically evaluated, as compared to the actually observed corresponding experi-

mental frequencies of ξ = #edd
(
γ̃ι

16
)
− #edd

(
β̃ι

16

)
.

PUN
(

ξ;1;
~
α

i
16,

~
β

i

16

)
Verification. Normally Distributed Contamination σ = 2.2(

~
α

i
16,

~
β

i

16

) (
~
α

1
16,

~
β

1

16

) (
~
α

2
16,

~
β

2

16

) (
~
α

3
16,

~
β

3

16

) (
~
α

4
16,

~
β

4

16

)

Generation of
2 Additional

e. d. d.

Theoretical
Probability 0 0 0 0

Experimental
Frequency 0 0 0 0
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Table 5. Cont.

PUN
(

ξ;1;
~
α

i
16,

~
β

i

16

)
Verification. Normally Distributed Contamination σ = 2.2(

~
α

i
16,

~
β

i

16

) (
~
α

1
16,

~
β

1

16

) (
~
α

2
16,

~
β

2

16

) (
~
α

3
16,

~
β

3

16

) (
~
α

4
16,

~
β

4

16

)

Generation of
1 Additional

e. d. d.

Theoretical
Probability 0.008 0.127 0 0

Experimental
Frequency 0.008 0.147 0 0

Generation of
No

Additional e.
d. d.

Theoretical
Probability 0.870 0.873 0.867 0.631

Experimental
Frequency 0.872 0.853 0.870 0.633

Relaxation of
Product’s e.
d. d. by 1

Theoretical
Probability 0.112 2·10−4 0.133 0.369

Experimental
Frequency 0.110 1·10−4 0.130 0.367

Relaxation of
Product’s e.
d. d. by 2

Theoretical
Probability 0.009 0 0 4.23·10−6

Experimental
Frequency 0.009 0 0 0

Table 6. The theoretical probabilities PUN
(

ξ, 2; α̃i
16, β̃i

16

)
, namely for the case where #edd

(
β̃i

16

)
−

#edd
(

α̃i
16

)
= 2, numerically evaluated, as compared to the actually observed corresponding experi-

mental frequencies of ξ = #edd
(
γ̃ι

16
)
− #edd

(
β̃ι

16

)
.

PUN
(

ξ,2;
~
α

i
16,

~
β

i

16

)
Verification. Normally Distributed Contamination σ = 2.2(

~
α

i
16,

~
β

i

16

) (
~
α

1
16,

~
β

1

16

) (
~
α

2
16,

~
β

2

16

) (
~
α

3
16,

~
β

3

16

) (
~
α

4
16,

~
β

4

16

)

Generation of 2
Additional e. d.

d.

Theoretical
Probability 0 0 0 0

Experimental
Frequency 0 0 0 0

Generation of 1
Additional e. d.

d.

Theoretical
Probability 0.004 0.123 0 0

Experimental
Frequency 0.003 0.134 0 0

Generation of
No Additional

e. d. d.

Theoretical
Probability 0.996 0.877 0.865 0.626

Experimental
Frequency 0.997 0.866 0.872 0.637

Relaxation of
Product’s e. d.

d. by 1

Theoretical
Probability 0 0 0.135 0.374

Experimental
Frequency 0 0 0.128 0.363

Relaxation of
Product’s e. d.

d. by 2

Theoretical
Probability 0 0 0 0

Experimental
Frequency 0 0 0 0
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We have repeated the previous step, using uniformly distributed “contamination
numbers” θU

i , in the interval [10−16, 10−3], producing numbers α̂i
16 = αi

16 + θU
i .

By repeating all actions of previous Step 3 for the case of uniform contamination, the
obtained results have confirmed an excellent agreement between theory and practice.

A set of concrete experiments and associated tables.
We have randomly chosen 25, 000 couples of mantissae terms

(
αi

16, βi
16
)
, covering all

cases referred to in Sections 3.1 and 3.2. We have embedded both αi
16 and βi

16 in 64 d. d.
precision, as described previously in the present sub-section, thus forming corresponding
couples

(
αi

64, βi
64
)
. We have contaminated each such pair

(
αi

16, βi
16
)

with 25,000 normally
distributed error values for various distinct values of standard deviation σ. In this way, we
have generated 25, 000 corresponding contaminated pairs

(
α̃i

16, β̃i
16

)
.

We have performed all 25, 000 multiplications γ̃i
16 = α̃i

16·β̃i
16, as well as the associated

products γi
64 = αi

64·βi
64 and, finally, we have evaluated the number of erroneous decimal

digits of γ̃i
16 by comparing it with γi

64.
The results of this experiment for a specific value of σ are shown in Tables 3–6. In

Table 3, four arbitrarily chosen different pairs
(
αi

16, βi
16
)
, i = 1, 2, 3, 4 are presented. Table 4

refers to the case where #edd
(
α̃i

16
)
= #edd(β̃i

16), for the corresponding contaminated pairs(
α̃i

16, β̃i
16

)
, while Tables 5 and 6 refer to the cases in which δ = 1 and δ = 2 respectively,

where δ = #edd
(

β̃i
16

)
− #edd

(
α̃i

16
)
.

For all arbitrarily chosen contaminated pairs
(

α̃i
16, β̃i

16

)
, we have evaluated the theo-

retical probabilities introduced in Section 3.1, numerically. From all tables, the excellent
agreement between theory and experiment is pretty evident. We would like to point out
that this excellent agreement appears in all performed experiments, concerning 10− ths of
different values of standard deviation σ.

4. Analysis of the Case of Many Successive Multiplications

In this section, we will compute the probability that M successive multiplications
generate λ erroneous d. d. in the final product.

In fact, suppose that any two numbers, γ0
n and β0

n, are multiplied in a computing
machine using n decimal digits (d. d.) in the mantissa; let γ1

n = γ0
nβ0

n. Next, γ1
n is multiplied

by an arbitrary number, say β1
n, giving rise to γ2

n = γ1
nβ1

n and so on. The analysis of
Section 3 indicates that a different number of erroneous d. d. emerges as it is analytically
presented in Tables 1 and 2. Therefore, in order to estimate the number of erroneous
decimal digits (e. d. d.) accumulated in a result of many successive multiplications, one
may employ the following:

1. The mantissa y of the finite precision error (f. p. e.) accumulated at an arbitrary
quantity, say α, is a random variable, already symbolized as Y. Therefore, when two
quantities αn and βn are multiplied with f. p. e. mantissae x and y, then the f. p. error
of the product γn = anβn is itself a random variable.

2. As before, without any loss of generality, suppose that λβ is the maximum number of
e. d. d. between αn and βn. Then, reminding that the symbol “#” stands for cardinal
number, #edd(γn) differ from λβ by ξ e. d. d. Evidently, ξ is a random variable itself,
having integer values = 2, 1, 0,−1,−2, . . ..

