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Abstract: In this paper, the sharp Hille-type oscillation criteria are proposed for a class of second-
order nonlinear functional dynamic equations on an arbitrary time scale, by using the technique
of Riccati transformation and integral averaging method. The obtained results demonstrate an
improvement in Hille-type compared with the results reported in the literature. Some examples are
provided to illustrate the significance of the obtained results.
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1. Introduction

The theory of time scales, which has recently received a lot of interest, was proposed
by Stefan Hilger in 1988 in order to unite continuous and discrete analysis; see [1]. The
theory was introduced in reality to amalgamate continuous and discrete analyses, which
are the basic stones in dynamical systems. The theory of differential equations is one
of these theories that can be explored and analyzed by means of time scales to their
wide implications in real-word systems and processes. Some of these systems include
ecosystems, electronic engineering, biomathematics, signal processing, control theory,
stochastic biochemical and transport processes, etc. Moreover, several mathematical topics,
such as stability analysis, boundary values problems and perturbations techniques are
better explored on time scales; see [2–13]. A time scale T is an arbitrary closed subset of the
reals. The forward jump operator σ : T→ T is given by

σ(ξ) = inf{s ∈ T : s > ξ}, (1)

where inf φ = supT, and it is called that f : T→ R is differentiable at ξ ∈ T provided

f ∆(ξ) := lim
s→ξ

f (ξ)− f (s)
ξ − s

, (2)

exists when σ(ξ) = ξ and when f is continuous at ξ and σ(ξ) > ξ,

f ∆(ξ) :=
f (σ(ξ))− f (ξ)

σ(ξ)− ξ
. (3)
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It is notable that when this time scale is equal to the reals or to the integers representing
the classical theories of differential and of difference equations, many other interesting
time scales exist, and they give rise to many applications (see [14]). This new theory of
these so-called “dynamic equations” not only unifies the corresponding theories for the
differential equations and difference equations cases, but it also extends these classical cases
to cases “in between”. That is, we are worthy of considering the q−difference equations
when T = qN0 := {qλ : λ ∈ N0 for q > 1}, which has important applications in quantum
theory (see [15]), and various types of time scale such as T = hN, T = N2, and T = Tn,
where Tn is the set of the harmonic numbers, can also be considered. For an outstanding
introduction to calculus on time scales, see [1,14,16,17].

The qualitative properties analysis of the dynamic equations is vital, not just for
further development of the oscillation theory but also for practical reasons. In fact, the
study of quasilinear equations has become a crucial area of research thanks to the fact that
such equations arise during a variety of phenomena; for more details, see [18,19]. Therefore,
this work is concerned about the behavior of the oscillatory solutions to the quasilinear
functional dynamic equation of second-order(

b(ξ)
∣∣∣x∆(ξ)

∣∣∣β−1
x∆(ξ)

)∆
+ c(ξ)|x(η(ξ))|γ−1x(η(ξ)) = 0 (4)

on an above-unbounded time scale T, where ξ ∈ [ξ0, ∞)T, ξ0 ≥ 0, ξ0 ∈ T; β and γ are
positive real numbers; b, c ∈ Crd([ξ0, ∞)T,R+) such that∫ ∞ ∆τ

b
1
β (τ)

= ∞; (5)

and η : T→ T is a rd-continuous function such that limξ→∞ η(ξ) = ∞.
By a solution of the Equation (4), we mean a nontrivial real-valued function x ∈

C1
rd[ξx, ∞)T, ξx ∈ [ξ0, ∞)T such that b

∣∣x∆
∣∣β−1x∆ ∈ C1

rd[ξx, ∞)T and x satisfies (4) on
[ξx, ∞)T, where Crd is the set of right-dense continuous functions. A solution x of (4) is
termed oscillatory if it is neither eventually positive nor eventually negative; otherwise,
we call it nonoscillatory. The solutions vanishing in some neighborhood of infinity will
be excluded from our consideration. In the sequel, all functional inequalities considered
are tacitly supposed to hold eventually; that is, they are satisfied for all ξ which are
sufficiently large.

