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Abstract: In this paper, for solving the nonlinear Rosenau-KdV equation, a conservative implicit
two-level nonlinear scheme is proposed by a new numerical method named the multiple integral
finite volume method. According to the order of the original differential equation’s highest derivative,
we can confirm the number of integration steps, which is just called multiple integration. By multiple
integration, a partial differential equation can be converted into a pure integral equation. This is very
important because we can effectively avoid the large errors caused by directly approximating the
derivative of the original differential equation using the finite difference method. We use the multiple
integral finite volume method in the spatial direction and use finite difference in the time direction
to construct the numerical scheme. The precision of this scheme is O(τ2 + h3). In addition, we
verify that the scheme possesses the conservative property on the original equation. The solvability,
uniqueness, convergence, and unconditional stability of this scheme are also demonstrated. The
numerical results show that this method can obtain highly accurate solutions. Further, the tendency
of the numerical results is consistent with the tendency of the analytical results. This shows that the
discrete scheme is effective.

Keywords: multiple integral finite volume method; finite difference method; Rosenau-KdV; conser-
vation; solvability; convergence

1. Introduction

Proposed by Korteweg and de Vries, the Korteweg–de Vries (KdV) equation,

ut + uux + uxxx = 0 (1)

has been widely studied. It can describe ion–phonon waves, magnetic fluid waves in cold
plasma, unidirectional shallow water waves with small amplitude and long waves, and
other wave processes in some physical and biological systems.

It has a wide range of physical applications, so there is great interest in this equation.
A great many numerical methods have been proposed to obtain the numerical solutions
of KdV equations [1–5]. In addition, [6] developed a new integral equation using the
negative-order KdV equation and derived multiple soliton solutions, while [7] created
various negative-order KdV equations in (3 + 1) dimensions and discussed the solutions
for each derived model.

Given the shortcomings of the KdV equation in describing wave–wave and wave–
wall interactions, Rosenau [8,9] proposed the Rosenau equation to cope with the compact
discrete dynamic system.

ut + uxxxxt + ux + uux = 0 (2)

The existence, uniqueness, and regularity of solutions were derived by Park [10]. Since
then, several numerical methods have been studied for the Rosenau equation. For exam-
ple, ref [11] used the Petviashvili iteration method to construct numerical solitary wave
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solutions; ref [12] applied Galerkin mixed finite element methods to (2) by employing a
splitting technique; ref [13] discussed new methods to expand solutions for wave equations
like Rosenau-type equations with damping terms; ref [14] constructed an implicit Crank–
Nicolson formula of the mixed finite element method for nonlinear fourth-order Rosenau
equations; and [15] proposed a meshfree method based on the radial basis function for
the Rosenau equation and other higher-order partial differential equations(PDEs). The
long-time behavior of solutions was investigated in [16].

To better study nonlinear waves, the viscous term uxxx needs to be included.

ut + uxxxxt + ux + uux + uxxx = 0 (3)

Equation (3) is usually called the Rosenau-KdV equation. The authors of [17,18]
proposed conservative schemes for the Rosenau-KdV equation based on the finite differ-
ence method. The authors of [19] proposed a Crank–Nicolson meshless spectral radial
point interpolation (CN-MSRPI) method for the nonlinear Rosenau-KdV equation. The
authors of [20] solved the equation by the first-order Lie–Trotter and second-order Strang
time-splitting techniques combined with quintic B-spline collocation, while [21] studied
numerical solutions by using the subdomain method based on sextic B-spline basis func-
tions. Although various methods have been proposed, we wonder whether there might
be a new method with higher accuracy and efficiency that can keep some properties of
the original partial differential equation. Further, research on the Rosenau-KdV equation
under certain conditions is relatively lacking.

In this paper, we consider the Rosenau-KdV Equation (4) with initial condition

u(x, 0) = u0(x), x ∈ [xl , xr] (4)

and boundary conditions

u(xl , t) = u(xr, t) = 0, ux(xl , t) = ux(xr, t) = 0, t ∈ [0, T] (5)

Here, u0(x) is a known smooth function, and xl and xr are, respectively, the left
border and the right border of x.

Theorem 1. The system (3)–(5) satisfies the following conservative property:

E(t) = ‖u‖2
L2 + ‖uxx‖2

L2 = E(0) = Const. (6)

Here, ‖u ‖2
L2 =

xr∫
xl

u2 dx.