3. In Section 3, we have given a method for evaluating the probabilities PEQ(ξ; αn, βn),
namely the probability that product γn is computed with a number of erroneous
decimal digits (e. d. d.) differing by ξ decimal digits from the common e. d. d. of
αn and βn. In the same section, we have also proposed a method for evaluating the
probabilities PUN(ξ, δ; αn, βn), i.e., the probability that product γn is computed with
a number of e. d. d. differing by ξ decimal digits from the maximum number of
e. d. d. between αn and βn. For brevity, in the present section, we will assume that
in all successive multiplications the worst case always takes place, namely that the
two multiplication operands share the same number of correct decimal digits (c. d.
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d.). Moreover, we will momentarily simplify notation by letting P2 = PEQ(2; αn, βn),
P1 = PEQ(1; αn, βn), P−k = PEQ(−k; αn, βn), k = 0, 1, 2, . . ..

4. We have performed an extensive number of multiplications γi+1
n = γi

nβi
n, i =

0, 1, 2, . . ., where, initially, γ0
n and β0

n are chosen uniformly from the interval (−10, 10)
and with n d. d. precision in the mantissa. Then, the f. p. e. mantissa x of the product
γi+1

n follows a normal distribution with zero (0) mean value and standard deviation
σ ∈ [1.1, 6.5]. Hence, probabilities Pj, j = 2, 1, 0,−1,−2, . . . are immediately obtained
via the analysis of Section 3. However, the present analysis is valid for any distribution
of error mantissae that gives rise to a set of probabilities Pj.

5. For brevity and simplicity reasons, we shall assume that the ensemble of probabilities
Pj remains unaltered throughout the entire successive multiplications process. Should
any concern on that arise, as we will explicitly state below, a proper source code
may be used in order to compute PEQ(ξ; αn, βn) dynamically, while the essence of the
following analysis remains intact.

Subsequently, we will compute the probability that M successive multiplications
generate λ erroneous d. d. in the final product γM

n . In fact, suppose that one performs
M successive multiplications and that i1 of them produce two additional e. d. d. (ξ = 2),
i2 of them produce one additional e. d. d. (ξ = 1), i3 of them produce no additional e.
d. d. (ξ = 0) and ik products “enjoyed” relaxation of the number of e. d. d. by k digits
(ξ = −k). Then, the number ω of e. d. d. with which the final product of M successive
multiplications is obtained, is given by ω = ∑µ ξµiµ. We are interested in the mean value
and variation of quantity ω. To achieve that, we shall present a set of quite general lemmas
and theorems; for this reason, for the present section only, we shall introduce an alternative,
equivalent notation described below:

Notation 4. Let ξ be defined as in the previous analysis above. Then, one may define events
A1, A2, A3, . . . as follows: A1 : ξ = 2, A2 : ξ = 1, A3 : ξ = 0, A3+κ : ξ = −κ, κ = 1, 2, . . .,
where events A3+κ refer to error correction by κ digits.

Intimately associated with Notation 4 is the following:

Hypothesis 1. In order to obtain proper bounds of the number λ of e. d. d. accumulated in the
final product of M successive multiplications, it is sufficient to assume that at each one of these M
successive multiplications, the corresponding probabilities PEQ(ξ; γn, βn) remain constant.
Under this assumption, we let:

P1 = PEQ(2; γn, βn) = P(A1), P2 = PEQ(1; γn, βn) = P(A2),
P3+k = PEQ(−κ; γn, βn) = P(A3+k), k = 0, 1, 2, . . ..

In order to obtain the aforementioned bounds for λ, we shall employ the subsequent
quite general results.

Lemma 1. Consider a multinomial distribution with possible outcomes A1, A2, . . . , AN , with
corresponding probability of appearance P1, P2, . . . , PN . Suppose that one performs an experiment
M times, whose outcome is modeled by this distribution. Let the first event with outcome A1
be observed i1 times, the second event with outcome A2 i2 times and so on. Then, quantity
ω = A1i1 + . . . + AN iN = ∑N

µ=1 Aµiµ has a mean value ω and a variance S2
ω:

ω = M ∑N
µ=1 AµPµ. (4.1)

S2
ω = M

(
∑N

µ=1 A2
µPµ −∑N

µ=1 A2
µP2

µ − 2 ∑N
i=1 ∑N

j=i+1 Ai AjPiPj

)
. (4.2)
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Proof of Lemma 1. The probability that ω occurs is given by

P(ω) =

(
M
i1

)
Pi1

1

(
M− i1

i2

)
Pi2

2 . . . PiN−1
N−1PM−(i1+i2+...+iN−1)

N . (4.3)

For the mean value ω: By definition:

ω = ∑
i1

∑
i2

. . . ∑
iN

[A1i1 + A2i2 + . . . + AN iN ]P(ω)
(4.3)
⇔

ω = ∑
i1

∑
i2

. . . ∑
iN

A1i1

(
M
i1

)
Pi1

1

(
M− i1

i2

)
Pi2

2

(
M− i1 − i2

i3

)
Pi3

3 . . .
(

M− i1 − . . .− iN−2
iN−1

)
PiN−1

N−1PM−(i1+i2+...+iN−1)
N + . . .

+∑
i1

∑
i2

. . . ∑
iN

AN iN

(
M
i1

)
Pi1

1

(
M− i1

i2

)
Pi2

2

(
M− i1 − i2

i3

)
Pi3

3 . . .
(

M− i1 − . . .− iN−2
iN−1

)
PiN−1

N−1PM−(i1+i2+...+iN−1)
N

We treat each multiple sum separately. Therefore,

ω1 = ∑
i1

∑
i2

. . . ∑
iN−1

A1i1

(
M
i1

)
Pi1

1

(
M− i1

i2

)
Pi2

2 . . . PiN−1
N−1PM−(i1+i2+...+iN−1)

N

= ∑M
i1=0 A1i1

(
M
i1

)
Pi1

1 . . . ∑
M−i1−...−iN−2
iN−1=0

(
M− i1 − . . .− iN−2

iN−1

)
PiN−1

N−1PM−i1−...−iN−1
N

= A1P1M ∑M−1
i1=1

(M−1)!
(i1−1)!(M−i1)!

Pi1−1
1 . . . ∑

M−i1−...−iN−2
iN−1=0

(M−i1−...−iN−2)!
iN−1!(M−i1−...−iN−1)!

PiN−1
N−1PM−i1−...−iN−1

N

iN−1-sum is a version of the identity

(P1 + P2 + . . . + PN)
M =

M

∑
i1=0

(
M
i1

)
P1

i1(P2 + . . . + PN)
M−i1.

Hence,

ω1 = A1P1M . (4.4)

By employing the same approach, we obtain the previous relation (4.1)

ω = ω1 + ω2 + . . . + ωN ⇒ ω = M ∑N
µ=1 AµPµ.

For the variance S2
ω: By definition:

S2
ω = ∑

ω

ω2P(ω)−ω2. (4.5)

By employing the previously given expression for ω, we obtain:

S2
ω = ∑M

i1=0 . . . ∑
M−i1−...−iN−2
iN−1=0 [A1i1 + . . . + AN iN ]

2 ·
(

M
i1

)
Pi1

1 . . .
(

M− i1 − . . .− iN−2
iN−1

)
PiN−1

N−1PM−(i1+i2+...+iN−1)
N −

M2
(

∑N
µ=1 AµPµ

)2
.