It may be noted that, in a particular case, when T = R, then

µ(ξ) = 0, η∆(ξ) = η′(ξ),
∫ b

a
η(ξ)∆ξ =

∫ b

a
η(ξ)dξ, (6)

and the Equation (4) becomes the quasilinear differential equation(
b(ξ)

∣∣x′(ξ)∣∣β−1x′(ξ)
)′

+ c(ξ)|x(η(ξ))|γ−1x(η(ξ)) = 0 (7)

The Hille-type oscillation criterion of special cases of Equation (7) is investigated
by [20–22], such as Erbe [22] examined the Hille-type oscillation criterion and shown that if

lim inf
ξ→∞

ξ
∫ ∞

ξ
q(τ)

η(τ)

τ
dτ >

1
4

, (8)

then all solutions of
x′′(ξ) + c(ξ)x(η(ξ)) = 0 (9)

are oscillatory in which η(ξ) ≤ ξ.
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If T = Z, then

µ(ξ) = 1, η∆(ξ) = ∆η(ξ),
∫ b

a
η(ξ)∆ξ =

b−1

∑
ξ=a

η(ξ), (10)

and (4) becomes the quasilinear difference equation

∆
(

b(ξ)|∆x(ξ)|β−1∆x(ξ)
)
+ c(ξ)|x(η(ξ))|γ−1x(η(ξ)) = 0. (11)

For further application on other types of time scale, see [14,17].
For Hille-type oscillation criteria of second-order dynamic equations, References [23–27]

proposed some Hille-type oscillation criteria to special cases of Equation (7). Recently,
Hassan et al. [28] established the following Hille-type oscillation criterion for (4) and
showed that if l > 0 and

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

σ(ξ)
φ(τ)Q(τ)∆τ >

ββ

lβ2
(β + 1)β+1

, (12)

then all solutions of Equation (4) oscillate, where

B(ξ) :=
∫ ξ

ξ0

∆τ

b
1
γ (τ)

and l := lim inf
ξ→∞

B(ξ)
B(σ(ξ))

≤ 1, (13)

φ(ξ) :=


1, η(ξ) ≥ ξ,(

B(η(ξ))
B(ξ)

)γ

, η(ξ) ≤ ξ,
(14)

and

Q(ξ) :=

 c(ξ), γ ≥ β,

c(ξ)
[∫ ∞

ξ φ(τ)c(τ)∆τ
] β−γ

γ , γ ≤ β,
(15)

provided the improper integrals involved are convergent. These oscillation criteria for (4)
were established in the cases: η(ξ) ≤ ξ, η(ξ) ≥ ξ, γ ≥ β, and γ ≤ β without the
restrictive condition ∫ ∞

ξ0

ηβ(τ)c(τ)∆τ = ∞. (16)

in contrast to [23,24]. We refer the reader to related results [29–42] and the references
cited therein.

The object of this paper is to deduce some sharp Hille-type oscillation criteria for (4)
in the cases where γ ≥ β and γ ≤ β and for the both cases advanced and delayed dynamic
equations. The results which will be proven in this paper present critical improvement to
the results in [23,24,28]; for more details, see Section 4.

It is notable that the oscillatory solutions are of particular importance in the theory
of differential equations due to their particular asymptotic behavior of all solutions of
second-order half-linear differential equations. These solutions are particularly important
in physics, when damping occurs in nonlinear classical and quantum dynamical systems;
see [43–46].

This paper is organized as follows: we state the main results and proofs for Equation (4)
in Sections 2 and 3 when γ ≥ β and γ ≤ β respectively, followed by demonstrating examples.
Discussions are given in Section 4.
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2. Oscillation Criteria of (4) when γ ≥ β

In the following, we utilize the notation

ω(ξ) :=


1, η(ξ) ≥ σ(ξ),(

B(η(ξ))
B(σ(ξ))

)γ

, η(ξ) ≤ σ(ξ),
(17)

Furthermore, we assume, in the next theorems, that the improper integrals are conver-
gent. Otherwise, we obtain that Equation (4) is oscillatory; see [47].

The next theorem is Hille type to the second-order quasilinear dynamic Equation (4)
when γ ≥ β.