Proof. Integrate both sides of Equation (3) from xl to xr and apply (5); we thus obtain

xr∫
xl

(ut + uxxxxt + uxx + ux + uux)u dx =
1
2

∂

∂t

(
‖u ‖2

L2 + ‖uxx‖2
L2

)
= 0 (7)

Let E(t) = ‖u‖2
L2 + ‖uxx‖2

L2 . Then we get

E(t) = ‖u‖2
L2 + ‖uxx‖2

L2 = E(0) = Const. (8)

Hence, the system (3)–(5) meets the conservative property. �

In this paper, we present a two-level implicit nonlinear discrete scheme for the
Rosenau-KdV Equations (3)–(5) by using a new method named the multiple integral
finite volume method (MIFVM). The remaining contents of this paper are arranged as
follows: In Section 2, we introduce MIFVM in detail and propose a numerical scheme. The
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conservative property of this scheme is also discussed. In Section 3, the solvability of this
numerical scheme is derived. Then, in Section 4, we show some prior estimates. According
to the prior estimates, we demonstrate the convergence with order O(τ2 + h3) and uncon-
ditional stability of this numerical scheme in Section 5. In Section 6, the uniqueness of this
numerical solution is verified with the classic theorem. Finally, we verify the effectiveness
of the numerical scheme via some numerical experiments in Section 7.

2. A Two-Level Implicit Nonlinear Discrete Scheme and Its Conservative Law
2.1. Notation

Let h and τ be uniform step sizes in the spatial and temporal directions, respec-
tively. Let xj = xl + jh(j = 0, 1, · · · , J), tn = nτ(n = 0, 1, · · · , N), where h = (xr − xl)/J,
τ = T/N. Further, let uj = uj(t) =u(xl + jh, t) , un

j = u(xl + jh, tn), Z0
h = {uj|u0 = uJ = 0,

j = 0, 1, · · · , J}, and Ωh =
{

xj
∣∣j = 0, 1, · · · , J

}
. In this paper, we let C denote a generic

positive constant independent of h and τ . The difference operators, inner product, and
norms we defined are shown below.

un+ 1
2

j =
un+1

j +un
j

2

(
un

j

)
x
=

un
j+1−un

j
h ,

(
un

j

)
x
=

un
j −un

j−1
h ,

(
un

j

)
x̂
=

un
j+1−un

j−1
2h ,(

un
j

)
xx

=
(

un
j

)
xx

=
un

j+1−2un
j +un

j−1
h2 ,

(
un

j

)
xxx̂

=
un

j+2−2un
j+1+2un

j−1−un
j−2

2h3 ,(
un

j

)
xxxx

=
un

j+2−4un
j+1+6un

j −4un
j−1+un

j−2

h4 ,
(

un+ 1
2

j

)
t̂
=

un+1
j −un

j
τ ,

‖un‖ =
√
(un, un), ‖un‖∞ = max

xj∈Ωh

∣∣∣un
j

∣∣∣, (un, vn) =
J

∑
j=0

un
j vn

j h

However, we should note that if the inner product operates on different functions,

there will be different ranges of values of j, for example, (un
x , vn

x) =
J−1
∑

j=0

(
un

j

)
x

(
vn

j

)
x
h and

(un
x , vn

x) =
J

∑
j=1

(
un

j

)
x

(
vn

j

)
x
h.

Lemma 1. For any two mesh functions u, v ∈ Z0
h, the following equations hold.

(ux, v) = −(u, vx), (uxx, v) = −(ux, vx) , (ux̂, v) = −(u, vx̂)

Furthermore, if
(
un

0
)

xx =
(

un
J

)
xx

= 0, then ((un)xxx x, un) = ‖un
xx‖

2.

Lemma 2. For any mesh function u ∈ Z0
h, the following equation holds.

‖ux̂‖2 ≤ ‖ux‖2 (9)

Lemma 3. For any discrete function u ∈ Z0
h, we have

(ϕ(u), u) =
J−1

∑
j=1

1
3

(
uj

)
x̂

(
uj−1 + uj + uj+1

)
ujh = 0, (10)

where ϕ(uj) =
1
3

(
uj

)
x̂

(
uj−1 + uj + uj+1

)
.

Proof. Because u ∈ Z0
h, we have
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(ϕ(u), u) = 1
6h

J−1
∑

j=1

[
uj+1uj − ujuj−1 +

(
uj+1

)2
−
(

uj−1

)2
]

uj

= 1
6h

[
J−2
∑

j=1

(
uj + uj+1

)
ujuj+1 −

J−1
∑

j=2

(
uj−1 + uj

)
uj−1uj

]
= 0

(11)

�

2.2. The Multiple Integral Finite Volume Method(MIFVM)

In this paper, we use a method named MIFVM to construct a two-level implicit nonlin-
ear scheme for the Rosenau-KdV Equations (3)–(5).The method uses multiple integrals and
combines the finite difference method with the finite volume method. We thus discretize
the original PDE into separate spatial and temporal directions.

