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Abstract: The main aim of this paper is to numerically solve the first kind linear Fredholm and
Volterra integral equations by using Modified Bernstein–Kantorovich operators. The unknown func-
tion in the first kind integral equation is approximated by using the Modified Bernstein–Kantorovich
operators. Hence, by using discretization, the obtained linear equations are transformed into systems
of algebraic linear equations. Due to the sensitivity of the solutions on the input data, significant
difficulties may be encountered, leading to instabilities in the results during actualization. Conse-
quently, to improve on the stability of the solutions which imply the accuracy of the desired results,
regularization features are built into the proposed numerical approach. More stable approximations
to the solutions of the Fredholm and Volterra integral equations are obtained especially when high
order approximations are used by the Modified Bernstein–Kantorovich operators. Test problems
are constructed to show the computational efficiency, applicability and the accuracy of the method.
Furthermore, the method is also applied to second kind Volterra integral equations.

Keywords: Volterra integral equations; Fredholm integral equations; Modified Bernstein–Kantorovich
operators; Moore–Penrose inverse; regularization
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1. Introduction

Fredholm and Volterra integral equations of the first kind play an important role in
many problems from science and engineering. It is known that the Fredholm integral
equations can be derived from boundary value problems with given boundary conditions.
For example, Fredholm integral equations of the first kind arise in a mathematical model
of the transport of fluorescein across the blood–retina barrier in the transient state and the
subsequent diffusion of fluorescein in the vitreous body given in Larsen et al. [1]. Some
other applications are in palaeoclimatology given in Anderssen and Saull [2], antenna
design in Herrington [3], astrometry in Craig and Brown [4], image restoration in Andrews
and Hunt [5]. The investigation of Volterra integral equations is very important in solving
initial value problems of usual and fractional differential equations arising from the mathe-
matical modelling of many scientific problems, including population dynamics, spread of
epidemics, and semi-conductor devices, such as the biological fractional n-species delayed
cooperation model of Lotka–Volterra type given in Tuladhar et al. [6]. Examples of Volterra
integral equations of first kind can be extended to mathematical model of animal studies of
the effect of the deposition of radioactive debris in the lung by Hendry [7], the heat conduc-
tion problem in Bartoshevich [8], tautochrone problem of which Abel’s integral equation
was derived by Abel [9], (see also Groetsch [10]), electroelastic of dynamics of a nonho-
mogeneous spherically isotropic piezoelectric hollow sphere problem in Ding et al. [11].
Additionally, the use of a dynamical model of Volterra integral equations in energy storage
with renewable and diesel generation has been analysed in Sidorov et al. [12].
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As a classical ill-posed problem, the numerical solution of Fredholm integral equations
of the first kind has been investigated by many authors, as a former study by Phillips [13]
and a recent study by Neggal et al. [14]. The well-known early methods are the regulariza-
tion methods given with a technique by Phillips in [13] and the Tikhonov regularization
by Tikhonov in [15,16]. In the Tikhonov method, a continuous functional is usually used
and the minimizer for the corresponding functional is difficult to obtain. Consequently,
several methods have been proposed to obtain an effective choice of the regularization
parameter in Tikhonov method such as the discrepancy principle, the quasi-optimality
criterion (see Groetsch [17], Bazan [18] and references therein). Further, in Caldwell [19],
a direct quadrature method and a boundary-integral method were examined for solving
Fredholm integral equations of the first kind. Additionally, a regularization technique
which replaces ill-posed equations of the first kind by well-posed equations of the sec-
ond kind was employed to produce meaningful results for comparison purposes. Later,
the extrapolation technique by Brezinski et al. [20] and a modified Tikhonov regularization
method to solve the Fredholm integral equation of the first kind under the assumption that
measured data are contaminated with deterministic errors was given in Wen and Wei [21].
Recently, a variant of projected Tikhonov regularization method for solving Fredholm
integral equations of the first kind was proposed in Neggal et al. [14] in which for the
subspace of projection, the Legendre polynomials were used.

Early studies for the solution of Volterra integral equations of the first kind involve
the high order block by block methods in Hoog and Weiss [22,23]. However, these methods
suffer from the disadvantage of requiring additional evaluations of the kernels and the
solution of systems of algebraic equations for each step. Later, Taylor [24] used inverted
differentiation formulae, which the resulting methods were explicit corresponding to local
differentiation formulae. As the author stated “the main disadvantage of this method is
that weights must be calculated from the recurrence relation (2.9) and the differentiation
formula must be chosen so that the Dahlquist root condition is satisfied”. Integral equations
of the first kind associated with strictly monotone Volterra integral operators were solved in
Brunner [25] by projecting the exact solution of such an equation into the space S(−1)

m (ZN)
of piecewise polynomials of degree m ≥ 0 possessing jump discontinuities on the set
ZN of knots. Besides, the asymptotic behavior of solutions to nonlinear Volterra integral
equations was analysed in Hulbert and Reich [26]. The future-sequential regularization
method and predictor-corrector regularization method for the approximation of Volterra
integral problems of first kind with convolution kernel were given in Lamm [27] and
Lamm [28], respectively. The numerical solution of Volterra integral equations of the first
kind by sequential Tikhonov regularization coupled with several standard discretizations
(collocation-based methods, rectangular quadrature, or midpoint quadrature) was given in
Lamm and Eldén [29].

New approaches have been developed for the solution of integral equations that use
the basis functions and transform the integral equation to the system of linear or nonlinear
equations. One of these approaches is the use of wavelet basis. For the solution of Abel’s
integral equation, Legendre wavelets were used in Yousefi [30] and the wavelet basis
were used in Maleknejad et al. [31] for the numerical solution of Volterra type integral
equations of the first kind. Another approach is the use of polynomial approximations.
In Mandal and Bhattacharya [32], Fredholm integral equations of the second kind and
a simple hypersingular integral equation and a hypersingular integral equation of the
second kind were numerically solved using Bernstein polynomials. At the same year,
in Maleknejad et al. [33] numerical solution of linear and nonlinear Volterra integral
equations, of the second kind by using Chebyshev polynomials was given. Afterwards,
a new approach to the numerical solution of Volterra integral equations by using Bernstein’s
approximation was given in Maleknejad et al. [34].

Recently, exhaustive studies on the use of CESTAC method for the solution of Volterra
first type integral equations has been given in Noeiaghdam et al. [35] in which the control
of accuracy on Taylor-collocation method to solve the weakly regular Volterra integral
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equations of the first kind has been studied. Furthermore, in Noeiaghdam et al. [36]
that the numerical validation of the Adomian decomposition method for solving Volterra
integral equation with discontinuous kernels was given.

The need of stable, reliable and time efficient methods for the numerical solution of
Fredholm and Volterra integral equations of first kind is the main motivation of contribu-
tions. The achievements of the study can be summarised as follows:

1. Using the Modified Bernstein–Kantorovich operators, a numerical approach is
developed for the solution of Fredholm and Volterra integral equations of the first kind
with continuous and square integrable kernels. Convergence analysis are given assuming
that minimum norm least square solution of the obtained algebraic linear systems are
obtained by using the exact data, that is to say the Moore–Penrose inverse of the resulting
coefficient matrices are computed exactly.

2. Furthermore, regularized integral equations are considered to obtain more smooth
solutions especially when high-order approximations are used by Modified Bernstein–
Kantorovich operators. The proposed approach is applied by building regularization
features into the algorithm and perturbation error analysis are given.

3. Test problems are conducted and theoretical results are justified with the obtained
numerical results.

2. Asymptotic Rate of Convergence of Modified Bernstein–Kantorovich Operators

The Modified Bernstein–Kantorovich operators Kn,α( f ; x) were used to approximate a
function f : [0, 1]→ R (see Özarslan and Duman [37]) where,

Kn,α( f ; x) =
n

∑
k=0

Pn,k(x)
1∫

0

f
(

k + tα

n + 1

)
dt, (1)

and

Pn,k(x) =
(

n
k

)
xk(1− x)n−k, (2)

and α > 0 is constant. For α = 1 reduces to classical Bernstein–Kantorovich operator

Kn := Kn,1( f ; x) = (n + 1)
n

∑
k=0

Pn,k(x)

k+1
n+1∫
k

n+1

f (t)dt. (3)

Theorem 1. (Theorem 2.3 in Özarslan and Duman [37]) For each α > 0 and every f ∈ C[0, 1]
we have Kn,α( f ) ⇒ f on [0, 1], where the symbol ⇒ denotes the uniform convergence.

Lemma 1. For each fixed n ∈ N, α > 0 and x ∈ [0, 1] we have

sup
x∈[0,1]

|Kn,α((t− x); x)| ≤ β(α)

n + 1
, (4)

sup
x∈[0,1]

∣∣∣Kn,α

(
(t− x)2; x

)∣∣∣ ≤ 1

(n + 1)2

(n
4
+ σ(α)

)
, (5)

where,

β(α) =

{ 1
α+1 if 0 < α < 1,

α
α+1 if α ≥ 1,

. (6)

σ(α) =

{
1

2α+1 if 0 < α < 1,
2α2

(α+1)(2α+1) if α ≥ 1.
(7)

Proof. From (1) it follows that
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Kn,α(t− x; x) =
1

n + 1

(
1

α + 1
− x
)

, (8)

Kn,α((t− x)2; x) =
1

(n + 1)2 (nx(1− x) + ϕ(α, x)), (9)

where
ϕ(α, x) = x2 − 2x

α + 1
+

1
2α + 1

. (10)

For each fixed n ∈ N, α > 0 the inequality (4) is obtained from β(α) = max
x∈[0,1]

∣∣∣ 1
α+1 − x

∣∣∣.
The function ϕ(α, x) > 0 for α > 0 on x ∈ [0, 1]. Further, min

x∈[0,1]
ϕ(α, x) = α2

(α+1)2(2α+1)

occurring at x = 1
α+1 and max

x∈[0,1]
ϕ(α, x) = σ(α) occurring at the end points of the interval

[0, 1]. Furthermore, using that max
x∈[0,1]

(x(1− x)) = 1
4 yields (5).

Next, we use the notations ‖q‖ = sup
x∈[0,1]

|q| and ‖q‖2 =

(
1∫

0
|q(x)|2dx

) 1
2

to present

the maximum norm for q ∈ C[0, 1] and L2−norm of the function q ∈ L2[0, 1]. Further, we

denote ‖Y‖2 =

√(
n
∑

k=1
(Y(k))2

)
and ‖P‖2 =

√
ρ(PT P) to present the discrete Euclidean

norm of a vector Y ∈ Rn and the spectral norm of a matrix P ∈ Rn×n, respectively, where ρ
is the spectral radius and PT is the transpose of P. Voronowskaja [38] gave the asymptotic
rate of convergence of the Bernstein operators

Bn( f ; x) =
n

∑
k=0

Pn,k(x) f
(

k
n

)
, (11)

using the linearity property of the Bernstein operators and Taylor formula at a point x as

lim
n→∞

n[(Bn( f ; x))− f (x))] =
1
2

x(1− x) f ′′(x). (12)

Based on the analogous approach in Voronowskaja [38] we give the asymptotic rate of
convergence of the Modified Bernstein–Kantorovich operators by the next theorem.