Expanding [A1i1 + . . . + AN iN ]
2, we obtain the partial sums:
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s2
1 =

M
∑

i1=0
. . .

M−i1−...−iN−2

∑
iN−1=0

A1
2i12

(
M
i1

)
Pi1

1

(
M− i1

i2

)
Pi2

2 . . .
(

M− i1 − . . .− iN−2
iN−1

)
PiN−1

N−1PM−(i1+i2+...+iN−1)
N

= A1
2

M
∑

i1=0
i12
(

M
i1

)
Pi1

1 . . .
M−i1−...−iN−2

∑
iN−1=0

(
M− i1 − . . .− iN−1

iN

)
PiN−1

N−1PM−(i1+i2+...+iN−1)
N ⇔

s2
1 =

M
∑

i1=0
. . .

M−i1−...−iN−2

∑
iN−1=0

A1
2i12

(
M
i1

)
Pi1

1

(
M− i1

i2

)
Pi2

2 . . .
(

M− i1 − . . .− iN−1
iN

)
PiN−1

N−1PM−(i1+i2+...+iN−1)
N

= A1
2 ∑M

i1=0 i1(i1 − 1)
(

M
i1

)
Pi1

1 (P2 + . . . + PN)
M−i1 + A1

2 ∑M
i1=0 i1

(
M
i1

)
Pi1

1 (P2 + . . . + PN)
M−i1

= A1
2M(M− 1)P2

1

M−2
∑

i1=2

(M−2)!
(i1−2)!(M−i1)!

Pi1−2
1 (P2 + . . . + PN)

M−i1

+A1
2P1M

M−1
∑

i1=1

(M−1)!
(i1−1)!(M−i1)!

Pi1−1
1 (P2 + . . . + PN)

M−i1

s2
1 = A1

2M(M− 1)P2
1 + A1

2P1M

Following an analogous process for the other similar terms of quantity S2
ω, we obtain

s2
µ = Aµ

2M(M− 1)P2
µ + Aµ

2Pµ M, µ = 1, 2, . . . , N

We now calculate the cross-product

s2
1,2 = ∑M

i1=0 . . . ∑
M−i1−...−iN−2
iN−1=0 2A1 A2i1i2

(
M
i1

)
Pi1

1

(
M− i1

i2

)
Pi2

2 . . .
(

M− i1 − . . .− iN−2
iN−1

)
PiN−1

N−1PM−i1−...−iN−1
N ⇔

s2
1,2 = 2A1 A2P1P2M(M− 1)∑M−2

i1=1

(
M− 2
i1 − 1

)
Pi1−1

1 ∑M−i1
i2=1

(
M− i1
i2 − 1

)
Pi2−1

2 (P3 + . . . + PN)
M−i1−i2 ⇔

s2
1,2 = 2A1 A2P2P1M(M− 1).

Similarly, for the remaining cross-products, we obtain

s2
i,j = 2Ai AjPiPj M(M− 1), i, j = 1, 2, . . . , N, i 6= j.

Summing up s2
µ and s2

i,j, we eventually obtain

S2
ω =

N

∑
µ=1

s2
µ +

N

∑
i, j = 1
i < j

s2
i,j −ω2

⇔ S2
ω = M

[
N

∑
µ=1

A2
µPµ −

N

∑
µ=1

A2
µP2

µ − 2
N

∑
i=1

N

∑
j=i+1

Ai AjPiPj

]
.

�

This Lemma along with the central limit theorem, offer the following:

Lemma 2. Suppose that one executes M ≥ 30 successive multiplications. Then, the number of
erroneous d. d. generated in the product obtained after these multiplications, ω = ∑N

µ=1 Aµiµ,
follows a normal distribution with mean value ω and variance S2

ω given by (4.1) and (4.2).

We will apply all the previous results to the three more important cases, described below.
Case 1. The worst case, where in all multiplications

∣∣man
(
γi

n
)
man

(
βi

n
)∣∣ < 10 holds.

Case 2. The most favorable case, where
∣∣man

(
γi

n
)
man

(
βi

n
)∣∣ ≥ 10 always holds.

Case 3. The general case, where the distribution of
∣∣man

(
γi

n
)
man

(
βi

n
)∣∣ is arbitrary.
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Case 1. If at each multiplication, inequality (3.4) holds, namely

|man(αn)man(βn)| < 10,

then we choose the following values around which the corresponding probabilities are
more frequently encountered:

1. ξ = 2: PEQ(2; γi
n, βi

n
)
= P1 ≈ O

(
10−9) (i.e., almost negligible). We repeat that we use

probabilities PEQ only, since we consider the worst case as far as f. p. error generation
and accumulation is concerned, namely that #edd

(
γi

n
)
= #edd

(
βi

n
)
.

2. ξ = 1: PEQ(1; γi
n, βi

n
)
= P2 ≈ 0.5530.

3. ξ = 0: PEQ(0; γi
n, βi

n
)
= P3 ≈ 0.3934.

4. ξ = −1: PEQ(−1; γi
n, βi

n
)
= P4 ≈ 0.0457.

5. ξ = −2: PEQ(−2; γi
n, βi

n
)
= P5 ≈ 7.8·10−3.

6. ξ =−3: PEQ(−3; γi
n, βi

n
)
= P6 ≈ O

(
10−6). (i.e., almost negligible).

Therefore, if M such successive multiplications take place, then, the overall number
ω = ∑N

µ=1 Aµiµ of generated e. d. d. follows a multinomial distribution, which may be
very well approximated by a normal distribution with ω = 0.4917 ·M and S2

ω = 0.3881 ·M,
M ≥ 30. Hence, quantity z = ω−ω

Sω
follows a standard Gauss distribution, i.e., z ∼ N(0, 1).

However, now, inequality |man(αn)man(βn)| < 10 (3.4) holds, thus, ω is positive and
inequality ω−ω

Sω
≥ −4.2649 holds with confidence 99.999%; coefficient −4.2649 corresponds

to the aforementioned confidence level. With this level of significance, the accumulated
number ω of erroneous d. d. in the final product, after M successive multiplications,
obeying inequality (3.4), satisfies relation

ω ≥ −4.2649 Sω + ω. (4.6)

However, in this case, the right-hand side of inequality (4.6) is always positive and,
moreover, is a monotonically increasing function of M. Consequently, the accumulated
number ω of erroneous decimal digits of every product γi

n, i = 1, 2, . . . , M, tends to
rapidly increase even for a particularly small number of successive multiplications M. This
is fully supported by the contents of Tables 7 and 8, below.

Table 7. Fg is a percentage of multiplications in which inequality (3.16) holds. Thus, when Fg < 50% holds, then γi
n becomes

completely erroneous after a relatively small number of multiplications, in full accordance with the theoretical predictions.
These predictions are based on the results of Theorems 1, 3 and 5, refer to the lower bound of the expected e. d. d. for each
Fg and they are presented in the last column for confidence level 1− 10−5. For each Fg the experimental and theoretical
results manifest an excellent agreement.

Percentage of Successive
Multiplications Satisfying∣∣man

(
αi

n
)
man

(
βi

n
)∣∣≥10.