In the spatial x direction, firstly, by multiple integrals, we turn the original differential
Equation (3), with unknown function u and its derivative, into an integral equation with
only the unknown function. This is very important because we can effectively avoid the
large errors caused by directly approximating the derivative of the original differential
equation using the finite difference method. We use the multiple integral finite volume
method in the spatial direction and use finite difference in the time direction to construct
the numerical scheme. Firstly, in the spatial direction, the number of integration steps
m depends on the order of the highest derivative in the x direction of the original PDE.
Considering the original Equation (3), the order of the highest derivative in the x direction
is four, so m = 24 − 1 = 15. Now, we define a 15-time integral,

∫
xxxx

u =
∫

xxxx
u(x, t) de f

xj+ε8∫
xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

u(x, t) dx

(12)

and we treat original Equation (2) using integral (12). Then, we can get

xj+ε8∫
xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

ut dx

+
xj+ε8∫

xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

uxxxxt dx

+
xj+ε8∫

xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

ux dx

+
xj+ε8∫

xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

uux dx

+
xj+ε8∫

xj+ε7

dx f2

xj+ε7∫
xj+ε6

dx f1

xj+ε6∫
xj+ε5

dxe2

xj+ε5∫
xj

dxe1

xj∫
xj−ε4

dxd2

xj−ε4∫
xj−ε3

dxd1

xj−ε3∫
xj−ε2

dxc2

xj−ε2∫
xj−ε1

dxc1

x f2∫
x f1

dx f

xe2∫
xe1

dxe

xd2∫
xd1

dxd

xc2∫
xc1

dxc

x f∫
xe

dxb

xd∫
xc

dxa

xb∫
xa

uxxx dx = 0

(13)
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We then use Lagrange interpolation to approximate u(xj ± εi, t)(i = 1, 2, · · · , 8),
because they aren’t defined on grid nodes. In addition, to obtain a high-precision numerical
scheme, the following Lagrange interpolation polynomials are used.

u(x, t) =
(x−xj)(x−xj+1)

2h2 uj−1(t)−
(x−xj−1)(x−xj+1)

h2 uj(t)

+
(x−xj−1)(x−xj)

2h2 uj+1(t) + O(h3)
(14)

u(x, t) =
(x−xj−1)(x−xj+1)(x−xj+2)

12h3 uj−2(t)

− (x−xj−2)(x−xj+1)(x−xj+2)
6h4 uj−1(t)

+
(x−xj−2)(x−xj−1)(x−xj+2)

6h4 uj+1(t)

− (x−xj−2)(x−xj−1)(x−xj+1)
12h4 uj+2(t) + O(h4)

(15)

and
u(x, t) =

(x−xj−1)(x−xj)(x−xj+1)(x−xj+2)
24h4 uj−2(t)

− (x−xj−2)(x−xj)(x−xj+1)(x−xj+2)
6h4 uj−1(t)

+
(x−xj−2)(x−xj−1)(x−xj+1)(x−xj+2)

4h4 uj(t)

− (x−xj−2)(x−xj−1)(x−xj)(x−xj+2)
6h4 uj+1(t)

+
(x−xj−2)(x−xj−1)(x−xj)(x−xj+1)

24h4 uj+2(t) + O(h5)

(16)

Secondly, in the temporal direction, we use center difference,

(
un+ 1

2
j

)
t
=

un+1
j − un

j

τ
+ O

(
τ2
)

(17)

to approximate the one-order derivative. Then, the numerical scheme will possess two-
order accuracy in the temporal direction.

With the 15-time integral, Lagrange interpolation, and center difference, we obtain
a series of numerical schemes with eight parameters, εi(i = 1, 2, · · · , 8). As soon as we
identify the eight parameters, we obtain a specific scheme. In fact, finally, we want to
obtaina specific scheme that can keep some properties of the original PDE, such as the
conservative property.

2.3. A Two-Level Implicit Nonlinear Discrete Scheme

According to the specific steps introduced above, to retain theenergy conservative
property of problem (3)–(5), we choose ε1 = −ε4 = −ε5 = ε8 =

√
3h and ε2 = −ε3 =

−ε6 = ε7 =
√

3h/3. Now, let us substitute the eight parameters and (17) into (13). After
simplifying, we obtain a two-level implicit nonlinear discrete scheme for (3)–(5). This is
presented below.