Theorem 2. If f is integrable in [0, 1], and admits a derivative of second order at some point
x ∈ [0, 1] then

lim
n→∞

n[Kn,α( f ; x)− f (x)] =
(

1
α + 1

− x
)

f ′(x) +
1
2

x(1− x) f ′′(x). (13)

Additionally this limit is uniform if f ∈ C2[0, 1], thus the rate of convergence of the operator
Kn,α( f ; x) to f (x) is O

(
1
n

)
for x ∈ [0, 1].

Proof. Assume that f is integrable in [0, 1], and has second order derivative at a point
x ∈ [0, 1] then from Taylor’s formula at x we have

f (t) = f (x) + (t− x) f ′(x) +
(t− x)2

2
f ′′(x) + (t− x)2E(t− x), (14)

and E(u) → 0 as u → 0 and E is integrable function on [−x, 1− x]. Using the linearity
property of the operators Kn,α and (8)–(10) we have
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Kn,α( f ; x)− f (x) =
1

n + 1

(
1

α + 1
− x
)

f ′(x)

+
1

2(n + 1)2

(
x2 − 2x

α + 1
+

1
2α + 1

+ nx(1− x)
)

f ′′(x)

+E(n, α, x), (15)

where,

E(n, α, x) =
n

∑
k=0

Pn,k(x)
1∫

0

(
k + tα

n + 1
− x
)2

E
(

k + tα

n + 1
− x
)

dt. (16)

To show that the asymptotic rate of convergence is O
(

1
n

)
, it is sufficient to show that

lim
n→∞

nE(n, α, x) = 0. Let M1 = sup
u∈[−x,1−x]

|E(u)| and for arbitrary ε > 0 there exist δ1 > 0

such that |E(u)| < ε whenever |u| < δ1. For all t ∈ [0, 1] it follows that
∣∣∣E( k+tα

n+1 − x
)∣∣∣ <

ε + M1

(
k+tα

n+1 − x
)2

/δ2
1 . Then, let

γp(α) =
p

∏
k=1

(1 + kα), p = 1, 2, 3, 4. (17)

Using Lemma 1 estimation (5) gives

|E(n, α, x)| ≤ ε
∣∣∣Kn,α

(
(t− x)2; x

)∣∣∣+ M1

δ2
1

∣∣∣Kn,α

(
(t− x)4; x

)∣∣∣
≤ ε

(n + 1)2

(n
4
+ σ(α)

)
+

M1M̃(n, α)

δ2
1(n + 1)4γ4(α)

, (18)

where, σ(α) is as given in (7) and M̃(n, α) = sup
x∈[0,1]

|Q(n, α, x)|. In addition for a fixed α,

M̃(n, α) is second degree polynomial in n and Q(n, α, x) is

Q(α, n, x) = 1 + 6α + 11α2 + 6α3

+(1 + 4α)(−4γ2(α) + (1 + 3α)(11 + α(17 + 2α))n)x

+
γ4(α)

γ2(α)
(6(1 + α)− (41 + α(87 + 22α))n + 3γ2(α)n2)x2

−2
γ4(α)

γ1(α)
(2 + n(−25 + 3α(−5 + n) + 3n))x3

+γ4(α)(1 + n(−20 + 3n))x4. (19)

It is obvious from (18) and (19) that for n large enough we have |nE(α, n, x)| < ε
and using (15) we obtain (13). If f ∈ C2[0, 1] then this limit is uniform, thus the rate of
convergence of the operator Kn,α( f ; x) to f (x) is O

(
1
n

)
for x ∈ [0, 1].

Corollary 1. If f ∈
(
Cλ ∩ L2)([0, 1]) for λ ≥ 2 then

|Kn,α( f ; x)− f (x)| ≤ ‖ f ′‖
n + 1

∣∣∣∣ 1
α + 1

− x
∣∣∣∣

+
1
2
‖ f ′′‖

(n + 1)2 (nx(1− x) + ϕ(α, x)), (20)

sup
x∈[0,1]

|Kn,α( f ; x)− f (x)| ≤ ‖ f ′‖
n + 1

β(α) +
‖ f ′′‖

2(n + 1)2

(n
4
+ σ(α)

)
, (21)
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‖Kn,α( f )− f ‖2 ≤
∥∥∥∥ ‖ f ′‖

n + 1

(
1

α + 1
− x
)∥∥∥∥

2

+

∥∥∥∥∥ ‖ f ′′‖
2(n + 1)2 (nx(1− x) + ϕ(α, x))

∥∥∥∥∥
2

,

=
‖ f ′‖
n + 1

β̃(α) +
‖ f ′′‖

2(n + 1)2 σ̃(n, α), (22)

hold true where, ϕ(α, x) is the given function in (10)

β̃(α) =

√
1− α + α2

(1 + α)
√

3
, (23)

σ̃(n, α) =

√
φ1(α)

(γ2(α))
2 +

φ2(n,α)
γ2(α)

+ n2

√
30

, (24)

φ1(α) = 6 + 2α(3 + 4α(1 + α(−1 + 3α))), (25)

φ2(n, α) = (3 + α(−1 + 6α))n, (26)

and β(α), σ(α) are as given in (6) and (7), respectively, and γ2(α) is the same as in (17).

Proof. The inequality (20) is the consequence of the Theorem 2. The proof of (21) is
obtained by using (20), Lemma 1 and estimations (4) and (5). For α > 0 and n ∈ N the
proof of (22) follows from the integral values

 1∫
0

∣∣∣∣ 1
α + 1

− x
∣∣∣∣2dx


1
2

= β̃(α),

 1∫
0

|nx(1− x) + ϕ(α, x)|2dx


1
2

= σ̃(α, n),

given in (23), (24), respectively.

3. Representation of the Kn,α Operators and Discretization of First Kind
Integral Equations

We consider the Fredholm integral equation of the first kind (FK1)

T f =

1∫
0

K(x, t) f (t)dt = g(x), 0 ≤ x ≤ 1, (27)

and Volterra integral equations of the first kind (VK1)

T̂ f =

x∫
0

K(x, t) f (t)dt = g(x), 0 ≤ x ≤ 1, (28)

where g(x) is called the free term while K(x, t) is called the kernel and f (t) is the unknown
function to be determined.



Mathematics 2021, 9, 1193 7 of 32

Definition 1. (Groetsch [17,39]) By means of the singular value expansion (SVE) any square
integrable kernel K(x, t) can be written in the form

K(x, t) =
∞

∑
i=0

µiui(x)vi(t). (29)

The functions ui, vi are the singular functions of K and they are orthonormal with respect
to the usual inner product (., .) and the number µi are the singular values of K. For degenerate
kernels the infinite sum (29) is replaced with the finite sum upto the rank of the kernel. The system
{ui, vi; µi} is called the singular system of K.

Let Ψ : H1 → H2 be a compact linear operator on a real Hilbert space H1, taking
values in a real Hilbert space H2. The next theorem is known as the Picard’s theorem on
the existence of the solutions of first kind equations.

Theorem 3. (Theorem 1.2.6 in Groetsch [17]) Let Ψ : H1 → H2 be a compact linear operator with
singular system {ui, vi; µi}. In order that the equation Ψ f = g have a solution it is necessary and
sufficient that g ∈ N(Ψ∗)⊥ (orthogonal complement of the nullspace of the adjoint of Ψ) and

∞

∑
i=0

µ2
i |(g, vi)|2 < ∞. (30)

On the basis of Theorem 3 we consider the Hypothesis 1 as follows:

Hypothesis 1.

1. The kernel K(x, t) is continuous and square integrable function on [0, 1]× [0, 1].

2. g ∈ C[0, 1] and for FK1 g ∈ N(T∗)⊥ and for VK1 g ∈ N
(

T̂∗
)⊥

, also the Picard’s condition
(30) is satisfied.

Without loss of generality, the solution f of FK1 and VK1 denotes the pseudoinverse
solution or the Moore-Penrose generalized inverse solution for FK1 and VK1

f = T†g and f = T̂†g, (31)

respectively. Further, in order to determine the effect of α > 0 in the numerical solution we
represent the Modified Bernstein–Kantorovich operators (1) for 0 < µ < 1 in the form

Kn,α( f ; x) =
n

∑
k=0

Pn,k(x)

 µ∫
0

f
(

k + tα

n + 1

)
dt +

1∫
µ

f
(

k + tα

n + 1

)
dt



= ω
n

∑
k=0

Pn,k(x)

 1
ω

µ∫
0

f
(

k + tα

n + 1

)
dt +

k+1
n+1∫

k+µα

n+1

q(u)du

, (32)

where

q(u) =

{
f (u)((n + 1)u− k)

1−α
α if α 6= 1,

f (u) if α = 1,
(33)

ω =
(n + 1)

α
. (34)

For the numerical solution of FK1 and VK1, we approximate the function f by using
the Modified Bernstein–Kantorovich operators in (32). We obtain the following equation
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for FK1

ω
n

∑
k=0

1∫
0

K(x, t)Pn,k(t)

 1
ω

µ∫
0

f
(

k + tα

n + 1

)
dt +

k+1
n+1∫

k+µα

n+1

q(u)du

dt = g(x), (35)

and for VK1 we get

ω
n

∑
k=0

x∫
0

K(x, t)Pn,k(t)

 1
ω

µ∫
0

f
(

k + tα

n + 1

)
dt +

k+1
n+1∫

k+µα

n+1

q(u)du

dt = g(x). (36)

Subsequently we take the grid points xj =
j
n + ε, j = 0, 1, . . . , n− 1 and xn = 1− ε,

where 0 < ε < 1
2n . Then, the Equations (35) and (36) are transformed into algebraic systems

of equations
AX = B, and ÂX = B, (37)

respectively, where the coefficient matrices A and Â have the entries

[A]j+1,k+1 = ω[A∗]j+1,k+1 = ω

1∫
0

K
(
xj, t

)
Pn,k(t)dt, (38)

[
Â
]

j+1,k+1
= ω

[
Â∗
]

j+1,k+1
= ω

xj∫
0

K
(
xj, t

)
Pn,k(t)dt, (39)

j = 0, 1, . . . , n, k = 0, 1, . . . , n, and

X(k + 1) =
1
ω

µ∫
0

f
(

k + tα

n + 1

)
dt +

k+1
n+1∫

k+µα

n+1

q(u)du, k = 0, 1, . . . , n, (40)

B(j + 1) = g
(
xj
)
, j = 0, 1, . . . , n. (41)

q(u) and ω are as given in (33 ) and (34), respectively. The coefficient matrices A and Â
in (37) are ill-conditioned matrices and may be rank deficient or even singular matrices.
Therefore, we consider the following minimum norm least squares problem for FK1

min
X∈S1
‖X‖2, S1 =

{
X ∈ Rn+1 | ‖B− AX‖2 = min

}
, (42)

and for VK1
min
X∈S2
‖X‖2, S2 =

{
X ∈ Rn+1 |

∥∥∥B− ÂX
∥∥∥

2
= min

}
. (43)

Lemma 2. The problems (42) and (43) have the unique minimum norm least squares solutions
X = A†B and X = Â†B respectively.