Number of Successive Multiplications
after Which Product γi

n=αi
n·βi

n Was
Computed with All 16 d. d. Erroneous.

Theoretical Lower Bounds for #edd
(
γi

n
)

Obtained via Theorems 1, 3 and 5.

0.0578 92 15.85

0.0718 89 14.00

0.0841 88 12.92

0.0926 90 12.93

0.1160 104 15.15

0.1360 107 14.40

0.1862 108 10.66

0.2310 131 11.58
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Table 7. Cont.

Percentage of Successive
Multiplications Satisfying∣∣man

(
αi

n
)
man

(
βi

n
)∣∣≥10.

Number of Successive Multiplications
after Which Product γi

n=αi
n·βi

n Was
Computed with All 16 d. d. Erroneous.

Theoretical Lower Bounds for #edd
(
γi

n
)

Obtained via Theorems 1, 3 and 5.

0.2734 175 15.22

0.4053 328 12.90

0.4562 459 10.12

0.4591 489 11.46

0.4826 577 6.39

Table 8. Demonstration of the results of experiment associated with Case 3, described in the Section 4: 3 × 105 successive

multiplications γi
n = αi

n·βi
n have been performed for various percentages Fg of them satisfying

∣∣∣man
(

αi
n

)
man

(
βi

n

)∣∣∣ ≥ 10.
The obtained maximum and average numbers of e. d. d. are in full accordance with Theorems 1, 3 and 5. In fact, when
Fg > 50% holds, then the evaluated products manifest a considerable resistance to finite precision error. The closest to 1 Fg is,
the smaller the number of erroneous digits with which all γi

n are computed, exactly as predicted by the theoretical analysis.

Percentage of Successive
Multiplications Satisfying∣∣man

(
αi

n
)
man

(
βi

n
)∣∣≥10

Maximum Number of e. d. d. with
Which Product γi

n=αi
n·βi

n Has Been
Computed, i≤3·105

Average Number of e. d. d.
Accumulated in All Products γi

n=αi
n·βi

n
, i=1,2,. . . ,3·105

0.5014 13 7.7761
0.5029 12 7.2217
0.5051 11 6.9437
0.5063 11 6.8764
0.5076 11 6.6435
0.5131 10 6.1244
0.5143 10 6.0928
0.5154 10 6.0165
0.5171 10 5.9189
0.5204 10 5.7784
0.5260 9 5.5140
0.5300 9 5.4266
0.5404 9 5.1647
0.5481 9 5.0070
0.5588 8 4.8098
0.5899 8 4.4619
0.6182 8 4.1856
0.7742 6 3.4101
0.8422 6 3.0055
0.8702 5 2.9013
0.8913 5 2.8306
0.9195 5 2.7292
0.9412 5 2.6463
0.9519 4 2.6105

Theorem 1. Let us assume that a number of M successive multiplications γi+1
n = γi

nβi
n, i =

0, . . . , M− 1 is performed and that for every multiplication, inequality
∣∣man

(
γi

n
)
man

(
βi

n
)∣∣ <

10 holds. In this case, the product γi
n, i = 1, . . . , M is prone to serious finite precision error

accumulation. We also assume that Hypothesis 1 now holds. Let, in the N-th iteration the number
ω, ω = ∑N

µ=1 Aµiµ, be the number of erroneous d. d. with which quantity γN
n has been evaluated.

Then, it holds that

ω ≥ C(α)·Sω + ω, (4.7)

where α is the desired level of significance and C(α) is the lower bound of the corresponding
confidence interval.
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The theorem holds for any desired level of significance α. Due to the fact that quantity
(C(α)·Sω + ω) is always positive in this case and it is a monotonically increasing function of M,
quantity ω = #edd

(
γN

n
)

tends to increase rapidly, even for particularly small numbers of M.

Hypothesis 2 and Associated Notation 5. Suppose that probabilities Pi = PEQ(ξ; γi
n, βi

n
)

do
not remain constant throughout the successive multiplications, but on the contrary, they depend on
the current i− th multiplication. In this case, we consider the following events and the corresponding
probabilities for an arbitrary multiplication, say the i− th one:
A1,i =

{
2 e.d.d. added to γi

n
}

; P1,i = PEQ(2; γi
n, βi

n
)
,

A2,i =
{

1 e.d.d. added to γi
n
}

; P2,i = PEQ(1; γi
n, βi

n
)
,,

A3,i =
{

no e.d.d. added to γi
n
}

; P3,i = PEQ(0; γi
n, βi

n
)
,

A4,i =
{

reduction o f γi
n e.d.d. by one

}
; P4,i = PEQ(−1; γi

n, βi
n
)

etc.

If one adopts the above Hypothesis 2, the following result holds:

Theorem 2. Under the conditions imposed by Hypothesis 2, one may dynamically compute the
exact (up to ±1 d. d.) number of erroneous decimal digits, which are accumulated at the i− th,
arbitrary, product γi

n, i = 1, 2, . . . , M by applying the method introduced in Section 3. This
dynamic computation of #edd

(
γi

n
)

can be made by a rather straightforward code based on the results
of Section 3.

Case 2. Now, we assume that at each one of the M successive multiplications, inequal-
ity (3.16) holds, i.e., that

|man(γn)man(βn)| ≥ 10.

Then, consider the following associated, quite representative probabilities, in accor-
dance with the analysis of Section 3.2, Case 1.ii:

1. Probability that A1 (ξ = 2) occurs is P1 = 0, since in this case equality ξ = 2 can
never occur.

2. Probability that A2 (ξ = 1) occurs is P2 = 6.146·10−4.
3. Probability that A3 (ξ = 0) occurs is P3 = 0.7468.
4. Probability that A4 (ξ = −1) occurs is P4 = 0.2224.
5. Probability that A5 (ξ = −2) occurs is P5 = 0.02720.
6. Probability that A6 (ξ = −3) occurs is P6 = 0.002979.

As a rule, the probabilities of events A6, A7, . . . are pretty small, practically zero;
however, the entire analysis is absolutely valid if one incorporates the (very small) cor-
responding probabilities in it. Hence, according to Lemma 1, ω = −0.2851 · M and
S2

ω = 0.2783 ·M.
We would like to emphasize that in this case, the mean value ω of generated e. d. d.

is negative.
Now, quantity z = ω−ω

Sω
follows a standard Gauss distribution, i.e., z ∼ N(0, 1).

Hence, inequality ω−ω
Sω
≤ 4.2649 holds with confidence 99.999%. With this confidence

level, the accumulated number ω of e. d. d. after M successive multiplications obeying
(3.16), satisfies

ω ≤ 4.2649Sω + ω. (4.8)

Here, 4.2649Sω + ω is a monotonically decreasing function of M. Thus, the accu-
mulated number ω of e. d. d. remains very close to zero, even for a very large number
of multiplications. This has been fully experimentally verified as described in Section 4.
Hence, the following holds:

Theorem 3. Suppose that a number of M successive multiplications γi+1
n = γi

nβi
n, i = 0, . . . , M−

1 is performed. For every such multiplication, let inequality
∣∣man

(
γi

n
)
man

(
βi

n
)∣∣ ≥ 10 (3.16)

holds. Then, for all practical purposes, these multiplications accumulate a negligible amount of f. p.
error on the product γi+1

n = γi
nβi

n for all i = 0, . . . , M.
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Moreover, the number of erroneous decimal digits (e. d. d.) accumulated in the arbitrary γi
n

product, is, as a rule, a decreasing function of i.
If, in addition, Hypothesis 1 is adopted, then the number ω of e. d. d. accumulated in the i-th

multiplication satisfies inequality (4.8).
The theorem holds for any desired level of significance α, the only difference being the coefficient

of Sω.