1
9

((
un+ 1

2
j−1

)
t̂
+ 7
(

un+ 1
2

j

)
t̂
+

(
un+ 1

2
j+1

)
t̂

)
+

(
un+ 1

2
j

)
xxxxt̂

+

(
un+ 1

2
j

)
x̂

+ 1
3

(
un+ 1

2
j

)
x̂

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)
+

(
un+ 1

2
j

)
xxx̂

= 0,

1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1

(18)

u0
j = u0

(
xj
)
, 1 ≤ j ≤ J − 1 (19)

un
0 = un

J = 0, (un
0 )x =

(
un

J

)
x
= 0, 0 ≤ n ≤ N − 1 (20)
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2.4. Conservative Law of the Discrete Scheme

Theorem 2. The two-level implicit nonlinear numerical scheme (18) possesses the following property:

En =
7
9
‖un‖2 +

2h
9

J−1

∑
j=0

un
j un

j+1 + ‖un
xx‖

2 = En−1 = . . . = E0 (21)

Proof. Computing the inner product of (18) with 2un+ 1
2
(
i.e.un+1 + un), we have

7
9τ

(
‖un+1‖2 − ‖un‖2

)
+ 2h

9τ

(
J−1
∑

j=0
un+1

j un+1
j+1 −

J−1
∑

j=0
un

j un
j+1

)
+ 1

τ

(
‖un+1

xx ‖
2 − ‖un

xx‖
2
)
+
(

ϕ(un+ 1
2 ), 2un+ 1

2

)
= 0

(22)

Let En = 7
9‖un‖2 + 2h

9

J−1
∑

j=0
un

j un
j+1 + ‖un

xx‖
2. Applying Lemma 3, we have

En+1 = En. (23)

Thus, we obtain En = · · · = E0, which proves Theorem 2. It shows that this numerical
scheme can retain the conservation property of the original PDE. �

3. Solvability

The following lemmas will be very helpful for proving the solvability of the discrete
scheme (17)–(19).

Lemma 4. Ref [22] Let H be a finite-dimensional inner product space; suppose that g : H → H ,
is continuous and there exists an α > 0 such that (g(x), x) > 0 for all x ∈ H with ‖x‖ = α. Then
there is x∗ ∈ H such that g(x∗) = 0 and ‖x∗‖ ≤ α.

It is a classic theory and comes from the paper Existence and uniqueness theorems for
solutions of nonlinear boundary value problems. This article was published in the Proceedings of
Symposia in Applied Mathematics in 1965.

Lemma 5. 2M− E is a positive definite matrix, where E is an identity matrix and

M =



1 0 0 · · · 0 0 0
0 7 1 · · · 0 0 0
0 1 7 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 7 1 0
0 0 0 · · · 1 7 0
0 0 0 · · · 0 0 1


(J+1)×(J+1)

Proof. We know that
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2M− E =



1 0 0 · · · 0 0 0
0 13 2 · · · 0 0 0
0 2 13 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 13 2 0
0 0 0 · · · 2 13 0
0 0 0 · · · 0 0 1


(J+1)×(J+1)

Let Pi(1 ≤ i ≤ J + 1) be ordered principal minor determinants of 2M− E. Obviously,

we have P1 = 1, P2 = 13, P3 =

∣∣∣∣∣∣
1 0 0
0 13 2
0 2 13

∣∣∣∣∣∣ = 165, and PJ = PJ+1. In addition, from

2M− E, we have
Pi = 13Pi−1 − 4Pi−2, 3 ≤ i ≤ J.

So, when i = 4, we have P4 = 13P3 − 4P2 > P3. Similarly, when 5 ≤ i ≤ J, we have

PJ > PJ−1 > · · · > P5 > P4

Then, we have

PJ+1 = PJ > PJ−1 > · · · > P4 > P3 > P2 > P1 > 0

Hence, 2M− E is a positive definite matrix. �

Theorem 3. There is a un+1 ∈ Z0
h that satisfies the discrete scheme (18)–(20).

Proof. Suppose that u0, u1, . . . , un−1 and un satisfy (18)–(20) for n ≤ N − 1. Next, we prove
that there is a un+1 that satisfies the discrete scheme (18)–(20).

Let g be an operator on Z0
h defined by

g(v) =
2
9

A(v− un) + 2(v− un)xxx x + τvx̂ +
τ

3
vx̂
(
vj−1 + vj + vj+1

)
+ τvxxx̂ (24)

where

A =



1 0 0 · · · 0 0 0
1 7 1 · · · 0 0 0
0 1 7 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 7 1 0
0 0 0 · · · 1 7 1
0 0 0 · · · 0 0 1


(J+1)×(J+1)

, N =



0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 1
0 0 0 · · · 0 0 0


(J+1)×(J+1)

,

v =


v0
v1
v2
...
vJ

 ∈ Z0
h

Obviously, g is continuous, A = M + N, and (N v, v) = v0v1 + vJ−1vJ = 0. Let
λ0, λ1, · · · , λJ be the eigenvalues of M and let λmin =