Theorem 1. Let 0 < β ≤ 1 and (5) holds. If l > 0 and

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ >

ββ

lβ(1−β)(β + 1)β+1
, (18)

then all solutions of Equation (4) oscillate.

Proof. Assume to the contrary that Equation (4) has a nonoscillatory solution x on [ξ0, ∞)T.
Without loss of generality, we let x(ξ) > 0 and x(η(ξ)) > 0 for ξ ∈ [ξ0, ∞)T. Define

w(ξ) :=
b(ξ)

∣∣x∆(ξ)
∣∣β−1x∆(ξ)

xβ(ξ)
. (19)

By the rules of product and quotient, we get

w∆(ξ) =
1

xβ(σ(ξ))

[
b(ξ)

∣∣∣x∆(ξ)
∣∣∣β−1

x∆(ξ)

]∆
+

(
1

xβ(ξ)

)∆
b(ξ)

∣∣∣x∆(ξ)
∣∣∣β−1

x∆(ξ)

=

[
b(ξ)

∣∣x∆(ξ)
∣∣β−1x∆(ξ)

]∆

xβ(σ(ξ))
− (xβ(ξ))∆

xβ(ξ)xβ(σ(ξ))
b(ξ)

∣∣∣x∆(ξ)
∣∣∣β−1

x∆(ξ).

From (4) and (19), we conclude that

w∆(ξ) = −
(

x(η(ξ))
x(σ(ξ))

)γ

xγ−β(σ(ξ))c(ξ)− (xβ(ξ))∆

xβ(σ(ξ))
w(ξ).

Since c ∈ Crd([ξ0, ∞)T,R+) and then(
b(ξ)

∣∣∣x∆(ξ)
∣∣∣β−1

x∆(ξ)

)∆
< 0 for ξ ≥ ξ0.

Hence x∆(ξ) > 0, otherwise, it leads to a contradiction. Thus

xγ−β(σ(ξ)) ≥ xγ−β(σ(ξ0)) =: k > 0 for ξ ≥ ξ0.

Therefore,

w∆(ξ) ≤ −k
(

x(η(ξ))
x(σ(ξ))

)γ

c(ξ)− (xβ(ξ))∆

xβ(σ(ξ))
w(ξ).

It follows from ([28], Theorem 1) that x(ξ)
B(ξ) is strictly decreasing and

x(ξ) ≥ b(ξ)
∣∣∣x∆(ξ)

∣∣∣β−1
x∆(ξ)Bβ(ξ) on (ξ0, ∞)T. (20)
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Therefore, there exists a ξ1 ∈ (ξ0, ∞)T such that for ξ ∈ [ξ1, ∞)T,(
x(η(ξ))
x(σ(ξ))

)γ

≥ ω(ξ).

Hence, we obtain, for every k > 0 and for ξ ∈ [ξ1, ∞)T,

w∆(ξ) ≤ −kω(ξ)c(ξ)− (xβ(ξ))∆

xβ(σ(ξ))
w(ξ).

Using Pötzsche chain rule (see [14], Theorem 1.90), we get

(xβ(ξ))∆ = β

(∫ 1

0
[(1− h)x(ξ) + hx(σ(ξ))]β−1dh

)
x∆(ξ) ≥ βxβ−1(σ(ξ))x∆(ξ).

Hence, by virtue of

x∆(ξ)

x(σ(ξ))
=

1
x(σ(ξ))

[
b(ξ)

(
x∆(ξ)

)β

b(ξ)

] 1
β

≥ 1
x(σ(ξ))

[
b(σ(ξ))

(
x∆(σ(ξ))

)β

b(ξ)

] 1
β

= b−
1
β (ξ)w

1
β (σ(ξ)),

we deduce that

w∆(ξ) ≤ −kω(ξ)c(ξ)− β
x∆(ξ)

x(σ(ξ))
w(ξ)