By a complete analogy with Theorem 2, one may adopt Hypothesis 2, in which case
the following result holds:

Theorem 4. Under the conditions imposed by Hypothesis 2, one may dynamically compute the
exact (up to ±1 d. d.) number of erroneous decimal digits, which are accumulated at the i− th,
arbitrary, product γi

n, i = 1, 2, . . . , M by applying the method introduced in Section 3. This
dynamic computation of #edd

(
γi

n
)

can be made by a rather straightforward code based on the results
of Section 3.

Case 3. In the general case, either inequality
∣∣man

(
γi

n
)
man

(
βi

n
)∣∣ ≥ 10 (3.16) or

inequality
∣∣man

(
γi

n
)
man

(
βi

n
)∣∣ < 10 (3.4) arbitrarily holds. Then, in order to obtain a

rigorous estimation of the number of e. d. d. in each multiplication, together with the
corresponding probability, one must know the statistical distribution of

∣∣man
(
γi

n
)
man

(
βi

n
)∣∣,

as compared to ten (10). In general, these distributions may highly depend on the algorithm
in hand. However, in order to obtain an estimation of the corresponding generated f. p.
error, we will state the very interesting example where both

∣∣man
(
γi

n
)∣∣ and

∣∣man
(

βi
n
)∣∣

follow a uniform distribution in the interval [1, 10). In fact, in this case, the set of
(
γi

n, βi
n
)

in the γi
nβi

n-plain satisfying (3.4), is the 2D domain bounded by the straight lines γi
n =

1 and βi
n = 1 and the hyperbola γi

nβi
n = 10. Dually, the 2D domain for which the

alternative inequality (3.16) holds, is the one limited by the straight lines γi
n = 10, βi

n =
10 and the same hyperbola. Then, we follow the results of Section 3 and we use the
graphical representation associated with the square of Figure 1 for the probability density
function f UN

XY (x, y) = 1
81 , defined on this square except the cross. Consequently, in a

rather straightforward manner, we obtain P
{∣∣man

(
γi

n
)
man

(
βi

n
)∣∣ < 10

}
= 1

81

∫ 10
1

10
βi

n
dβi

n =

1
81
[
10 ln

(
βi

n
)]10

1
∼= 0.7157.

In case that there is no discernible distribution of
∣∣man

(
γi

n
)
man

(
βi

n
)∣∣within the course

of the algorithm, we may dynamically calculate the finite precision error accumulation
for every product in order to estimate the accumulation of the finite precision error in the
algorithm in general, as described in Theorems 2 and 4; we remind that Theorem 2 refers
to the worst case in which

∣∣man
(
γi

n
)
man

(
βi

n
)∣∣ < 10 always holds, while Theorem 4 is

connected to the dual inequality (3.16), which is most favorable from the point of view of
generation of finite precision error during multiplication. In any case, the following holds:

Theorem 5. Suppose again that during M successive multiplications γi+1
n = γi

nβi
n, i = 0, . . . , M−

1 and that for a fraction, say Fg, of these multiplications, inequality (3.16) holds, while for the other
fraction Fs = 1− Fg of them inequality (3.4) holds. Then, concerning the f. p. error accumulation
in the products γi

n, i = 1, . . . , M, the following two cases hold:

(i) if Fg > 0.5, product γi
n tends to behave as described in Case 2, i.e., the overall number of e. d.

d. of γi
n, i = 1, . . . , M is restrained. The closer to 1 fraction Fg is, the greater the restriction

of the number of e. d. d. accumulated in products γi
n (see Table 8).

(ii) If Fg < 0.5, the accumulated f. p. error in the products γi
n is amplified. The closer to 0 Fg is,

the more rapidly the f. p. e. accumulated in products γi
n grows (Table 7).

The theoretical approach and the associated results introduced in the present Section 4,
have been fully confirmed experimentally, as it will be described in Section 6 of the
present work.
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5. Comparing the Finite Precision Error Generation and Accumulation during
Execution of the Same Algorithm Including Successive Multiplications, with
Different Finite Word Length/Precision

We shall begin by giving a brief description of the goal of the present section: consider
an algorithm A, involving multiplications at each iteration. We execute A first with n
decimal digits in the mantissa (say n ≥ 7) and simultaneously with m decimal digits (d. d.)
in the mantissa, where we assume that m ≥ 2n + 7, using exactly the same input in both
cases. Consider any quantity γ of A and let γi

n be the value of this quantity at the i− th
iteration of A, where all calculations are made with precision of n d. d. in the mantissa.
Similarly, let γi

m be the value of this quantity at the same iteration ofA, when all operations
are made with precision of m d. d. In the present section, we will compare the number of
erroneous d. d. with which any such two quantities γi

n, γi
m are calculated and, in particular,

for the difference ∆ =
∣∣#edd

(
γi

n
)
− #edd

(
γi

m
)∣∣.

In Section 4 we have concluded that, independently of the finite word length, the
number of e. d. d. of any product γ follows a normal distribution if the number of
successive multiplications which generated γ, is greater than or equal to 30. Thus, the
difference in the number of e. d. d. between γi

n and γi
m also follows a normal distribution

with mean value zero and a variance that can be immediately estimated from the results of
Section 4. Hence, one may deduce:

Theorem 6. Suppose that an algorithm A including an arbitrary number of successive multipli-
cations, is executed in parallel with two different finite word lengths corresponding to n and m
decimal digits (d. d.). Let the two representations of an arbitrary quantity γ of A be γn and γm
respectively, in these two finite word lengths. Consider the random variable

Λ = {number o f e. d. d. accumulated in γm} − {number o f e. d. d. accumulated in γn}. (5.1)

Λ follows a normal distribution with mean value zero and variance 2S2
ω , where S2

ω is given in
(4.2). Let Fm,n(t) be the cumulative distribution function of Λ’s normal distribution. Then, the
probability that ∆ = |Λ| is greater than ζ d. d. (where, clearly, ζ ≥ 0) is given by

P(∆ > ζ) = 2(1− Fm,n(ζ)). (5.2)

Corollary 1. Based on the analysis introduced in Sections 3 and 4, one may deduce in a quite
straightforward manner that the probabilities that γi

n and γi
m differ in absolute value by ∆ ≥ 7

decimal digits, is practically zero. This holds true for arbitrarily large number M of successive
multiplications executed in A.