{
λ0, λ1, · · · , λJ

}
. Take the inner

product of (24) with v. By Lemma 1 and Lemma 3, we have
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(g(v), v) = 2
9 (Av, v)− 2

9 (Aun, v) + 22‖vxx‖2 − 22(vxx, un
xx)

≥ 2
9 (Mv, v)− 2

9‖Aun‖ · ‖v‖+ 2‖vxx‖2 − 2‖vxx‖ · ‖un
xx‖

≥ 2
9 (λ0v2

0 + · · ·+ λJv2
J )−

1
9‖Aun‖2 − 1

9‖v‖
2 + ‖vxx‖2 − ‖un

xx‖
2

≥ (2λmin−1)
9 ‖v‖2 − 1

9‖Aun‖2 − ‖un
xx‖

2

(25)

From Lemma 2, we can guarantee that 2λmin − 1 > 0. Therefore, let

‖v‖2 =
‖Aun‖2 + 9‖un

xx‖
2 + 1

2λmin − 1
(26)

For all v ∈ Z0
h, we have (g(v), v) > 0. From Lemma 4, there is a v∗ = un+un+1

2 ∈ Z0
h

such that g( v∗) = 0. So, there is a un+1 = 2v∗ − un that satisfies the scheme (18)–(20). �

4. Some Prior Estimates for the Discrete Scheme

Lemma 6. Suppose that u0 ∈ H2
0 [xl , xr]; then the solution of (3)–(5) satisfies

‖u‖ ≤ C, ‖ux‖ ≤ C, ‖u‖∞ ≤ C, ‖ux‖∞ ≤ C (27)

Proof. From (16), we have
‖u‖ ≤ C, ‖uxx‖ ≤ C (28)

Then, by the Holder inequality and the Schwarz inequality, we obtain

‖ux‖2 =
∫ xr

xl
uxuxdx = uux|xr

xl
−
∫ xr

xl
uuxxdx = −

∫ xr
xl

uuxxdx

≤ ‖u‖ · ‖uxx‖ ≤ 1
2

(
‖u‖2 + ‖uxx‖2

) (29)

Thus, ‖ux‖ ≤ C. By the Sobolev inequality we have ‖u‖∞ ≤ C, ‖ux‖∞ ≤ C. �

Lemma 7. [Discrete Sobolev Inequality] [22]. There are two constants C1 and C2 such that

‖un‖∞ ≤ C1‖un‖+ C2‖un
x‖ (30)

Lemma 8. Assume that u ∈ Z0
h; then the solution of the discrete scheme (18)–(20) satisfies

‖un
xx‖ ≤ C, ‖un‖ ≤ C, ‖un

x‖ ≤ C, ‖un‖∞ ≤ C, ‖un
x‖∞ ≤ C. (31)

Proof. From (21) we have
‖un

xx‖ ≤ C, ‖un‖ ≤ C (32)

By Lemma 1 and the Cauchy–Schwarz inequality, we obtain

‖ux‖2 ≤ ‖un‖ · ‖un
xx‖ ≤

1
2

(
‖un

xx‖
2 + ‖un‖2

)
≤ C

Applying Lemma 7, we also obtain

‖un‖∞ ≤ C, ‖un
x‖∞ ≤ C.

�
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5. Convergence and Stability of the Discrete Scheme

Let vn+ 1
2

j = v
(

xj, tn+ 1
2

)
be the solution of (3)–(5). By substituting this into (18), we

obtain the truncation error of scheme (17)–(19)

Ern+ 1
2

j = 1
9

((
vn+ 1

2
j−1

)
t̂
+ 7
(

vn+ 1
2

j

)
t̂
+

(
vn+ 1

2
j+1

)
t̂

)
+

(
vn+ 1

2
j

)
xxxxt̂

+

(
vn+ 1

2
j

)
x̂

+ 1
3

(
vn+ 1

2
j

)
x̂

(
vn+ 1

2
j−1 + vn+ 1

2
j + vn+ 1

2
j+1

)
+

(
vn+ 1

2
j

)
xxx̂

(33)

By Taylor expansion and Lagrange interpolation, we know that Ern+ 1
2

j = O(τ2 + h3).

Theorem 4. Suppose u0 ∈ H2
0 [xl , xr] and u(x, t) ∈ C5,3; then the numerical solution un

j of scheme

(17)–(19) converges to the solution vn+ 1
2

j of the initia lboundary value problem (3)–(5) with order
O
(
τ2 + h3) by the norm ‖ · ‖∞.