≤ −kω(ξ)c(ξ)− βb−
1
β (ξ)w

1
β (σ(ξ))w(ξ), (21)

which yields w∆ < 0. Integrating (21) from ξ to v, we achieve

w(v)− w(ξ) ≤ −k
∫ v

ξ
ω(τ)c(τ)∆τ − β

∫ v

ξ
b−

1
β (τ)w

1
β (σ(τ))w(τ)∆τ,

and thus

− w(ξ) ≤ −k
∫ ∞

ξ
ω(τ)c(τ)∆τ − β

∫ ∞

ξ
b−

1
β (τ)w

1
β (σ(τ))w(τ)∆τ (22)

due to the fact that w > 0. Multiplying both sides of (22) by Bβ(ξ), we have

−Bβ(ξ)w(ξ) ≤ −kBβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ

−βBβ(ξ)
∫ ∞

ξ
b−

1
β (τ)w

1
β (σ(τ))w(τ)∆τ

= −kBβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ

−βBβ(ξ)
∫ ∞

ξ

b−
1
β (τ)

Bβ(τ)B(σ(τ))
Bβ(τ)w(τ) B(σ(τ))w

1
β (σ(τ))∆τ.

Now, for any ε > 0, there exists a ξ2 ∈ [ξ1, ∞)T such that, for ξ ∈ [ξ2, ∞)T,

B(ξ)
B(σ(ξ))

≥ l − ε and Bβ(ξ)w(ξ) ≥ b∗ − ε, (23)
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where
b∗ := lim inf

ξ→∞
Bβ(ξ)w(ξ), 0 ≤ b∗ ≤ 1

due to (19) and (20). Therefore,

−Bβ(ξ)w(ξ) ≤ −kBβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ

−(b∗ − ε)
1+ 1

β Bβ(ξ)
∫ ∞

ξ

βB∆(τ)

B(τ)Bβ(σ(τ))

(
B(τ)

B(σ(τ))

)1−β

∆τ

≤ −kBβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ

−(l − ε)1−β(b∗ − ε)
1+ 1

β

∫ ∞

ξ

βB∆(τ)

B(τ)Bβ(σ(τ))
∆τ.

Thus, Pötzsche chain rule implies that(
Bβ(τ)

)∆
= β

∫ 1

0
[(1− h)B(τ) + hB(σ(τ))]β−1dh B∆(τ) ≤ βBβ−1(σ(τ)) B∆(τ). (24)

It follows now from (24) and the quotient rule that(
Bβ(τ)

)∆
= β

∫ 1

0
[(1− h)B(τ) + hB(σ(τ))]β−1dh B∆(τ) ≤ βBβ−1(τ) B∆(τ)

and so (
−1

Bβ(τ)

)∆
=

(
Bβ(τ)

)∆

Bβ(τ)Bβ(σ(τ))
≤ βB∆(τ)

B(τ)Bβ(σ(τ))
.

From (23), we have

−Bβ(ξ)w(ξ) ≤ −kBβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ

−(b∗ − ε)
1+ 1

β Bβ(ξ)
∫ ∞

ξ

(
−1

Bβ(τ)

)∆( B(τ)
B(σ(τ))

)1−β

∆τ

= −kBβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ − (l − ε)1−β(b∗ − ε)

1+ 1
β ,

which yields that

kBβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ ≤ Bβ(ξ)w(ξ)− (l − ε)1−β(b∗ − ε)

1+ 1
β .

Taking the lim inf of both sides as ξ → ∞, we obtain

lim inf
ξ→∞

kBβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ ≤ b∗ − (l − ε)1−β(b∗ − ε)

1+ 1
β .

By dint of the facts that k and ε > 0 are arbitrary, we arrive at

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ ≤ b∗ − l

1−β
b

1+ 1
β

∗ .

Let
B = lβ−1, A = 1, and u = b∗.
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By the inequality

Au− Bu1+ 1
β ≤ ββ

(β + 1)β+1
Aβ+1

Bβ
, A, B > 0. (25)

Hence,

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ ≤ ββ

lβ(1−β)(β + 1)β+1
,

which gives us the contradiction with (18). This completes the proof.