Theorem 7. As in Theorem 6, we let A be executed in parallel with the two different finite word
lengths n and m, where m > 2n + 7. Then, for an arbitrary quantity γ of A, the following hold:

1. We project γm to n d. d. in the mantissa, obtaining a restricted representation γ̃n of γm.
We compare γn and γ̃n by means of Definitions 1 and 2. If the obtained result is κ e. d. d.
(κ < n), then we deduce that precisely the last κ digits of γn are erroneous.

2. We also deduce that γm has at most κ + 7 e. d. d. or, equivalently, that the first m–κ –7 d. d.
of γm are correct.

3. As long as κ < n holds, then, γ̃n is a fully correct representation of γ with n d. d.

6. Experiments That Fully Support the Theoretical Analysis

In this section, we shall introduce a number of experiments that have been specifically
designed by the authors, in order to test the validity and the reliability of the theoretical
analysis and results presented in the previous sections.

6.1. Description of a First Class of Experiments That Confirm the Theoretical Approach

Aiming at testing methodology and the associated theoretical results introduced
in Sections 3 and 4, we have proceeded as follows: first, we have selected a set Sn of
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106 randomly chosen floating point numbers having 16 decimal digits (d. d.) in the mantissa
(subscript n stands for 16); the elements of this set come from a uniform distribution. All
numbers were expressed in scientific form.

Next, we have extended each number an of Sn into a 40 d. d. representation, in
scientific form, setting the last 24 d. d. of each number’s mantissa to zero. Thus, we have
obtained floating point numbers am forming set Sm (m = 40).

Subsequently, we have chosen an arbitrary, momentarily fixed value of Fg in the
interval [0, 1]. We have performed Fg·109 multiplications with n = 16 d. d., for which
the multiplication operands αn, βn satisfied (3.16). Next, we have performed

(
1− Fg

)
·109

multiplications with 16 d. d. word length, where the opposite inequality, (3.4), namely that
the mantissa of the product terms have absolute value smaller than 10, holds. We have
ensured that no repetition of any multiplication occurred.

The very same multiplications have been repeated with 40 d. d. precision, among the
corresponding numbers am ∈ Sm. Suppose that two numbers αn, βn ∈ Sn, when multiplied,
generate γ1

n with finite precision error (f. p. e.) x1
n ≥ 0, while γ1

m is generated with f.
p. e. x1

m ≥ 0. These errors have been computed via Definition 2 and Theorems 5 and 6
introduced in Section 5. More specifically:

(i) We have restricted γ1
m into n = 16 d. d., thus obtaining the number γ̃1

n.
(ii) According to Theorem 6, γ̃1

n is a correct representation of product γ having n = 16
decimal digits in its mantissa.

(iii) We have compared γ1
n and γ̃1

n using Definitions 1 and 2, i.e., by forming their differ-
ence

∣∣γ1
n − γ̃1

n
∣∣. In this way, we have obtained the exact number of erroneous decimal

digits (e. d. d.) with which quantity γ1
n has been evaluated.

By merging the obtained products γ1
n and γ1

m in two distinct ensembles, we have
formed two new sets, S1

n, S1
m, being in a natural biunivocal relation (γ1

n, γ1
m).

Moreover, for the same value Fg, we have performed Fg·109 multiplications between
α1

n, β1
n ∈ S1

n, satisfying (3.16), as well as
(
1− Fg

)
·109 multiplications where (3.4) holds,

obtaining 109 products γ2
n. Again, during the aforementioned process, no repetition of

any multiplication occurred. The very same multiplications have been performed with
40 decimal digits precision, between corresponding elements of set S1

m, obtaining products
γ2

m. The erroneous d. d. of γ1
n have been computed using γ1

m, as described above based on
the results of Sections 2 and 5. We let products γ2

n and γ2
m form sets S2

n and S2
m respectively,

maintaining the natural biunivocal relation (γ2
n, γ2

m).
We continued in this way, forming sets (S3

n, S3
m),. . . ,

(
Si

n, Si
m
)
, etc. with the same factor

Fg. In all these cases we evaluated the number of e. d. d. with which products γi
n, are

computed as it has been previously described in connection with γ1
n and γ1

m. In addition,
whenever an exponent exceeded a large absolute value (e.g., 50) during the previous
process, it was set to zero, since the exponent 10τ , τ ∈ Z, of the scientific form plays no
role in the f. p. e. generation and accumulation in the multiplication process in general.
We have taken this action, in order to avoid possible effects of overflow or underflow in
consecutive multiplications, since these easily spotted problems have nothing to do with
the present study. However, we have kept the overall exponent of each product by simple
recursive additions.

We have repeated the aforementioned experiment for various values of Fg, where
always Fg ∈ [0, 1]. At this point, we have distinguished two additional sub-cases: (a)
Fg < 0.5 and (b) Fg > 0.5.

Sub-case (a) is quite analogous to Case 1, for which inequality (3.4) holds permanently.
Specifically, the obtained products γi

n = αi
nβi

n, have been calculated with all digits erro-
neous after a relatively small number of iterations, as shown in Table 7. The smaller fraction
Fg, the more serious the f. p. error is.

On the contrary, Sub-case (b) is quite similar to Case 2, in the sense that products
γi

n = αi
nβi

n manifested substantially smaller f. p. e. accumulation, as Table 8 manifests. In
full accordance with the theoretical analysis, the smaller Fg, the smaller the accumulated f.
p. e. in γi

n is.
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6.2. A Second Class of Experiments for Testing the Theoretical Analysis Concerning
Successive Multiplications

Case 1. All Successive Multiplications Satisfy Inequality (3.4),
∣∣man

(
αi

n
)
man

(
βi

n
)∣∣ <

10
(
⇔ Fg ∼= 0

)
.

In connection to it, we have performed the following experiment: we have imple-
mented an artificial algorithm, which forces all successive multiplications to satisfy (3.4).
The flow chart of this algorithm is the following:

Starting from an arbitrary number β0 ∈ [1, 10) , we express it with a certain number n
of decimal digits (d. d.), as well as with m = 2n + 10 d. d. We then multiply β0 by itself
in both precisions. In case β2

0 exceeds ten, then we subtract a properly selected positive
integer c0, from β0 in both precisions; we do so, in order that 1 ≤ β2

0 < 10 now holds.
We stress that c0 is adequately selected to be an integer in order that its subtraction from
the initial β0 does not add any e. d. d. to β0; in all performed experiments, we ensured
this by checking the number of e. d. d. of the difference (β0 − c0), via Definition 2. By
comparing product β2

0 in both precisions, we calculate the erroneous decimal digits (e. d.
d.) of β2

0 in the n digits precision. Next, we set the exponent of β2
0 equal to zero, in order to

avoid overflow or underflow and we let the obtained mantissa of β2
0 be a new number, β1,

expressed in both precisions. Then, we repeat the previous actions by letting β1 play the
role of β0 and we evaluate and store the number of e. d. d. with which β2

1 is computed,
after ensuring that β2

1 ∈ [1, 10) , via a proper subtraction β1 − c1, as before. We continue
this process until the obtained β2

i is calculated in the n digits precision with all its digits
erroneous, while we have ensured that β2

i ∈ [1, 10) .
We have executed this algorithm for 1000 different initial values of β0, always belong-

ing to the interval [1, 10) . The obtained maximum number of iterations for which β2
i was

totally erroneous is shown in Table 9 for various values of precision n. Thus, we obtain
the particularly important result that β2

i is totally erroneous after an impressively small
number of iterations, in comparison to the employed precision, in full accordance with the
theory and in particular with Theorem 1 of Section 4.