Proof. Let en+ 1
2

j = vn+ 1
2

j − un+ 1
2

j and subtract (18) from (33); we then have

Ern+ 1
2

j = 1
9

((
en+ 1

2
j−1

)
t̂
+ 7
(

en+ 1
2

j

)
t̂
+

(
en+ 1

2
j+1

)
t̂

)
+

(
en+ 1

2
j

)
xxxxt̂

+

(
en+ 1

2
j

)
x̂
+

(
en+ 1

2
j

)
xxx̂

+ (ϕ(vn+ 1
2

j )− ϕ(un+ 1
2

j )).
(34)

Computing the inner product of (34) with 2en+ 1
2
(
i.e.en+1 + en), we have

(
Erj

n+ 1
2 , 2en+ 1

2

)
= 7

9τ ‖en+1‖2
+ 2h

9τ

J−1
∑

j=1
en+1

j en+1
j+1 −

7
9τ ‖en‖2 − 2h

9τ

J−1
∑

j=1
en

j en
j+1

+ 1
τ

(
‖en+1

xx ‖
2 − ‖en

xx‖
2
)
+
(

ϕ(vn+ 1
2 )− ϕ(un+ 1

2 ), 2en+ 1
2

) (35)

From Lemmas 6 and 7 and the Cauchy–Schwarz inequality, we obtain

−
(

ϕ(vn+ 1
2 )− ϕ(un+ 1

2 ), 2en+ 1
2

)
= − 2

3 h
J−1
∑

j=1

(
vn+ 1

2
j−1 + vn+ 1

2
j + vn+ 1

2
j+1

)(
vn+ 1

2
j

)
x̂
en+ 1

2
j + 2

3 h
J−1
∑

j=1

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)(
un+ 1

2
j

)
x̂
en+ 1

2
j

= − 2
3 h

J−1
∑

j=1

(
en+ 1

2
j−1 + en+ 1

2
j + en+ 1

2
j+1

)(
vn+ 1

2
j

)
x̂
en+ 1

2
j + 2

3 h
J−1
∑

j=1

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)(
un+ 1

2
j

)
x̂
en+ 1

2
j

− 2
3 h

J−1
∑

j=1

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)(
vn+ 1

2
j

)
x̂
en+ 1

2
j

= − 2
3 h

J−1
∑

j=1

(
en+ 1

2
j−1 + en+ 1

2
j + en+ 1

2
j+1

)(
vn+ 1

2
j

)
x̂
en+ 1

2
j − 2

3 h
J−1
∑

j=1

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)(
en+ 1

2
j

)
x̂
en+ 1

2
j

≤ 2
3 Ch

J−1
∑

j=1

(∣∣∣∣en+ 1
2

j−1

∣∣∣∣+ ∣∣∣∣en+ 1
2

j

∣∣∣∣+ ∣∣∣∣en+ 1
2

j+1

∣∣∣∣)∣∣∣∣en+ 1
2

j

∣∣∣∣+ 2
3 Ch

J−1
∑

j=1

∣∣∣∣(en+ 1
2

j

)
x̂

∣∣∣∣∣∣∣∣en+ 1
2

j

∣∣∣∣
≤ C

(
‖en+1‖2

+ ‖en‖2 + ‖en+1
x̂ ‖2

+ ‖en
x̂‖

2
)

(36)

In addition, we have

(
Erj

n+ 1
2 , 2en+ 1

2

)
=
(

Erj
n+ 1

2 , en+1 + en
)
≤ ‖Ern+ 1

2 ‖
2
+
‖en+1‖2

+ ‖en‖2

2
(37)
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Substituting (36) and (37) into (35), with Lemma 3, we have

7
9‖en+1‖2

+ 2h
9

J−1
∑

j=1
en+1

j en+1
j+1 −

7
9‖en‖2 − 2h

9

J−1
∑

j=1
en

j en
j+1 + ‖en+1

xx ‖
2 − ‖en

xx‖
2

≤ τ‖Ern+ 1
2 ‖

2
+ Cτ

(
‖en+1‖2

+ ‖en‖2 + ‖en+1
x ‖2

+ ‖en
x‖

2 + ‖en
xx‖

2‖en+1
xx ‖

2
) (38)

Let Bn = 7
9‖en‖2 + 2h

9

J−1
∑

i=1
en

i en
i+1 + ‖en

xx‖
2 + ‖en

x‖
2. Obviously, B0 = 0. Then, (38) can

be rewritten as
Bn+1 − Bn ≤ τ‖Ern+ 1

2 ‖
2
+ Cτ

(
Bn+1 + Bn

)
(39)

When τ is sufficiently small that 1− Cτ > 0, we have

Bn+1 ≤ 1+Cτ
1−Cτ Bn + τ

1−Cτ ‖Ern+ 1
2 ‖

2
≤ τ

1−Cτ

n
∑

k=0

(
1+Cτ
1−Cτ

)n−k
‖Erk+ 1

2 ‖
2

≤ O2(τ2 + h3)n+1
∑

k=1

(
1+Cτ
1−Cτ

)k (40)