Example 1. For ξ ∈ [ξ0, ∞)T, consider a second-order quasilinear functional dynamic equation[
ξ1/β

∣∣∣x∆(ξ)
∣∣∣β−1

x∆(ξ)

]∆
+

βγ

ξ ω(ξ)B(ξ)Bβ(σ(ξ))
|x(η(ξ))|γ−1x(η(ξ)) = 0 (26)

where 0 < β ≤ 1. It is easy to see that (5) is satisfied. Additionally,

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ = γ lim inf

ξ→∞
Bβ(ξ)

∫ ∞

ξ

β

τ B(τ)Bβ(σ(τ))
∆τ

≥ γ lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ

(
−1

Bβ(τ)

)∆
∆τ = γ.

Then, Theorem 1 implies that every solution of (26) is oscillatory if

0 < β ≤ 1 and γ >
ββ

lβ(1−β)(β + 1)β+1
.

Theorem 2. Let β ≥ 1 and (5) holds. If l > 0 and

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ >

ββ

lβ(β−1)(β + 1)β+1
, (27)

then all solutions of Equation (4) oscillate.

Proof. Assume to the contrary that Equation (4) has a nonoscillatory solution x on [ξ0, ∞)T.
Without loss of generality, we let x(ξ) > 0 and x(η(ξ)) > 0 on [ξ0, ∞)T. It is easy to achieve
that (see [28], Theorem 1)

w∆(ξ) ≤ −k φ(ξ)c(ξ)− β
x∆(ξ)

x(ξ)
w(σ(ξ))

= −k φ(ξ)c(ξ)− βb−
1
β (ξ)w

1
β (ξ)w(σ(ξ)), (28)

where k > 0 is an arbitrary constant, φ(ξ) and w(ξ) are defined by (14) and (19) respectively.
Integrating (28) from ξ to v, we get

w(v)− w(ξ) ≤ −k
∫ v

ξ
φ(τ)c(τ)∆τ − β

∫ v

ξ
b−

1
β (τ)w

1
β (τ)w(σ(τ))∆τ.

Taking into account that w > 0 and passing to the limit as v→ ∞, we obtain

− w(ξ) ≤ −k
∫ ∞

ξ
φ(τ)c(τ)∆τ − β

∫ ∞

ξ
b−

1
β (τ)w

1
β (τ)w(σ(τ))∆τ. (29)
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Multiplying both sides of (29) by Bβ(ξ), we have

−Bβ(ξ)w(ξ) ≤ −kBβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ

−βBβ(ξ)
∫ ∞

ξ
b−

1
β (τ)w

1
β (τ)w(σ(τ))∆τ

= −kBβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ

−βBβ(ξ)
∫ ∞

ξ

b−
1
β (τ)

B(τ)Bβ(σ(τ))
B(τ)w

1
β (τ) Bβ(σ(τ))w(σ(τ))∆τ.

It follows from (23) that, for any ε > 0,

−Bβ(ξ)w(ξ) ≤ −kBβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ

−(b∗ − ε)
1+ 1

β Bβ(ξ)
∫ ∞

ξ

βB∆(τ)

Bβ(τ)B(σ(τ))

(
B(τ)

B(σ(τ))

)β−1
∆τ

≤ −kBβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ (30)

− (l − ε)β−1(b∗ − ε)
1+ 1

β Bβ(ξ)
∫ ∞

ξ

βB∆(τ)

Bβ(τ)B(σ(τ))
∆τ.

On the other hand, by Pötzsche chain rule, we conclude that(
Bβ(τ)

)∆
= β

∫ 1

0
[(1− h)B(τ) + hB(σ(τ))]β−1dh B∆(τ) ≤ βBβ−1(σ(τ)) B∆(τ). (31)

It follows now from (31) and the quotient rule that

(
−1

Bβ(τ)

)∆
=

(
Bβ(τ)

)∆

Bβ(τ)Bβ(σ(τ))
≤ βB∆(τ)

Bβ(τ)B(σ(τ))
. (32)

Using (32) in (30), we deduce that

−Bβ(ξ)w(ξ) ≤ −kBβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ

−(l − ε)β−1(b∗ − ε)
1+ 1

β Bβ(ξ)
∫ ∞

ξ

(
−1

Bβ(τ)

)∆
∆τ

= −kBβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ − (l − ε)β−1(b∗ − ε)

1+ 1
β ,

which yields

kBβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ ≤ Bβ(ξ)w(ξ)− (l − ε)β−1(b∗ − ε)

1+ 1
β .