Proof. Proof is analogous to the proof of Theorem 1.2.10 in Björck [40].

Convergence Analysis

By solving the algebraic systems (42) and (43) we get a numerical solution of the
unknown (40) and denote this approximation by Xn. Further, let us use Fn to denote the
obtained numerical approximation to f that is in the implicit form in Xn and obtained by
using the proposed approach. Substituting Fn in (32) we get Kn,α(Fn; x) as
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Kn,α(Fn; x) = ω
n

∑
k=0

Pn,k(x)Xn(k + 1), (44)

Definition 2. (Definition 1.4.2 in Björck [40]) The condition number of U ∈ Rm×n (U 6= 0) is

κ(U) =
∥∥∥U†

∥∥∥
2
‖U‖2 =

σ1

στ
,

where τ = rank(U) ≤ min(m, n), and σ1 ≥ σ2 ≥ ... ≥ στ > 0 are the nonzero singular values
of U.

Theorem 4. Consider FK1 and VK1 in (27), (28), respectively, and assume that the conditions of
the Hypothesis I are satisfied also the solution f belongs to

(
Cλ ∩ L2)([0, 1]) for some λ ≥ 2 then

for FK1

‖Kn,α(Fn)− f ‖2 ≤W1(n, α, f ) + M2W2(n, α, f )
κ(A∗)
‖A∗‖2

, (45)

and for VK1

‖Kn,α(Fn)− f ‖2 ≤W1(n, α, f ) + M2W2(n, α, f )
κ
(

Â∗
)

∥∥∥Â∗
∥∥∥

2

, (46)

hold true where,

W1(n, α, f ) =
‖ f ′‖
n + 1

β̃(α) +
‖ f ′′‖

2(n + 1)2 σ̃(α, n), (47)

W2(n, α, f ) =
‖ f ′‖
n + 1

β(α) +
‖ f ′′‖

2(n + 1)2

(n
4
+ σ(α)

)
, (48)

and β(α), σ(α), β̃(α) and σ̃(α, n) are given in (6), (7), (23) and (24) respectively. Furthermore,
M2 = ‖S‖2 where S(j + 1) = sup

t∈[0,1]

∣∣K(xj, t
)∣∣ , xj =

j
n + ε, j = 0, 1, . . . , n− 1 and xn = 1− ε,

and 0 < ε < 1
2n . Further, Kn,α(Fn; x) is the approximate solution obtained by the proposed method

and A∗ and Â∗ are given in (38) and (39), respectively.

Proof. For FK1 it follows that

‖Kn,α(Fn)− f ‖2 ≤ ‖Kn,α( f )− f ‖2 + ‖Kn,α(Fn)− Kn,α( f )‖2. (49)

Based on Corollary 1 and the estimation (22) and taking (47), we obtain

‖Kn,α( f )− f ‖2 ≤W1(n, α, f ). (50)

Next let X(k + 1) = Xn(k + 1)− X(k + 1) for k = 0, 1, . . . , n from (32) and (44) and

using that
n
∑

k=0
Pn,k(x) = 1 gives

‖Kn,α(Fn)− Kn,α( f )‖2 =

 1∫
0

∣∣∣∣∣ω n

∑
k=0

Pn,k(x)X(k + 1)

∣∣∣∣∣
2

dx


1
2

≤ ω

(
n+1

∑
k=1

(
X(k)

)2
) 1

2
 1∫

0

∣∣∣∣∣ n

∑
k=0

Pn,k(x)

∣∣∣∣∣
2

dx


1
2

. (51)
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It follows that
‖Kn,α(Fn)− Kn,α( f )‖2 ≤ ω

∥∥X
∥∥

2. (52)

From Theorem 1, the operator Kn,α( f ; x) uniformly converges to f for any f ∈ C[0, 1]
and for any computationally acceptable small ε > 0,

|Kn,α( f ; x)− f (x)| < ε +
2‖ f ‖

δ2
1

Kn,α((t− x)2; x),

where, as usual, δ1 comes from the uniform continuity of the function f ∈ [0, 1] and
Kn,α((t− x)2; x) is given in (9) (see Özarslan and Duman [37]). Therefore, for the numerical
solution of FK1 and VK1 equations in (27), and (28) in accordance we assume

1∫
0

K(x, t)Kn,α( f ; t)dt = g(x), 0 ≤ x ≤ 1, (53)

x∫
0

K(x, t)Kn,α( f ; t)dt = g(x), 0 ≤ x ≤ 1, (54)

respectively. If we substitute Fn(x) instead of f (x) in (53), (54) we get new function ĝ(x)
on the right sides of these equations accordingly,

1∫
0

K(x, t)Kn,α(Fn; t)dt = ĝ(x), 0 ≤ x ≤ 1, (55)

x∫
0

K(x, t)Kn,α(Fn; t)dt = ĝ(x), 0 ≤ x ≤ 1. (56)

Thus, for FK1 using (53) and (55) and by taking the grid points xj = j
n + ε, j =

0, 1, . . . , n− 1 and xn = 1− ε, where 0 < ε < 1
2n we obtain the algebraic system

AX = B, B(j + 1) = ĝ
(
xj
)
− g(xj), j = 0, 1, . . . , n. (57)

The minimum norm solution of the least squares problem for (57) is

X = A†B. (58)

Thus
ω
∥∥X
∥∥

2 ≤ ω
∥∥∥A†

∥∥∥
2

∥∥B
∥∥

2 =
∥∥∥A†
∗

∥∥∥
2

∥∥B
∥∥

2, (59)

and for VK1
ω
∥∥X
∥∥

2 ≤ ω
∥∥∥Â†

∥∥∥
2

∥∥B
∥∥

2 =
∥∥∥Â†
∗

∥∥∥
2

∥∥B
∥∥

2. (60)

Next, consider FK1 and let ĝ(x) =
1∫

0
K(x, t)Kn,α( f ; t)dt and g(x) =

1∫
0

K(x, t) f (t)dt,

then it follows that

ĝ(x)− g(x) =
1∫

0

K(x, t)(Kn,α( f ; t)− f (t))dt, (61)

then using Corollary 1 and estimation (21) and (57) and (61) and taking S(j + 1) =
sup

t∈[0,1]

∣∣K(xj, t
)∣∣ for j = 0, 1, . . . , n and M2 = ‖S‖2 and using (48) we get
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(
n

∑
j=0

∣∣(ĝ(xj
)
− g
(
xj
))∣∣2) 1

2

=

 n

∑
j=0

∣∣∣∣∣∣
1∫

0

K
(
xj, t

)
(Kn,α( f ; t)− f (t))dt

∣∣∣∣∣∣
2


1
2

≤
(

n

∑
j=0

(S(j + 1))2

) 1
2

sup
t∈[0,1]

|Kn,α( f ; t)− f (t)|

≤ M2W2(n, α, f ). (62)

Substituting (62) into (59) and the obtained result in (52) gives

‖Kn,α(Fn)− Kn,α( f )‖2 ≤ M2W2(n, α, f )
∥∥∥A†
∗

∥∥∥
2
. (63)

Further, using the estimations (50) and (63) in (49) and also from κ(A∗) =
∥∥A†
∗
∥∥

2‖A∗‖2
we get (45). Analogously, for VK1 it follows that

ĝ(x)− g(x) =
x∫

0

K(x, t)(Kn,α( f ; t)− f (t))dt. (64)

Using Corollary 1 and estimation (21) and taking (48), we obtain

(
n

∑
j=0

∣∣(ĝ(xj
)
− g
(
xj
))∣∣2) 1

2

=

 n

∑
j=0

∣∣∣∣∣∣
xj∫

0

K
(
xj, t

)
(Kn,α( f ; t)− f (t))dt

∣∣∣∣∣∣
2

1
2

≤
(

n

∑
j=0

(S(j + 1))2

) 1
2

sup
t∈[0,1]

|Kn,α( f ; t)− f (t)|

≤ M2W2(n, α, f ). (65)

Next, substituting (65) in (60) and the obtained result in (52) we get

‖Kn,α(Fn)− Kn,α( f )‖2 ≤ M2W2(n, α, f )
∥∥∥Â†
∗

∥∥∥
2
. (66)

Therefore, using the estimations (50) and (66) in (49) follows (46).

Remark 1. If the matrix A in (38) and the matrix Â in (39) are invertible then A† = A−1 and
Â† = Â−1and the inequalities (45) and (46) hold true.

4. Regularized Numerical Solution

The numerical solution of the general least squares problems (42) and (43) may be
extremely difficult because the solution is very sensitive to the perturbations of the co-
efficient matrices A and Â and the right side vector B. This is reflected in the fact that
κ(A), and κ(Â) are very large and increases as n increases which is the degree of the
constructed polynomial by the Modified Bernstein–Kantorovich operator used for the
approximation of the solution. High condition numbers of the matrices A and Â cause
rounding errors that prevent the computation of an accurate numerical solution of the
problems (42) and (43), respectively. Moreover, the obtained discrete problems are always
perturbed by approximations such as the integrals given as the entries of A and Â are
evaluated numerically. Therefore, even if we were able to solve the discrete algebraic
problems (42) and (43) without rounding errors we would not obtain a “smooth” solution
because of the oscillations in the singular vectors. By a smooth solution we mean “a solu-
tion which has some useful properties in common with the exact solution to the underlying
and unknown unperturbed problem” as stated in Hansel [41]. Furthermore, the function
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g is typically a measured or observed quantity and hence, in practice, the true g is not
available to us. On one hand, the estimate gδ of g satisfying ‖gδ − g‖2 ≤ δ and δ is the
priori error level is known(see Tikhonov [15] and [16] and Groetsch [17]). Therefore, we
consider the following regularized problems for the Fredholm integral equation of the first
kind (RFK1) (see Tikhonov [15,16] and Groetsch [17])

1∫
0

K(x, t) f δ
η (t)dt + η(δ) f δ

η (x) = gδ(x), 0 ≤ x ≤ 1, (67)

and Volterra integral equations of the first kind (RVK1)

x∫
0

K(x, t) f δ
η (t)dt + η(δ) f δ

η (x) = gδ(x), 0 ≤ x ≤ 1. (68)