Table 9. Table demonstrating the number of iterations after which the output of the algorithm
described in Case 1 of the present Section, offered totally erroneous results, for various employed
finite word lengths n. The results are in full accordance with the theoretical analysis presented in
the previous sub-sections. The experimentally observed results are in excellent agreement with the
content of Theorem 1 of Section 4.

Employed Precision in Decimal Digits
Number of Iterations after Which All Digits
of β2

i Were Erroneous, Independently of the
Choice of β0

16 61

64 249

128 484

256 967

512 1915

1024 3843

2048 7670

4096 15,285

Case 2. All Successive Multiplications Satisfied
∣∣man

(
αi

n
)
man

(
βi

n
)∣∣ ≥ 10

(
⇔ Fg ∼= 1

)
.

We have, again, performed an additional experiment, in which we have written an arti-
ficial algorithm, that forces all successive multiplications to satisfy

∣∣man
(
αi

n
)
man

(
βi

n
)∣∣ ≥ 10.

Indeed, this algorithm is quite similar to the one described in connection with Case 1 above
and it has the following flow chart:
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Starting, again, from an arbitrary number β0 ∈ [1, 10) , we express it in both n and
m = 2n + 10 d. d. precision. We then execute β0 · β0 in both precisions. In case β2

0 is smaller
than ten, then we add a properly selected positive integer c0 to β0 in both precisions, so
as β2

0 ≥ 10. We stress that β0 + c0 never manifests any e. d. d. By comparing product
β2

0 in both precisions, we calculate and store the n-precision number’s e. d. d., again by
means of Definition 2 and Theorem 5. Next, we set the exponent of β2

0 to zero, once more
to avoid overflow or underflow and we let the obtained mantissa of β2

0 be a new number
β1 expressed in both precisions. Next, we repeat the previous actions by letting β1 play
the role of β0 and we store and evaluate the number of e. d. d. with which number β2

1 is
computed, after ensuring that β2

1 ∈ [1, 10) by adding a proper c1 to β1, if necessary. We
repeated this process for an arbitrarily large number of iterations, while monitoring the f.
p. error of β2

1.
We have executed this algorithm 1010 times in 16 and 42 d. d. precision for 1000 initial

values of β0, always belonging to the interval [1, 10) . The experiment has shown that the
number of erroneous decimal digits with which β2

1 has been calculated never exceeded two
(2), while the mean value of these e. d. d. remained always pretty close to zero, even for
the larger numbers of iterations of the algorithm, in full accordance with Theorem 3.

6.3. Description of a Third Experiment That Fully Supports the Theoretical Results regarding the
Case of Successive Multiplications with a Varying Word Length

We have experimentally tested the correctness of Theorem 7 of Section 5, by per-
forming M successive multiplications as described in Section 4. However, now, each
multiplication has been executed three times with 16, 40 and 128 d. d. in the mantissa.
In this way for each product γ we have obtained three representations, γ16, γ40 and γ128
in parallel. Next, we have restricted γ40 to 16 d. d., obtaining representation γ̃16 as de-
scribed before. Similarly, we have projected γ128 to both 16 and 40 d. d., obtaining the
corresponding representations γ̂16 and γ̂40. Eventually, we have compared γ16 with γ̃16
and γ̂16 by means of Definitions 1 and 2; we have also compared γ̃16 with γ̂16 and γ40 with
γ̂40 via the same method. The obtained results are shown in Table 10 and fully justify the
aforementioned Theorems of Section 5, but also of Section 4.

Table 10. Comparison of the number of erroneous decimal digits (e. d. d.) accumulated in all the
intermediate results of 108 successive multiplications. All these multiplications have been executed
in parallel, with 16, 40 and 128 d. d. in the mantissa. All obtained experimental results fully support
the theoretical analysis introduced in Section 5 and in particular the content of Theorems 6 and 7.

Minimum Erroneous Decimal Digits Difference Between
16 and 40 Decimal Digits Representation. −3

Maximum Erroneous Decimal Digits Difference Between
16 and 40 Decimal Digits Representation 3

Mean Erroneous Decimal Digits Difference Between 16
and 40 Decimal Digits Representation −0.0945

Maximum Number of Erroneous Decimal Digits in the 16
Decimal Digits Representation 12

Maximum Number of Erroneous Decimal Digits in the 40
Decimal Digits Representation 32

7. Eventual Applications Associated with the Present Work

In the section in hand, we shall present and highlight an ensemble of possible and
probable applications, which will be based in the analysis and methodology introduced
here. Thus:

A. In certain applications, like the ones that will be described below, it is preferable
and/or necessary to use finite elements methods, which employ polynomials of
high order to approximate the considered function on each element, usually called
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“higher order basis functions”. In this approach, if the higher order basis functions
are of order n, then one must use elements consisting of (n + 1) nodes; moreover,
one frequently uses the following basis functions ([20]):

ψ̂i(ξ) =
(ξ − ξ1) . . .

(
ξ − ξ j

)
. . . (ξ − ξi−1)(ξ − ξi+1) . . . (ξ − ξn+1)

(ξi − ξ1) . . .
(
ξi − ξ j

)
. . . (ξi − ξi−1)(ξi − ξi+1) . . . (ξi − ξn+1)

, (7.1)

where (a) i is the cardinal number of the node in hand, i = 1, 2, . . . , n + 1, (b) j
represents the cardinal number of the other nodes of the specific element, hence
j = 1, 2, 3, . . . , n + 1, j 6= i, (c) ξ is the independent variable of the polynomial basis
function and (d) evidently ξ j, j = 1, 2, 3, . . . , n + 1 is the value that this variable
acquires on the j− th element of the node in hand.

It is rather clear that both the nominator and the denominator in relation (7.1) are
results of successive multiplications.

However, even in the case of second order basis functions, one employs the basis functions:

ψ̂1(ξ) =
1
2

ξ(ξ − 1), ψ̂2(ξ) = 1− ξ2, ψ̂3(ξ) =
1
2

ξ(ξ + 1), (7.2)

which includes multiplications. Consequently, the entire previous analysis may be applied
immediately, so that together with ψ̂i(ξ), i = 1, 2, . . . , n + 1 computation, the user may
know the exact number of erroneous decimal digits with which this quantity has been
evaluated, each time. Clearly, in case that the numerical value of such a basis function for a
certain ξ is highly or even totally “contaminated”, then the user may immediately receive a
corresponding signal.

Therefore, more specifically, this method can be applied to the subsequent applications:

1. In research associated with the modelling of the fatigue of materials employed in the
rail-wheel system ([21,22]).

2. In the study of rail corrugation ([23,24]).
3. In the study of the influence of bending on the value of friction coefficient ([25]).
4. In tackling important classes of contact problems in elatostatics ([26,27]).
5. In the investigation and analysis of the spatial stress-strain states of a pipe with respect

to its corrosion damage, taking into account various types of complex loading ([28]).
6. In real time analysis of local damage in wear-and-fatigue tests, whenever finite

elements methods are required/applied ([29]).