Taking the lim inf as ξ → ∞, we conclude that

lim inf
ξ→∞

kBβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ ≤ b∗ − (l − ε)β−1(b∗ − ε)

1+ 1
β .

Since k and ε > 0 are arbitrary, we achieve

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ ≤ b∗ − lβ−1b

1+ 1
β

∗ .
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Letting A = 1, B = l
1−β

, and u = b∗, and by inequality (25), we arrive at

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ ≤ ββ

lβ(β−1)(β + 1)β+1
,

which gives us the contradiction with (27). This completes the proof.

Example 2. For ξ ∈ [ξ0, ∞)T, consider a second order quasilinear functional dynamic equation[
ξ1/β

∣∣∣x∆(ξ)
∣∣∣β−1

x∆(ξ)

]∆
+

βγ

ξ ω(ξ)Bβ(ξ)B(σ(ξ))
|x(η(ξ))|γ−1x(η(ξ)) = 0 (33)

where β ≥ 1. It is easy to see that (5) is satisfied. Additionally

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ = γ lim inf

ξ→∞
Bβ(ξ)

∫ ∞

ξ

β

τ Bβ(τ)B(σ(τ))
∆τ

≥ γ lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ

(
−1

Bβ(τ)

)∆
∆τ = γ.

Hence, Theorem 2 implies that every solution of (33) is oscillatory if

β ≥ 1 and γ >
ββ

lβ(β−1)(β + 1)β+1
.

3. Oscillation Criteria of (4) when γ ≤ β

From the same, we can easily prove the following oscillation criterion when γ ≤ β.

Theorem 3. Let 0 < β ≤ 1 and (5) holds. If l > 0 and

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ
ω(τ)c(τ)∆τ >

ββ

lβ(1−β)(β + 1)β+1
,

where

c(ξ) := c(ξ)
[∫ ∞

ξ
φ(τ)c(τ)∆τ

] β
γ−1

,

then every solution of (4) is oscillatory.

Theorem 4. Let β ≥ 1, and (5) holds. If l > 0 and

lim inf
ξ→∞

Bβ(ξ)
∫ ∞

ξ
φ(τ)c(τ)∆τ >

ββ

lβ(β−1)(β + 1)β+1
, (34)

then every solution of (4) is oscillatory.

4. Discussions

(1) In the present work, we established some new improved Hille-type criteria, which
can be applied to (4) in the cases where γ ≥ β and γ ≤ β and for both advanced and
delayed cases without the restrictive condition in contrast to [23,24].

(2) The results in this paper are correct for various species of time scales, e.g., T = R,
T = Z, T = hZ with h > 0, T = qN0 , q > 1 and T = N2

0, etc. (see [14]).
(3) It is easy to see the obtained results have extended related contributions to the

differential equations of second-order, for instance conditions (18) and (27) reduces
to (8) in the case where T = R, γ = β = 1, b(ξ) = 1, and η(ξ) ≤ ξ.
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(4) Regarding dynamic equations on time scales, the oscillation criteria here are an
important improvement compared to the literature outcomes. In particular, our
results improve those reported in [28]; see the following details. Let β ≥ 1. By dint of

Bβ(ξ)
∫ ∞

ξ
φ(τ)Q(τ)∆τ ≥ Bβ(ξ)

∫ ∞

σ(ξ)
φ(τ)Q(τ)∆τ

and
ββ

lβ(β−1)(β + 1)β+1
<

ββ

lβ2
(β + 1)β+1

for 0 < l < 1,

Theorems 2 and 3 improve ([28], Theorems 4 and 8) (conditions (27) and (34) im-
proves (12)).

(5) It would be of interest to establish Hille-type oscillation criteria of (4) assuming that∫ ∞

ξ0

b−
1
β (τ)∆τ < ∞.

It would be nice to find work devoted to numerical analysis and real-world applications.
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