It is clear that (67) and (68) are second kind Fredholm and Volterra integral equations,
respectively. For the numerical solution of RFK1 and RVK1 by the proposed method
M(Kn,α) we take the grid points xj = j

n + ε, j = 0, 1, . . . , n − 1 and xn = 1− ε, where
0 < ε < 1

2n and is sufficiently small number also η(δ) > 0 is called the regularization
parameter. We assume the following algebraic equations for RFK1

ω
n

∑
k=0

 1∫
0

K
(
xj, t

)
Kn,α( f δ

η ; t)dt

+ ωη(δ)Xδ
η(j + 1) = gδ

(
xj
)
, (69)

and for RVK1

ω
n

∑
k=0

 xj∫
0

K
(
xj, t

)
Kn,α( f δ

η ; t)dt

+ ωη(δ)Xδ
η(j + 1) = gδ

(
xj
)
, (70)

for j = 0, 1, . . . , n, k = 0, 1, . . . , n. Then, the discrete regularized Equations (69) and (70) can
be presented in matrix form

ÃXδ
η = B̃, ˜̂AXδ

η = B̃, (71)

for the RFK1 and for the RVK1 respectively where,

Xδ
η(k + 1) =

1
ω

µ∫
0

f δ
η

(
k + tα

n + 1

)
dt +

k+1
n+1∫

k+µα

n+1

qδ
η(u)du, k = 0, 1, . . . , n, (72)

qδ
η(u) =

{
f δ
η (u)((n + 1)u− k)

1−α
α if α 6= 1 ,

f δ
η (u) if α = 1.

(73)

and the vector B̃ ∈ Rn+1

B̃(j + 1) = gδ

(
xj
)
, j = 0, 1, . . . , n. (74)

which can be written as B̃ = B + ∆B such that ∆B is the priori error level ‖∆B‖ ≤ δ.
Furthermore, Ã = A + ∆A where A is the matrix in (38) and ∆A = ωη(δ)I + ∆1 A,
with the addition of diagonal matrix ωη(δ)I and ∆1 A which is the defect matrix of the
numerical errors of the computation of the integrals in (69) with a predescribed error

δ∗ = δ∗(δ) ≥ 0, depending on δ. Analogously, ˜̂A = Â + ∆Â and Â is as in (39) and
the matrix ∆Â = ωη(δ)I + ∆1 Â has the defect matrix ∆1 Â of the numerical errors of the
computed integrals in (70) with a predescribed error δ∗ = δ∗(δ) ≥ 0. Therefore, it is possible
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to choose η(δ), δ∗ such that ‖∆A‖2 ≤ h and
∥∥∥∆Â

∥∥∥
2
≤ h. Clearly, the numbers h and δ

are estimates of the errors of the approximate data
(

Ã, B̃
)

,
( ˜̂A, B̃

)
of the problem (37) for

FK1 and VK1, respectively, with the exact data (A, B),
(

Â, B
)

accordingly. Thus, the given
regularized systems (71) uses h and δ explicitly. For the implementation of the approach we
have taken η(δ) = δ. In this connection, about the remarks on choosing the regularization
parameter using the quasi-optimality and ratio criterion, see Bakushinskii [42] and for the
data errors and an error estimation for ill-posed problems see Yagola et al. [43]. Next, we
consider the following general least squares problem for RFK1

min
Xδ

η∈S̃1

∥∥∥Xδ
η

∥∥∥
2
, S̃1 =

{
Xδ

η ∈ Rn+1 |
∥∥∥B̃− ÃXδ

η

∥∥∥
2
= min

}
, (75)

and for RVK1

min
Xδ

η∈S̃2

∥∥∥Xδ
η

∥∥∥
2
, S̃2 =

{
Xδ

η ∈ Rn+1 |
∥∥∥B̃− ˜̂AXδ

η

∥∥∥
2
= min

}
. (76)

Theorem 5. (Theorem 1.4.2 in Björck [40]) If rank(U +∆U) = rank(U) and η̃ =
∥∥U†

∥∥
2‖∆U‖2

< 1 then ∥∥∥(U + ∆U)†
∥∥∥

2
≤ 1

1− η̃

∥∥∥U†
∥∥∥

2
.

Theorem 6. (Theorem 1.4.6 in Björck [40]) Assume that rank(U + ∆U) = rank(U) and let

‖∆U‖2
‖U‖2

≤ εU ,
‖∆B‖2
‖B‖2

≤ εB. (77)

Then if η̃ = κ(U)εU < 1 the perturbations ∆X and ∆r in the least squares solution X and
the residual r = B−UX satisfy

‖∆X‖2 ≤ κ(U)

1− η̃

(
εU‖X‖2 + εB

‖B‖2
‖U‖2

+ εUκ(U)
‖r‖2
‖U‖2

)
+εUκ(U)‖X‖2, (78)

‖∆r‖2 ≤ εU‖X‖2‖U‖2 + εB‖B‖2 + εUκ(U)‖r‖2. (79)

Let Xδ
η,n denote the minimum norm solution obtained by solving the general least

squares problems (75) and (76). Further, Fδ
η,n denote the obtained approximation to function

f δ
η appearing implicitly in (72). Substituting Fδ

η,n in (32) we get Kn,α

(
Fδ

η,n; x
)

as

Kn,α

(
Fδ

η,n; x
)
= ω

n

∑
k=0

Pn,k(x)Xδ
η,n(k + 1). (80)

We also present the residual error of the obtained algebraic linear system (37) for FK1
by r = B− AX ( r = B− ÂX for VK1). The regularized residual error of the system (71)

for RFK1 is rδ
η = B̃− ÃXδ

η ( rδ
η = B̃− ˜̂AXδ

η for RVK1). Furthermore, the corresponding nu-

merical calculation of the regularized residual error is rδ
η,n = B̃− ÃXδ

η,n ( rδ
η,n = B̃− ˜̂AXδ

η,n)
accordingly. Next, the following priory bound for the error of the approximation follows.

Theorem 7. Assume that the conditions of Hypothesis I are satisfied and the solution f δ
η of (67)

belongs to
(
Cλ ∩ L2)([0, 1]) for some λ ≥ 2. Consider the regularized linear system ÃXδ

η = B̃
given in (71) where Ã = A + ∆A and A is the matrix in (38) and ‖∆A‖2 ≤ h. Furthermore,
B̃ = B + ∆B as in (74) and B is the vector in (41) and ‖∆B‖2 ≤ δ. Additionally Xδ

η = X + ∆X
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and rδ
η = r + ∆r and let S(j + 1) = sup

t∈[0,1]

∣∣K(xj, t
)∣∣ for xj =

j
n + ε, j = 0, 1, . . . , n− 1 and

xn = 1− ε, where 0 < ε < 1
2n and M2 = ‖S‖2. Further,

‖∆A‖2
‖A‖2

≤ h
‖A‖2

= εA,
‖∆B‖2
‖B‖2

≤ δ

‖B‖2
= εB. (81)

If rank(Ã) = rank(A) and η̃ = κ(A)εA < 1 then∥∥∥Kn,α

(
Fδ

η,n

)
− f δ

η

∥∥∥
2
≤ W1

(
n, α, f δ

η

)
+

M2W2

(
n, α, f δ

η

)
+ η(δ)W3

(
n, f δ

η

)
1− η̃

κ(A∗)
‖A∗‖2

, (82)

∥∥∥X− Xδ
η,n

∥∥∥
2
≤ κ(A)

(1− η̃)‖A‖2
(h‖X‖2 + δ + εAκ(A)‖r‖2) + εAκ(A)‖X‖2

+
M2W2

(
n, α, f δ

η

)
+ η(δ)W3

(
n, f δ

η

)
1− η̃

κ(A)

‖A‖2
, (83)∥∥∥r− rδ

η,n

∥∥∥
2
≤ h‖X‖2 + δ + εAκ(A)‖r‖2

+(1 + εA)
M2W2

(
n, α, f δ

η

)
+ η(δ)W3

(
n, f δ

η

)
1− η̃

κ(A), (84)

hold true where, η(δ) is the regularization parameter and W1

(
n, α, f δ

η

)
, W2

(
n, α, f δ

η

)
are as

in (47) and (48), respectively. Furthermore, W3

(
n, f δ

η

)
= 1√

n+1

∥∥∥∥ d f δ
η

dx

∥∥∥∥ and A, A∗ are as given

in (38).

Proof. For RFK1, it follows that∥∥∥Kn,α

(
Fδ

η,n

)
− f δ

η

∥∥∥
2
≤
∥∥∥Kn,α

(
f δ
η

)
− f δ

η

∥∥∥
2
+
∥∥∥Kn,α

(
Fδ

η,n

)
− Kn,α

(
f δ
η

)∥∥∥
2
. (85)

Based on Corollary 1 and the estimation (22) by replacing f with f δ
η in estimation (22)

and in (47) we obtain ∥∥∥Kn,α

(
f δ
η,n

)
− f δ

η

∥∥∥
2
≤W1

(
n, α, f δ

η

)
. (86)

Let Xδ
η = Xδ

η,n − Xδ
η then from (32) and (44) and using that

n
∑

k=0
Pn,k(x) = 1, follows

∥∥∥Kn,α

(
Fδ

η,n

)
− Kn,α

(
f δ
η

)∥∥∥
2

=

 1∫
0

∣∣∣∣∣ω n

∑
k=0

Pn,k(x)Xδ
η(k + 1)

∣∣∣∣∣
2

dx


1
2

≤ ω

(
n

∑
k=0

(
Xδ

η(k + 1)
)2
) 1

2
 1∫

0

∣∣∣∣∣ n

∑
k=0

Pn,k(x)

∣∣∣∣∣
2

dx


1
2

= ω
∥∥∥Xδ

η

∥∥∥
2
, (87)
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where

Xδ
η(k + 1) =

1
ω

µ∫
0

(
Fδ

η,n

(
k + tα

n + 1

)
− f δ

η

(
k + tα

n + 1

))
dt

+

k+1
n+1∫

k+µα

n+1

(
Fδ

η,n(u)− f δ
η (u)

)
((n + 1)u− k)

1−α
α du. (88)

For the numerical solution of RFK1 in (67) we use the grid points xj =
j
n + ε, j =

0, 1, . . . , n− 1 and xn = 1− ε, where 0 < ε < 1
2n . We assume

1∫
0

K
(
xj, t

)
Kn,α

(
f δ
η ; t
)

dt + ωη(δ)Xδ
η(j + 1) = gδ

(
xj
)
, (89)

where ωXδ
η(j + 1) gives the average value of f δ

η over the interval
[

j
n+1 , j+1

n+1

]
. If we substi-

tute Fδ
η,n instead of f δ

η in (89) we get a new function ĝδ on the right side of this equation

1∫
0

K
(

xj, t
)
Kn,α

(
Fδ

η,n; t
)

dt + ωη(δ)Xδ
η,n(j + 1) = ĝδ

(
xj
)
. (90)