�

Then we have

Bn ≤ O2
(

τ2 + h3
) n

∑
k=1

(
1 + Cτ

1− Cτ

)k

≤ O2
(

τ2 + h3
) n

∑
k=1

(
1 +

2Cτ

1− Cτ

)k

≤ O2
(

τ2 + h3
)

That is, ‖en‖ ≤ O
(
τ2 + h3), ‖en

x‖ ≤ O
(
τ2 + h3). Using Lemma 8, we have

‖en‖∞ ≤ O
(

τ2 + h3
)

(41)

Similarly, we can prove the following theorem.

Theorem 5. Under the conditions of Theorem 4, the solution un
j of discrete scheme (18)–(20) is

unconditionally stable by the norm ‖ · ‖∞.

6. Uniqueness of the Numerical Solution

Theorem 6. The solution of the discrete scheme (18)–(20) is unique.

Proof. We assume that un and wn are two different solutions of (18)–(20). Let Sn+ 1
2

j =

wn+ 1
2

j − un+ 1
2

j . Then, we have

1
9

((
Sn+ 1

2
j−1

)
t̂
+ 7
(

Sn+ 1
2

j

)
t̂
+

(
Sn+ 1

2
j+1

)
t̂

)
+

(
Sn+ 1

2
j

)
xxxxt̂

+

(
Sn+ 1

2
j

)
x̂
+

(
Sn+ 1

2
j

)
xxx̂

+ 1
3

(
wn+ 1

2
j

)
x̂

(
wn+ 1

2
j−1 + wn+ 1

2
j + wn+ 1

2
j+1

)
− 1

3

(
un+ 1

2
j

)
x̂

(
un+ 1

2
j−1 + un+ 1

2
j + un+ 1

2
j+1

)
= 0

(42)

By computing the inner product of (42) with 2Sn+ 1
2
(
i.e.Sn+1 + Sn), we obtain

7
9τ ‖Sn+1‖2

+ 2h
9τ

J−1
∑

j=1
Sn+1

j Sn+1
j+1 −

7
9τ ‖Sn‖2 − 2h

9τ

J−1
∑

j=1
Sn

j Sn
j+1

+ 1
τ

(
‖Sn+1

xx ‖
2 − ‖Sn

xx‖
2
)
+
(

ϕ(w)− ϕ(u), 2en+ 1
2

)
= 0

(43)
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Let Zn = 7
9‖Sn‖2 + 2h

9

J−1
∑

j=1
Sn

j Sn
j+1 + ‖Sn

xx‖
2 + ‖Sn

x‖
2; we know that Z0= 0. From (43)

we obtain

Zn+1 − Zn ≤ Cτ
(
‖Sn+1‖2

+ ‖Sn‖2 + ‖Sn+1
xx ‖

2
+ ‖Sn

xx‖
2 + ‖Sn+1

x̂ ‖2
+ ‖Sn

x̂‖
2
)

(44)

Similarly, while 1− 2Cτ > 0, we have

Zn+1 ≤ (1 + βτ)Zn ≤ · · · ≤ (1 + βτ)n+1Z0 = 0 (45)

Hence, we have ‖Sn‖2 = 0, where β = 4C
1−2Cτ . This implies that un = wn. The

discrete scheme (18)–(20) is thus uniquely solvable. �

7. Results
7.1. Example

We consider the Rosenau-KdV equation

ut + uxxxxt + ux + uux + uxxx = 0, (x, t) ∈ [−40, 40]× [0, 10] (46)

with initial condition

u(x, 0) =
(

35
312

√
313− 35

24

)
sech4

[
1
24

√
2
√

313− 26x
]

, x ∈ [−40, 40] (47)

and boundary conditions

u(−40, t) = u(40, t) = 0, ux(−40, t) = ux(40, t) = 0, t ∈ [0, 10] (48)

The exact solution is given by

u(x, t) =
(

35
312

√
313− 35

24

)
sech4

{√
2
√

313− 26
24

[
x−

(
1
2
+

1
26

√
313
)

t
]}

(49)

7.2. Figures, Tables, and Schemes

We discretize the problem (46)–(48) using the numerical scheme (18)–(20).
From Figures 1–6, we can see that the numerical solution is consistent with the

exact solution.
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Mathematics 2021, 9, 1183 12 of 15

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 1. Numerical solution and exact solution with =1/4h τ= , 0t = . 