It is worthwhile noticing that in many of the aforementioned studies the involved
models frequently include multiplications; consequently the approach introduced in the
present manuscript may also be proved helpful in associated numerical experiments.

B. The sequence of powers of a real number.

Consider a single real number, say β > 0. Moreover, consider the sequence of powers
of β, usually computed recursively by means of the following succession of multiplications:

z0 = β·β
z1 = z0·z0
z2 = z1·z1

. . .
zn = zn−1·zn−1, n ∈ N.

Suppose that the numerical value of β > 0 is such that, statistically, multiplication
zn−1·zn−1, n ∈ N, satisfies inequality (3.4)

|man(zn−1)·man(zn−1)| < 10,
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more frequently than the opposite one (3.16), namely

|man(zn−1)·man(zn−1)| ≥ 10

Then, according to the previous analysis, one expects that zn will continually be
evaluated with a larger number of erroneous decimal digits (e. d. d.), as n grows. To
verify/demonstrate that, we have employed β = 1.12, we have generated sequence zn of
the powers of β by means of the aforementioned sequence of successive multiplications
and we have evaluated the exact number of e. d. d. with which zn is calculated each time;
the determination of the exact number of erroneous d. d. has been made as described
in Sections 5 and 6, using n = 16 decimal digits word length and m = 40 decimal digits
precision. The associated results are depicted in Figure 4, from which it is evident that
after the impressively small number of 55 iterations, the power zn is computed with all its
digits erroneous.

Figure 4. The evolution of the number of the erroneous decimal digits (e. d. d.) accumulated in the
power β2n, β = 1.12, due to finite precision error. The abscissa represents the recursions’ cardinal
number, while y′y axis represents the number of e. d. d. Number β has been chosen in such a way,
so as inequality |man(zn−1)·man(zn−1)| < 10 holds more frequently than the dual one (3.16). As
a consequence, the number of e. d. d. grows rapidly, in full accordance with the analysis and the
results of Sections 4 and 6.

We must emphasize that, in order to circumvent the effects of overflow, each time we
have multiplied the mantissae of zn−1 only and not the entire number zn−1. Equivalently,
whenever the exponent of zn exceeded a rather large number, say E(zn) = 50, then we
have divided with 10E(zn). However, we have registered the power’s exponent each time
by simple recursive additions. It is important to stress that, in both these approaches the
number of erroneous decimal digits accumulated in zn were identical.

C. Continual multiplication of contaminated numbers.
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Exactly the same analysis holds true, in the case that instead of multiplying zn−1 with
itself to produce zn, we instead perform the sequence of multiplications:

z0 = x0·y0
z1 = z0·y1

. . .
zn = zn−1·yn−1, n ∈ N,

where y0, y1, . . . , yn−1, n ∈ N is an arbitrary sequence of contaminated numbers, to which
erroneous digits are accumulated probably due to another procedure. The application (D)
that follows, we believe that it will clarify the content of these statements.

D. Finite Precision Error Accumulated in Various Fast Kalman Algorithms.

One of the most widely used filtering procedures is the Kalman one [30]. In many of
these algorithmic schemes a certain scalar quantity, say αb

m(n + 1), m, n ∈ N, is updated at
the (n + 1)− th time instant by means of a formula of the type

ab
m(n + 1) = λ·αb

m(n)·Jm(n + 1), (7.3)

where (i) λ ∈ R is the so-called “forgetting factor” almost always belonging to the interval
[0.97, 0.99] and (ii) Jm(n + 1) is another quantity of the algorithm, which is also computed
recursively. In many applications [30], quantities αb

m(n) and Jm(n + 1) have values such
that inequality (3.4)

|man(zn−1)·man(zn−1)| < 10,

holds very frequently, statistically. Hence, every formula of the type (7.3), tends to generate
one additional erroneous decimal digit in a relatively small number of recursions; this
erroneous digit is added to the value of ab

m(n + 1). Subsequently, since ab
m(n + 1) enters

directly or indirectly, in all other formulae of the corresponding Kalman algorithms, in-
cluding Jm(n + 1), it follows that these schemes are very frequently destroyed due to this
successive-multiplication-based finite precision error, in an impressively small number of
iterations [30].

Thus, for example, the faster existing Kalman algorithm (the FAEST [31]) can never
converge in practice due to this type of f. p. e.

In general, the methodology introduced here allows for both the evaluation of the
number of erroneous decimal digits with which all quantities in any fast Kalman algorithm
are computed, as well as for finding methods of stabilizing various algorithms of this
class ([32]).

8. Conclusions

In this paper, we have presented a new approach to the study of the finite precision
error generation and accumulation in the multiplication process. We have initially given a
strict mathematical definition of the number of correct digits of a real quantity expressed
in any finite word length. We emphasize that although the analysis introduced here
is made in the decimal radix, it offers accurate results and prediction of the f. p. e.
generated and accumulated in any computing machine that performs an arbitrary number
of multiplications, successively.

Along this new approach, we have shown the following fundamental result: suppose
that one executes an arbitrary multiplication γn = αnβn in a computing environment
employing the equivalent of n decimal digits in the mantissa. Moreover, let operands αn
and βn have λ erroneous decimal digits at most in their mantissae. Then, the number of e. d.
d. with which product γn is calculated depends on the value of |man(αn)man(βn)|. In fact,
if inequality |man(αn)man(βn)| < 10 holds, then product γn is calculated with at most λ+ 2
erroneous d. d. or with λ, λ− 1, λ− 2, λ− 3 e. d. d. In case the complementary inequality
holds, then product γn may be calculated with up to λ + 1, or with λ, λ− κ, κ = 1, 2, 3, 4
e. d. d.
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We have also shown that the chance of encountering one of the aforementioned cases
heavily depends on the exponent of quantity

∣∣αnx + βny·10−δ
∣∣, where x and y are the

multiplication operands’ f. p. e. mantissae and δ = #edd(βn)− #edd(αn).
In order to calculate the probabilities that each one of the aforementioned cases holds,

we have introduced the rectangular shaped set of points of Figure 1 and we have defined
the sub-domains in which the values of the random variables x and y correspond, in order
that product γn is computed with a specific number of e. d. d. Then, by integration on the
corresponding sub-domains, we have calculated the associated probabilities.

We have also given exact formulae for the mean value and standard deviation of the
number of e. d. d. accumulated in the results of successive multiplications.

Moreover, we have established that if we perform the exact same set of successive
multiplications using n and m > 2n + 7 d. d., then we may easily track the number of e. d.
d. accumulated in the n precision results.

Finally, in order to test the validity of the introduced theoretical analysis, we have
performed a number of specially developed experiments. The results of these experiments
fully supported the theoretical analysis introduced here.

We emphasize that the developed novel methodology is expandable, so as to tackle
the finite precision error generation and accumulation in any arithmetic operation; this will
be the subject of forthcoming manuscripts.
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