Thus, for RFK1 from (89) and (90) we obtain

ÃXδ
η = B̃, and B̃(j + 1) = ĝδ

(
xj
)
− gδ(xj), j = 0, 1, . . . , n, (91)

where, Xδ
η is as given in (88). The general least squares problem of (91) has the minimum

norm solution
Xδ

η = Ã† B̃. (92)

Thus, ∥∥∥Xδ
η

∥∥∥
2
≤

∥∥∥Ã†
∥∥∥

2

∥∥∥B̃
∥∥∥

2
, (93)

ω
∥∥∥Xδ

η

∥∥∥
2
≤

∥∥∥Ã†
∗

∥∥∥
2

∥∥∥B̃
∥∥∥

2
. (94)

Then, let ĝδ

(
xj
)
=

1∫
0

K
(
xj, t

)
Kn,α

(
f δ
η ; t
)

dt+ ωη(δ)Xδ
η(j + 1) and gδ

(
xj
)
=

1∫
0

K
(

xj, t
)

f δ
η (t)dt+ η(δ) f δ

η

(
xj
)

for j = 0, 1, . . . , n it follows that

ĝδ

(
xj
)
− gδ

(
xj
)

=

1∫
0

K
(
xj, t

)(
Kn,α

(
f δ
η ; t
)
− f δ

η (t)
)

dt

+η(δ)
(

ωXδ
η(j + 1)− f δ

η

(
xj
))

. (95)

From the assumption that f δ
η ∈

(
Cλ ∩ L2)([0, 1]) for some λ ≥ 2 it follows that

sup
0≤j≤n

∣∣∣ωXδ
η(j + 1)− f δ

η

(
xj
)∣∣∣ ≤ 1

n+1

∥∥∥∥ d f δ
η

dx

∥∥∥∥. Let W3

(
n, f δ

η

)
= 1√

n+1

∥∥∥∥ d f δ
η

dx

∥∥∥∥, by taking

S(j + 1) = sup
t∈[0,1]

∣∣K(xj, t
)∣∣ for j = 0, 1, . . . , n and M2 = ‖S‖2 also on the basis of Corollary 1

and replacing f with f δ
η in estimations (21) and (48) we obtain
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(
n

∑
j=0

∣∣(ĝδ

(
xj
)
− gδ

(
xj
))∣∣2) 1

2

≤

 n

∑
j=0

∣∣∣∣∣∣
1∫

0

K
(

xj, t
)(

Kn,α

(
f δ
η ; t
)
− f δ

η (t)
)

dt

∣∣∣∣∣∣
2


1
2

+η(δ)

(
n

∑
j=0

∣∣∣ωXδ
η(j + 1)− f δ

η

(
xj
)∣∣∣2) 1

2

(96)

≤
(

n

∑
j=0

(S(j + 1))2

) 1
2

sup
t∈[0,1]

∣∣∣Kn,α

(
f δ
η ; t
)
− f δ

η (t)
∣∣∣

+η(δ)W3

(
n, f δ

η

)
(97)

≤ M2W2

(
n, α, f δ

η

)
+ η(δ)W3

(
n, f δ

η

)
. (98)

Substituting the estimation (98) into (94) and the result in (87) we get∥∥∥Kn,α

(
Fδ

η,n

)
− Kn,α

(
f δ
η

)∥∥∥
2
≤
(

M2W2

(
n, α, f δ

η

)
+ η(δ)W3

(
n, f δ

η

))∥∥∥Ã†
∗

∥∥∥
2
. (99)

Inserting (86) and (99) in (85) and on the basis of Theorem 5 and using that κ(A∗) =∥∥A†
∗
∥∥

2‖A∗‖2 we obtain (82). The inequality (83) is obtained by using∥∥∥X− Xδ
η,n

∥∥∥
2
≤
∥∥∥X− Xδ

η

∥∥∥
2
+
∥∥∥Xδ

η − Xδ
η,n

∥∥∥
2
, (100)

and based on the Theorem 6 and the inequality (78) the first term on the right side of (100)
is obtained as ∥∥∥X− Xδ

η

∥∥∥
2
≤ κ(A)

(1− η̃)‖A‖2
(h‖X‖2 + δ

+ εAκ(A)‖r‖2) + εAκ(A)‖X‖2. (101)

Next, on the basis of Theorem 5 and using (93), (98) and
∥∥A†

∥∥
2 = κ(A)

‖A‖2
we get

∥∥∥Xδ
η − Xδ

η,n

∥∥∥
2
≤

(M2W2

(
n, α, f δ

η

)
+ η(δ)W3

(
n, f δ

η

)
)

1− η̃

κ(A)

‖A‖2
. (102)

Inserting the estimations (101) and (102) into (100) gives (83). To prove the inequality
(84), we use ∥∥∥r− rδ

η,n

∥∥∥
2
≤
∥∥∥r− rδ

η

∥∥∥
2
+
∥∥∥rδ

η − rδ
η,n

∥∥∥
2
, (103)

and based on Theorem 6 and the inequality (79), the first term on the right side of (103) is
obtained as ∥∥∥r− rδ

η

∥∥∥
2
≤ h‖X‖2 + δ + εAκ(A)‖r‖2. (104)

The second error term on the right side of (103) satisfies∥∥∥rδ
η − rδ

η,n

∥∥∥
2
≤
∥∥∥Ã
∥∥∥

2

∥∥∥Xδ
η − Xδ

η,n

∥∥∥
2
, (105)

using (102), (103) and (104), and that
∥∥∥Ã
∥∥∥

2
≤ ‖A‖2 + h and from (81) follows (84).

Theorem 8. Assume that the conditions of Hypothesis I are satisfied and the solution f δ
η of RVK1

belongs to
(
Cλ ∩ L2)([0, 1]) for some λ ≥ 2. Consider the linear system ˜̂AXδ

η = B̃ given in

(71) where ˜̂A = Â + ∆Â and Â is the matrix in (39) and
∥∥∥∆Â

∥∥∥
2
≤ h. Furthermore, B̃ = B + ∆B
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as in (74) and B is as in (41) and ‖∆B‖2 ≤ δ. Aditionally Xδ
η = X + ∆X and rδ

η = r + ∆r

and let S(j + 1) = sup
t∈[0,1]

∣∣K(xj, t
)∣∣ for xj =

j
n + ε, j = 0, 1, . . . , n− 1 and xn = 1− ε, where

0 < ε < 1
2n and M2 = ‖S‖2. Further,∥∥∥∆Â

∥∥∥
2∥∥∥Â

∥∥∥
2

≤ h∥∥∥Â
∥∥∥

2

= εÂ,
‖∆B‖2
‖B‖2

≤ δ

‖B‖2
= εB. (106)

If rank( ˜̂A) = rank(Â) and η̃ = κ
(

Â
)

εÂ < 1 then∥∥∥Kn,α

(
Fδ

η,n

)
− f δ

η

∥∥∥
2
≤ W1

(
n, α, f δ

η

)
+

M2W2

(
n, α, f δ

η

)
+ η(δ)W3

(
n, f δ

η

)
1− η̃

κ
(

Â∗
)

∥∥∥Â∗
∥∥∥

2

, (107)

∥∥∥X− Xδ
η,n

∥∥∥
2
≤

κ
(

Â
)

(1− η̃)
∥∥∥Â
∥∥∥

2

(
h‖X‖2 + δ + εÂκ

(
Â
)
‖r‖2

)
+ εÂκ

(
Â
)
‖X‖2

+
M2W2

(
n, α, f δ

η

)
+ η(δ)W3

(
n, f δ

η

)
1− η̃

κ
(

Â
)

∥∥∥Â
∥∥∥

2

, (108)

∥∥∥r− rδ
η,n

∥∥∥
2
≤ h‖X‖2 + δ + εÂκ

(
Â
)
‖r‖2

+(1 + εÂ)
M2W2

(
n, α, f δ

η

)
+ η(δ)W3

(
n, f δ

η

)
1− η̃

κ
(

Â
)

, (109)

hold true where, η(δ) is the regularization parameter and W1

(
n, α, f δ

η

)
, W2

(
n, α, f δ

η

)
are as in

(47) and (48), respectively. Furthermore, W3

(
n, f δ

η

)
= 1√

n+1

∥∥∥∥ d f δ
η

dx

∥∥∥∥ and Â and Â∗ are as given

in (39).

Proof. Proof is analogous to the proof of Theorem 7.

5. Numerical Results

For the theoretical results given in Sections 2–4, we focus on the interval [0, 1]; however,
for the numerical results, we also consider examples on [a, b] with the following extention of
the Bernstein operators and Modified Bernstein–Kantorovich operators on the interval [a, b]

Bn( f ; x) =
n

∑
k=0

(
n
k

)
(x− a)k(b− x)n−k

(b− a)n f
(

a +
k
n
(b− a)

)
, (110)

Kn,α( f ; x) =
n

∑
k=0

(
n
k

)
(x− a)k(b− x)n−k

(b− a)n
1

b− a

b∫
a

f

a +
k +

(
t−a
b−a

)α

(n + 1)
(b− a)

dt, (111)

respectively. All the computations in this section are performed using Mathematica in
machine precision on a personal computer with properties AMD Ryzen 7 1800X Eight
Core Processor 3.60 GHz. We remark that the solution of the Volterra integral equations
by using Bernstein polynomials was given in Maleknejad et al. [34]. All the considered
test problems are also solved by using Bernstein operators (11) with the approach given
in Maleknejad et al. [34]; additionally, regularization is applied. Further, the obtained
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algebraic system of equations by applying the methods M(Kn,α) and M(Bn) are solved
using the pseudoinverse of the respective matrices. Let the following error grid functions
be defined at the N + 1 grid points xp = a+ p(b−a)

N , p = 0, 1, . . . , N over the interval [a, b] as

ẼN

[
Kn,α

(
Fδ

η,n; xp

)]
= f

(
xp
)
− Kn,α

(
Fδ

η,n
(

xp
))

, (112)

ẼN

[
Bn

(
Fδ

η,n; xp

)]
= f

(
xp
)
− Bn

(
Fδ

η,n
(

xp
))

. (113)

Further, we use the following notations in tables and figures:

M(Kn,α) presents the given approach by using the Modified Bernstein–Kantorovich opera-
tors Kn,α.

M(Bn) presents the approach in Maleknejad et al. [34] by using the Bernstein operators Bn.

CondBn

(
Ã
)

denotes the condition number of the perturbed matrix Ã obtained by the
method M(Bn) using LinearAlgebra‘Private‘MatrixConditionNumber command
in Mathematica.

CondKn,α

(
Ã
)

denotes the condition number of the perturbed matrix Ã obtained by the
method M(Kn,α) using LinearAlgebra‘Private‘MatrixConditionNumber command
in Mathematica.

REẼN
(Kn,α) denotes the root mean square error (RMSE) of the regularized solution

REẼN
(Kn,α) =

√√√√( 1
(N + 1)

N

∑
p=0

(
ẼN

[
Kn,α

(
Fδ

η,n; xp

)])2
)

,

obtained by M(Kn,α).

REẼN
(Bn) denotes RMSE of the regularized solution

REẼN
(Bn) =

√√√√( 1
(N + 1)

N

∑
p=0

(
ẼN

[
Bn

(
Fδ

η,n; xp

)])2
)

,

obtained by M(Bn).

AEẼN ,xp
(Kn,α) is the absolute error of the regularized solution

∣∣∣ẼN

[
Kn,α

(
Fδ

η,n; xp

)]∣∣∣ at the
point xp.

AEẼN ,xp
(Bn) is the absolute error of the regularized solution

∣∣∣ẼN

[
Bn

(
Fδ

η,n; xp

)]∣∣∣ at the
point xp .

MEẼN
(Kn,α) shows the maximum error ME of the regularized solution

max
0≤p≤N

∣∣∣ẼN

[
Kn,α

(
Fδ

η,n; xp

)]∣∣∣.
MEẼN

(Bn) shows the maximum error ME of the regularized solution

max
0≤p≤N

∣∣∣ẼN

[
Bn

(
Fδ

η,n; xp

)]∣∣∣.
na means that the specified method is not applied to the considered example.

ng means that the absolute error is not given at the presented grid point by the specified
method.
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5.1. Application on Examples of Fredholm Integral Equations

We consider the following test problems of first kind Fredholm integral equations,
which have been used as benchmark problems in the literature.

Example 1. FK1 (Wen and Wei [21] and Baker et al. [44])

1∫
0

ext f (t)dt =
ex+1 − 1

x + 1
, 0 ≤ x ≤ 1,

and the exact solution is f (x) = ex.

Example 2. FK1 (Wen and Wei [21])

1∫
0

e−x+t f (t)dt =
3− 3e−x cos(3)− e−xx sin(3)

x2 + 9
, 0 ≤ x ≤ 1,

where the exact solution is f (x) = sin(3x).

Example 3. FK1 ( Baker et al. [44])

1∫
0

√
x2 + t2 f (t)dt =

1
3

(
1 + x2

) 3
2 − x3, 0 ≤ x ≤ 1,

and the exact solution is f (x) = x.

Example 4. FK1

1∫
0

1√
1 + t

5
2 + x2

f (t)dt =
4
5

√
x2 + 2− 4

5

√
x2 + 1, 0 ≤ x ≤ 1,

and the exact solution is f (x) = x
3
2 .

Table 1 presents the RMSE with respect to n obtained by the proposed approach
M(Kn,10) when N = 51 and ε = 0.0001, for the examples of FK1 and when δ = 5× 10−12 for
the Example 1, Example 2 and Example 4 and δ = 5× 10−9 for the Example 3. The absolute
errors obtained by the method M(K9,10) at the points xp = p

8 , p = 0, 1, . . . , 8 for the
examples FK1 when ε = 0.0001, n = 9 and α = 10 for the same values of δ as in Table 1 are
demonstrated in Table 2. Further, Table 3 shows the same quantities as in Table 1 obtained
by using the approach M(Bn). Tables 4–7 present the condition numbers of the perturbed
matrices, RMSE with respect to the δ obtained by the proposed method M(K8,1) and the
method M(B8) when ε = 0.0001, and N = 51 for the Example 1, Example 2, Example 3
and Example 4, respectively. Table 8 presents the RMSE with respect to α obtained by the
proposed approach M(K9,α), when N = 51 and ε = 0.0001, for the examples of FK1. In
this table, the parameter δ is taken as δ = 5× 10−12 for the Example 1, Example 2 and
Example 4 and δ = 5× 10−9 for the Example 3.
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Table 1. The RMSE for the examples of FK1 with respect to n when ε = 0.0001 and α = 10, N = 51
obtained by the method M(Kn,10).

n
Ex1 FK1
REẼ51

(Kn,10)
Ex2 FK1
REẼ51

(Kn,10)
Ex3 FK1
REẼ51

(Kn,10)
Ex4 FK1
REẼ51

(Kn,10)

2 0.00564194 0.01652300 1.065× 10−8 0.00585089
3 0.00036214 0.01575890 1.868× 10−8 0.00197745
4 0.00001859 0.00036009 5.625× 10−8 0.00095987
5 7.946× 10−7 0.00032459 1.552× 10−7 0.00073284
6 1.150× 10−6 0.00025850 1.195× 10−6 0.00070217
7 1.228× 10−6 0.00018178 0.00025021 0.00069018
8 2.988× 10−6 0.00012625 8.797× 10−6 0.00054624
9 1.126× 10−6 0.00009103 2.064× 10−6 0.00029078

Table 2. The absolute errors at 9 points over [0,1] for the examples of FK1 when ε = 0.0001, n = 9
and α = 10 obtained by the method M(K9,10).

xp
Ex1 FK1
AEẼ8,xp

(K9,10)
Ex2 FK1
AEẼ8,xp

(K9,10)
Ex3 FK1
AEẼ8,xp

(K9,10)
Ex4 FK1
AEẼ8,xp

(K9,10)

0 1.654× 10−6 0.000192898 2.757× 10−6 0.00158317
0.125 3.161× 10−7 0.0000647276 1.081× 10−6 0.0000844532
0.25 2.285× 10−7 0.0000794108 1.402× 10−6 0.000210398

0.375 9.035× 10−7 6.929× 10−6 8.913× 10−7 0.000178284
0.5 4.513× 10−7 0.0000914048 1.856× 10−6 7.728× 10−6

0.625 7.493× 10−7 0.0000112388 3.405× 10−6 0.0000910857
0.75 1.033× 10−6 0.000104873 1.154× 10−6 0.0000799071

0.875 4.732× 10−7 0.00010092 6.462× 10−6 0.0000367732
1.0 3.398× 10−6 0.00035475 0.0000147511 0.000193043

Table 3. The RMSE for the examples of FK1 with respect to n when ε = 0.0001 and N = 51 obtained
by the method M(Bn).

n
Ex1 FK1
REẼ51

(Bn)
Ex2 FK1
REẼ51

(Bn)
Ex3 FK1
REẼ51

(Bn)
Ex4 FK1
REẼ51

(Bn)

2 0.00564200 0.01652300 4.899× 10−9 0.00585089
3 0.00036214 0.01575890 1.162× 10−8 0.00197744
4 0.00001860 0.00036020 5.978× 10−8 0.00095794
5 7.899× 10−7 0.00032358 1.455× 10−7 0.00068048
6 1.470× 10−6 0.00024038 1.159× 10−6 0.00068950
7 1.163× 10−6 0.00016529 0.00011583 0.00069803
8 5.259× 10−6 0.00011862 8.864× 10−6 0.00054573
9 1.170× 10−6 0.00009103 2.064× 10−6 0.00029078

Table 4. Condition numbers and the RMSE for the Example 1 of FK1 when ε = 0.0001 and α = 1,
n = 8.

δ CondB8

(
Ã
)

REẼ51
(B8) CondK8,1

(
Ã
)

REẼ51
(K8,1)

5× 10−8 5.136× 107 0.00001356 3.750× 108 7.004× 10−6

5× 10−9 4.082× 108 6.675× 10−6 4.944× 109 2.119× 10−6

5× 10−10 5.491× 109 2.014× 10−6 4.424× 1010 1.276× 10−6

5× 10−11 4.859× 1010 1.264× 10−6 4.600× 1011 5.195× 10−7

5× 10−12 5.112× 1011 5.259× 10−7 4.419× 1012 1.972× 10−6

5× 10−13 4.900× 1012 2.005× 10−6 3.890× 1013 0.00002177
5× 10−14 4.274× 1013 0.00003837 4.276× 1014 0.00004387
5× 10−15 4.742× 1014 0.00015707 3.971× 1015 0.00067454

0 6.590× 1016 0.01001490 6.258× 1016 0.00218054
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Table 5. Condition numbers and the RMSE for the Example 2 of FK1 when ε = 0.0001 and α = 1,
n = 8.

δ CondB8

(
Ã
)

REẼ51
(B8) CondK8,1

(
Ã
)

REẼ51
(K8,1)

5× 10−8 3.207× 107 0.00238070 4.013× 108 0.00179104
5× 10−9 4.691× 108 0.00189299 3.094× 109 0.00058267
5× 10−10 3.412× 109 0.00052648 2.712× 1010 0.00026338
5× 10−11 2.982× 1010 0.00025935 2.688× 1011 0.00012597
5× 10−12 2.988× 1011 0.00011862 2.741× 1012 0.00002467
5× 10−13 3.052× 1012 0.00002339 3.601× 1013 0.00003398
5× 10−14 4.182× 1013 0.00004678 2.068× 1014 0.00009016
5× 10−15 2.772× 1014 0.00004866 2.382× 1015 0.00041590

0 5.498× 1016 0.01668350 5.073× 1016 0.01305410

Table 6. Condition numbers and the RMSE for the Example 3 of FK1 when ε = 0.0001 and α = 1,
n = 8.

δ CondB8

(
Ã
)

REẼ51
(B8) CondK8,1

(
Ã
)

REẼ51
(K8,1)

5× 10−8 4.902× 107 0.0000121677 3.919× 1010 0.00258407
5× 10−9 3.424× 109 0.000028873 3.459× 109 8.84178E− 6
5× 10−10 3.898× 109 0.0000109539 1.511× 1011 0.000186152
5× 10−11 1.006× 1011 0.000117269 2.740× 1010 0.0000283152
5× 10−12 2.715× 1010 0.0000278597 2.533× 1010 0.0000256703
5× 10−13 2.531× 1010 0.0000256237 2.514× 1010 0.0000254228
5× 10−14 2.513× 1010 0.0000254236 2.512× 1010 0.0000254052
5× 10−15 2.512× 1010 0.0000253998 2.512× 1010 0.0000253969

0 2.512× 1010 0.0000253957 2.512× 1010 0.0000254009

Table 7. Condition numbers and the RMSE for the Example 4 of FK1 when ε = 0.0001 and α = 1,
n = 8.

δ CondB8

(
Ã
)

REẼ51
(B8) CondK8,1

(
Ã
)

REẼ51
(K8,1)

5× 10−8 3.064× 107 0.00051122 2.381× 108 0.00048011
5× 10−9 2.645× 108 0.00049303 2.367× 109 0.00051823
5× 10−10 2.627× 109 0.00051343 2.330× 1010 0.00054019
5× 10−11 2.593× 1010 0.00053620 2.336× 1011 0.00054578
5× 10−12 2.593× 1011 0.00054573 2.180× 1012 0.00051476
5× 10−13 2.398× 1012 0.00050975 2.530× 1013 0.00049179
5× 10−14 2.803× 1013 0.00050957 2.322× 1014 0.00069250
5× 10−14 2.573× 1014 0.00065452 2.488× 1015 0.00031208

0 5.559× 1016 0.04357480 7.397× 1016 0.03460650

Table 8. The RMSE for the examples of FK1 with respect to α when ε = 0.0001, N = 51 and
δ = 5× 10−12 for the Example 1, Example 2 and Example 4 and δ = 5× 10−9 for the Example 3.

α
Ex1 FK1
REẼ51

(K9,α)
Ex2 FK1
REẼ51

(K9,α)
Ex3 FK1
REẼ51

(K9,α)
Ex4 FK1
REẼ51

(K9,α)

0.0001 0.00944481 0.00235555 7.270× 10−6 0.00181866
0.001 0.00071458 0.00015984 7.373× 10−6 0.00182835
0.01 0.00033075 0.00002426 8.811× 10−6 0.00188793
0.1 0.00005143 0.00001386 1.681× 10−6 0.00276483
1 0.00001147 0.00002120 4.004× 10−6 0.04152750
10 1.126× 10−6 0.00009103 2.064× 10−6 0.00029078

100 1.699× 10−6 0.00023779 3.526× 10−6 0.00040206
1000 2.565× 10−6 0.00045454 2.775× 10−6 0.00037842

10,000 6.947× 10−6 0.00240884 0.00001448 0.00037095
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Figure 1 presents the RMSE with respect to α obtained by M(K9,α) for the examples
of FK1, when ε = 0.0001, and N = 51. It can be viewed that the optimal value of α is
α = 10 for the Example 1, and Example 4, whereas α = 0.1 gives the lowest RMSE for the
Example 2 and Example 3. Figure 2 illustrates the RMSE with respect to n obtained by the
methods M(Kn,10) and M(Bn) for the considered examples of FK1 when ε = 0.0001 and
N = 51. Furthermore, for the data in Figures 1 and 2 the regularization parameter η(δ)
is taken as δ = 5× 10−12 for the Example 1, Example 2 and Example 4 and δ = 5× 10−9

for the Example 3. Figure 3 shows the RMSE with respect to δ obtained by the methods
M(K14,1) and M(B14) for the examples of FK1 when ε = 0.0001 and N = 51.
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Figure 1. The RMSE with respect to α obtained by M(K9,α) for the examples of FK1, when ε = 0.0001,
and N = 51.
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Figure 2. The RMSE with respect to n obtained by the methods M(Kn,10) and M(Bn) for the examples
of FK1 when ε = 0.0001 and N = 51.
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Figure 3. The RMSE with respect to δ obtained by the methods M(K14,1), M(K14,10) and M(B14) for
the examples of FK1 when ε = 0.0001 and N = 51.

Table 9 shows the accuracy comparisons of the proposed approach with the known
methods from the literature of which the errors in Baker et al. [44] are given in ME
(maximum error) and other errors are given in RMSE for the Example 1, Example 2 and
Example 3 of FK1. The data in the second row presents the results in Wen and Wei [21]
for n = 51 and the error in the third row last column is from Table 1 (s = 3) given in
Baker et al. [44]. The data in row 4 and row 5 are obtained by the methods M(K5,10),
and M(B5), respectively for N = 51, while the results in row 6 , row 7 are achieved by
M(K12,10), M(B12) accordingly also for N = 51.

Table 9. Accuracy comparison of the proposed approach with the methods from the literature for the
Example 1, Example 2 and Example 3 of FK1.

Approach Ex1 FK1
Error

Ex2 FK1
Error

Ex3 FK1
Error

[21] 0.0084 0.0154 na
[44] 0.0001 na 0.0752

M(K5,10) 7.95× 10−7 0.00032 1.55× 10−7

M(B5) 7.90× 10−7 0.00032 1.46× 10−7

M(K12,10) 2.23× 10−6 0.000049 1.71× 10−6

M(B12) 2.50× 10−6 0.000057 1.41× 10−6

For the Example 4, the exact solution f ∈ C1[0, 1]. Hence, dealing with this test
problem we provide comparisons between the methods M(Kn,α), and M(Bn) based on
the regularization parameter η(δ) taken as δ and on the order n of the approximation
in Figures 4 and 5, respectively. Figure 4 shows the RMSE with respect to δ obtained
by the methods M(K8,0.1), M(K8,1), M(K8,10), and M(B8) for the Example 4 of FK1 when
ε = 0.0001 and N = 51. It can be viewed that for δ ≤ 10−14 the given approach M(K8,1),
M(K8,10) give more accurate results then M(B8). Figure 5 illustrates the RMSE with respect
to n obtained by the methods M(Kn,0.0001), M(Kn,0.1), M(Kn,1), M(Kn,10), and M(Bn) for
the Example 4 of FK1 when ε = 0.0001 and N = 51, δ = 5× 10−12. This figure show that
Kn,1 and Kn,10 give more accurate results then Bn for large values of n that is for n ≥ 12.
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Figure 4. The RMSE with respect to δ obtained by the methods M(K8,α) for α = 0.0001, 0.1, 1, 10 and
M(B8) for the Example 4 of FK1 when ε = 0.0001 and N = 51.
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Figure 5. The RMSE with respect to n obtained by the methods M(Kn,α) for α = 0.0001, 0.1, 1, 10 and
M(Bn) for the Example 4 of FK1 when ε = 0.0001 and N = 51.

5.2. Applications on Volterra Integral Equations

Example 5. VK2 (Maleknejad et al. [33], Rashad [45] )

f (x)−
x∫
−1

xt f (t)dt = e−x2 − 1
2

(
1
e
− e−x2

)
x, − 1 ≤ x ≤ 1,
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where the exact solution is f (x) = e−x2
, −1 ≤ x ≤ 1.

Example 6. VK2 (Maleknejad et al. [34], Polyamin [46])

f (x)−
x∫

0

ex f (t)dt = cos(x)− ex sin(x), 0 ≤ x ≤ 1,

where the exact solution is f (x) = cos(x), 0 ≤ x ≤ 1.

Example 7. VK1 (Taylor [24], Brunner [25])

x∫
0

(1 + x− t) f (t)dt = x− 1 + e−x,

where the exact solution is f (x) = xe−x, and x ∈ [0, 3] in Taylor [24] and x ∈ [0, 10] in
Brunner [25].

Example 8. VK1 (Maleknejad et al. [34], Polyamin [46])

x∫
0

ex−t f (t)dt = sin(x), 0 ≤ x ≤ 1,

where the exact solution is f (x) = cos(x)− sin(x), 0 ≤ x ≤ 1.

Remark 2. For the numerical solution of Example 6 of VK2 by the method M(Kn,α) and using the
grid points xj =

j
n + ε, j = 0, 1, . . . , n− 1 and xn = 1− ε, 0 < ε < 1

2n results in the following
algebraic system of equations

ÄX = B, (114)

where coefficient matrix Ä has the entries

[
Ä
]

j+1,k+1 = ω

Pn,k(xj)−
xj∫

0

K
(
xj, t

)
Pn,k(t)dt

, j, k = 0, 1, . . . , n, (115)

and the vectors X and B are as in (40) and (41), respectively. The numerical solution of Example
5 of VK2 by the method M(Kn,α) is analogous by using the extension of the Modified Bernstein–
Kantorovich operators (111) on the interval [−1, 1].

Table 10 presents the RMSE with respect to n obtained by the proposed approach
when α = 10, (M(Kn,10)) and ε = 0.001, N = 100 for the Example 5, Example 6 of VK2 and
Example 7, Example 8 of VK1. Tables 11 and 12 show the ME with respect to n obtained by
the methods M(Kn,10) and M(Bn) respectively when ε = 0.001, N = 100 for the considered
examples of VK2 and VK1. From Tables 10–12 we conclude that the error is not improved
for n = 20 for the Examples 6–8 due to the large condition numbers of the coefficient
matrices. Table 13 demonstrates the RMSE with respect to α obtained by the proposed
approach when n = 20, and ε = 0.001, N = 100 for the considered examples of VK2 and
VK1. This Table shows that M(K20,α) gives stable solution with respect to α for the taken
values of ε and δ. Further, in Tables 10–13 for the Example 7, x ∈ [0, 3].
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Table 10. The RMSE for the Example 5, Example 6 of VK2 and Example 7, Example 8 of VK1 with
respect to n when ε = 0.001, N = 100 obtained by M(Kn,10).

n
Ex5 VK2
REẼ100

(Kn,10)
Ex6 VK2
REẼ100

(Kn,10)
Ex7 VK1
REẼ100

(Kn,10)
Ex8 VK1
REẼ100

(Kn,10)

2 0.0499147 0.00324785 0.112084 0.00859961
3 0.0365226 0.00067710 0.0323648 0.00019578
4 0.00464224 8.702× 10−6 0.00714176 0.00003599
5 0.00317264 1.214× 10−6 0.00130879 5.551× 10−7

6 0.000392663 1.494× 10−8 0.000206789 8.283× 10−8

7 0.000263753 1.646× 10−9 0.0000287574 9.974× 10−10

8 0.0000299799 1.815× 10−11 3.571× 10−6 1.234× 10−10

9 0.0000202637 1.626× 10−12 4.002× 10−7 1.205× 10−12

10 2.0539× 10−6 2.734× 10−14 4.087× 10−8 6.730× 10−14

11 1.402× 10−6 1.140× 10−14 3.831× 10−9 1.464× 10−13

12 1.266× 10−7 1.684× 10−14 3.311× 10−10 1.895× 10−13

13 8.720× 10−8 6.657× 10−15 2.606× 10−11 1.676× 10−13

14 7.060× 10−9 5.783× 10−15 1.321× 10−12 3.036× 10−13

15 4.900× 10−9 2.555× 10−14 1.088× 10−12 3.113× 10−13

20 1.183× 10−12 3.155× 10−12 2.893× 10−10 1.767× 10−10

Table 11. The ME for the Example 5, Example 6 of VK2 and Example 7, Example 8 of VK1 with
respect to n when ε = 0.001, N = 100 obtained by M(Kn,10).

n
Ex5 VK2
MEẼ100

(Kn,10)
Ex6 VK2
MEẼ100

(Kn,10)
Ex7 VK1
MEẼ100

(Kn,10)
Ex8 VK1
MEẼ100

(Kn,10)

2 0.077679 0.00774279 0.369287 0.0314081
3 0.0651687 0.00140263 0.13734 0.000817017
4 0.0106545 0.0000185564 0.0365845 0.000189993
5 0.00768217 2.947× 10−6 0.00771289 3.251× 10−6

6 0.0011101 3.299× 10−8 0.00135407 5.489× 10−7

7 0.00079366 4.587× 10−9 0.000204093 7.069× 10−9

8 0.0000986807 4.858× 10−11 0.0000269878 9.389× 10−10

9 0.0000699759 5.065× 10−12 3.180× 10−6 9.587× 10−12

10 7.625× 10−6 6.628× 10−14 3.382× 10−7 4.682× 10−13

11 5.455× 10−6 2.687× 10−14 3.276× 10−8 8.972× 10−13

12 5.121× 10−7 4.241× 10−14 2.909× 10−9 1.193× 10−12

13 3.735× 10−7 2.498× 10−14 2.341× 10−10 1.487× 10−12

14 3.143× 10−8 1.110× 10−14 1.101× 10−11 2.171× 10−12

15 2.277× 10−8 1.052× 10−13 8.665× 10−12 2.123× 10−12

20 6.127× 10−12 1.908× 10−11 2.800× 10−9 1.704× 10−9
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Table 12. The ME for the Example 5, Example 6 of VK2 and Example 7, Example 8 of VK1 obtained
by M(Bn) for N = 100.

n
Ex5 VK2
MEẼ100

(Bn)
Ex6 VK2
MEẼ100

(Bn)
Ex7 VK1
MEẼ100

(Bn)
Ex8 VK1
MEẼ100

(Bn)

2 0.077679 0.00774279 0.369287 0.0314081
3 0.0651687 0.00140263 0.13734 0.000817017
4 0.0106545 0.0000185564 0.0365845 0.000189993
5 0.00768217 2.947× 10−6 0.00771289 3.251× 10−6

6 0.0011101 3.299× 10−8 0.00135407 5.488× 10−7

7 0.00079366 4.588× 10−9 0.000204093 7.071× 10−9

8 0.0000986807 4.859× 10−11 0.0000269878 9.395× 10−10

9 0.0000699759 5.022× 10−12 3.180× 10−6 9.609× 10−12

10 7.624× 10−6 5.440× 10−14 3.382× 10−6 8.811× 10−13

11 5.455× 10−6 2.065× 10−14 3.276× 10−8 2.442× 10−14

12 5.121× 10−7 2.554× 10−14 2.910× 10−9 3.484× 10−13

13 3.735× 10−7 2.809× 10−14 2.340× 10−10 8.926× 10−13

14 3.143× 10−8 4.508× 10−14 1.265× 10−11 4.927× 10−13

15 2.277× 10−8 1.196× 10−13 7.290× 10−12 3.042× 10−13

20 6.659× 10−12 1.908× 10−11 2.729× 10−9 1.659× 10−9

Table 13. The RMSE for the Example 5, Example 6 of VK2, Example 7 and Example 8 of VK1 with
respect to α when ε = 0.001 and N = 100 obtained by M(K20,α).

α
Ex5 VK2
REẼ100

(K20,α)
Ex6 VK2
REẼ100

(K20,α)
Ex7 VK1
REẼ100

(K20,α)
Ex8 VK1
REẼ100

(K20,α)

0.0001 1.146× 10−12 3.174× 10−12 3.853× 10−10 3.340× 10−9

0.001 1.144× 10−12 3.188× 10−12 3.876× 10−10 3.341× 10−9

0.01 1.101× 10−12 3.189× 10−12 3.857× 10−10 3.346× 10−9

0.1 1.149× 10−12 3.116× 10−12 3.861× 10−10 3.343× 10−9

1 1.183× 10−12 1.183× 10−12 2.820× 10−10 3.342× 10−9

10 1.137× 10−12 3.181× 10−12 2.879× 10−10 3.341× 10−9

100 1.253× 10−12 3.244× 10−12 2.856× 10−10 3.316× 10−9

1000 1.136× 10−12 3.245× 10−12 2.856× 10−10 3.093× 10−9

The absolute errors for the Example 5 of VK2 when N = 8 (9 points) obtained by
the methods M(K20,10) and M(B20) are presented in Table 14. Additionally, in Table 15,
absolute errors obtained by the methods M(K10,10) and M(B10) and by the approach given
in Maleknejad et al. [33] (Table 1, column 3) for the same example over the same grid points
are compared when n = 10. It can be concluded from this table that the maximum error
(ME) is 1.59792× 10−6 by the methods M(K10,10), M(B10) and it is 1.593× 10−6 by the
method in Maleknejad et al. [33] and occurs at the same grid point x7 = 0.75. Furthermore,
Table 14 shows that the maximum error decreases down to 8.88623× 10−13 by M(K20,10)
and to 9.83824× 10−13 by M(B20) over the same grid points. Table 16 shows the absolute
errors (AE) at 7 points (N = 6) from the interval x ∈ [0, 3] for the Example 7 obtained
by the methods M(K15,10) and M(B15) and by the method given in Taylor [24] (Table 2,
last column). Table 17 gives AE at the points xp = p, p = 0, 1, 2, 3, 4, 5 from the interval
x ∈ [0, 10] for the Example 7 obtained by the methods M(K15,10) and M(B15) and by the
method given in Brunner [25] (Table 2, second column). We conclude from Tables 16 and 17
that the presented AE by M(K15,10) are smaller than the given values from Taylor [24] and
Brunner [25], respectively. However, we should remark that precision of the computations
were not mentioned in both of these references. Furthermore, δ = 5× 10−15 for the all
considered examples of VK2 and VK1 by the methods M(Kn,α) and M(Bn).
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Table 14. The absolute errors at 9 points for the Example 5 of VK2 obtained by the methods M(K20,10)

and M(B20).

xp AEẼ8,xp
(K20,10) AEẼ8,xp

(B20)

−1.0 6.667× 10−13 7.392× 10−13

−0.75 2.890× 10−13 3.290× 10−13

−0.50 1.831× 10−13 2.097× 10−13

−0.25 9.137× 10−14 1.081× 10−13

0 6.439× 10−15 1.332× 10−15

0.25 1.034× 10−13 1.106× 10−13

0.50 2.086× 10−13 2.295× 10−13

0.75 2.984× 10−13 3.302× 10−13

1.0 8.886× 10−13 9.838× 10−13

Table 15. Comparison of the absolute errors at 9 points for the Example 5 of VK2 obtained by the
methods M(K10,10), M(B10) and by the approach in Maleknejad et al. [33].

xp AEẼ8,xp
(K10,10) AEẼ8,xp

(B10) Maleknejad et al. [33]

−1.0 3.436× 10−7 3.436× 10−7 3.524 ×10−9

−0.75 1.218× 10−7 1.218× 10−7 1.144× 10−7

−0.50 5.820× 10−7 5.820× 10−7 5.431× 10−7

−0.25 2.066× 10−7 2.066× 10−7 2.922× 10−7

0 2.805× 10−11 2.805× 10−11 0
0.25 2.536× 10−7 2.536× 10−7 3.396× 10−7

0.50 3.212× 10−7 3.212× 10−7 2.902× 10−7

0.75 1.598× 10−6 1.598× 10−6 1.593× 10−6

1.0 9.109× 10−7 9.109× 10−7 7.823× 10−7

Table 16. Comparison of the absolute errors at 7 points for the Example 7 of VK1 obtained by the
methods M(K15,10), M(B15) and by the approach in Taylor [24].

xp AEẼ6,xp
(K15,10) AEẼ6,xp

(B15) Taylor [24]

0 5.112× 10−12 5.108× 10−12 ng
0.5 7.105× 10−15 7.494× 10−15 2.7× 10−7

1.0 1.499× 10−15 2.609× 10−15 4.3× 10−5

1.5 1.332× 10−15 2.887× 10−15 ng
2.0 4.219× 10−15 4.996× 10−15 2.3× 10−5

2.5 1.219× 10−14 1.355× 10−14 ng
3.0 6.841× 10−12 7.290× 10−12 1.8× 10−5

Table 17. Comparison of the absolute errors when N = 10 for the Example 7 of VK1 obtained by the
methods M(K15,10), M(B15) and by the approach from Brunner [25].

xp AEẼ10,xp
(K15,10) AEẼ10,xp

(B15) Brunner [25]

0 1.276× 10−9 1.276× 10−9 1.244× 10−7

1.0 2.069× 10−8 2.069× 10−8 3.128× 10−8

2.0 4.418× 10−9 4.418× 10−9 6.183× 10−9

3.0 3.748× 10−10 3.748× 10−10 ng
4.0 1.062× 10−9 1.062× 10−9 ng
5.0 1.870× 10−10 1.870× 10−10 4.87× 10−10

Figure 6 illustrates the condition number of the matrix ˜̂A in (71) when the method
M(Kn,10) is applied for n = 2, . . . , 20. The RMSE and ME with respect to n obtained
by the methods M(Kn,1), M(Kn,10) and M(Bn) for the Example 5, Example 6 of VK2
and Example 7 and Example 8 of VK1, when ε = 0.001, and N = 100 are given in
Figures 7 and 8, respectively. Furthermore, for the data in Figures 6–8, the parameter δ is
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taken as δ = 5× 10−15 for the considered examples of VK2 and VK1. It can be seen from
Figure 7 that for large n that is n ≥ 10, the proposed method M(Kn,α) for α = 1 and α = 10
gives more stable results than M(Bn) for the Example 6 of VK2.
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Figure 6. Condition number of the matrix ˜̂A with respect to n obtained by the method M(Kn,10).
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Figure 7. The RMSE with respect to n obtained by the methods M(Kn,1), M(Kn,10) and M(Bn) for
the Example 5, Example 6 of VK2 and Example 7 and Example 8 of VK1 when ε = 0.001 and
N = 100.
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Figure 8. The ME with respect to n obtained by the methods M(Kn,1), M(Kn,10) and M(Bn) for the
Example 5, Example 6 of VK2 and Example 7 and Example 8 of VK1 when ε = 0.001 and N = 100.

6. Conclusions

In this paper, we gave an approach that uses Modified Bernstein–Kantorovich opera-
tors to approximate the solution of the Fredholm and Volterra integral equations of first
kind. The method is developed first by representing the Modified Bernstein–Kantorovich
operators such that the parameter α is also expressed explicitly in the operator. Further,
the unknown function in the first kind integral equations is approximated by using the
given form of the Modified Bernstein–Kantorovich operators so that the effect of α in the
solution is analyzed. The obtained linear equations are transformed into system of alge-
braic linear equations. Furthermore, regularization technique is also applied to obtain more
stable numerical solution when approximations are conducted using high-order Modified
Bernstein–Kantorovich operators. The proposed approach is simple and the obtained
numerical results show that the accuracy is high even when low order approximations are
used, i.e., for n = 2, 3.
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