 

Figure 2. Numerical solution and exact solution with =1/4h τ= , 5t = . 

u(
x,

t)

-40 -30 -20 -10 0 10 20 30 40
space x

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t=5,Numerical Solution
t=5,True Solution

Figure 2. Numerical solution and exact solution with h = τ= 1/4, t = 5.

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 3. Numerical solution and exact solution with =1/4h τ= , 10t = . 

 

Figure 4. Numerical solution and exact solution with =1/8h τ= , 0t = . 

 

Figure 5. Numerical solution and exact solution with =1/8h τ= , 5t = . 

-40 -30 -20 -10 0 10 20 30 40
space x

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t=10,Numerical Solution
t=10,True Solution

Figure 3. Numerical solution and exact solution with h = τ= 1/4, t = 10.

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 3. Numerical solution and exact solution with =1/4h τ= , 10t = . 

 

Figure 4. Numerical solution and exact solution with =1/8h τ= , 0t = . 

 

Figure 5. Numerical solution and exact solution with =1/8h τ= , 5t = . 

-40 -30 -20 -10 0 10 20 30 40
space x

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t=10,Numerical Solution
t=10,True Solution

Figure 4. Numerical solution and exact solution with h = τ= 1/8 , t = 0.



Mathematics 2021, 9, 1183 13 of 15

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 3. Numerical solution and exact solution with =1/4h τ= , 10t = . 

 

Figure 4. Numerical solution and exact solution with =1/8h τ= , 0t = . 

 

Figure 5. Numerical solution and exact solution with =1/8h τ= , 5t = . 

-40 -30 -20 -10 0 10 20 30 40
space x

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t=10,Numerical Solution
t=10,True Solution

Figure 5. Numerical solution and exact solution with h = τ= 1/8 , t = 5.

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 18 
 

 

 

Figure 6. Numerical solution and exact solution with =1/8h τ= , 10t = . 

In Table 1, the errors with various h  and τ  are given. It is obvious that the errors 
are reducing with decreasing h  and τ . Hence, our discrete scheme is reasonable. 

( , ) / ( / 2, / 2)n ne h e hτ τ  and 
( , ) / ( / 2, / 2)n ne h e hτ τ

∞ ∞  are given in Table 2, 
which interprets the convergence rates of the numerical scheme with various h  and τ  

and various norms. From Table 3, we can see that the discrete nE  is conservative. This 
property is consistent with the original equation. The numerical experiment shows that 
our discrete scheme is efficient. 

Table 1. The errors at different times with various h  and τ . 

 1 / 4h τ= =  1 / 8h τ= =  

 ne
∞  ne  ne

∞  ne  

2t =  42.31861708 10−×  31.23912354 10−×  55.80241511 10−×  44.38690718 10−×  
4t =  44.68968494 10−×  32.46559087 10−×  41.17406720 10−×  48.73135975 10−×  
6t =  47.06502002 10−×  33.66896388 10−×  41.77078291 10−×  31.30146495 10−×  
8t =  49.33077015 10−×  34.84157574 10−×  42.34850462 10−×  31.72786004 10−×  

10t =  31.14711186 10−×  35.97898965 10−×  42.91676007 10−×  32.16772647 10−×  

Table 2. The convergence rateswith various h  and τ  and various norms. 

 ( , ) / ( / 2, / 2)n ne h e hτ τ  ( , ) / ( / 2, / 2)n ne h e hτ τ
∞ ∞

 

 1 / 2hτ = =  1 / 4hτ = =  1 / 8hτ = =  1 / 2hτ = =  1 / 4hτ = =  1 / 8hτ = =  
2t =  — 2.81334134 2.82459484 — 3.98408169 3.99595175 
4t =  — 2.81287147 2.82383379 — 3.96857153 3.99439224 
6t =  — 2.81210118 2.81910310 — 3.98033046 3.98977197 
8t =  — 2.81112183 2.80206476 — 3.96316463 3.97306867 

10t =  — 2.81001148 2.75818454 — 3.97437701 3.93282902 

Table 3. Discrete nE  values at different times with various h  and τ . 

 1 / 2h τ= =  1 / 4h τ= =  1 / 8h τ= =  
2t =  3.08675012 6.17349199 12.34697937 
4t =  3.08676651 6.17350095 12.34698364 

-40 -30 -20 -10 0 10 20 30 40
space x

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

u(
x,

t)

t=10,Numerical Solution
t=10,True Solution

Figure 6. Numerical solution and exact solution with h = τ= 1/8 , t = 10.

In Table 1, the errors with various h and τ are given. It is obvious that the
errors are reducing with decreasing h and τ. Hence, our discrete scheme is reasonable.
‖en(h, τ)‖/‖en(h/2, τ/2)‖ and ‖en(h, τ)‖∞/‖en(h/2, τ/2)‖∞ are given in Table 2, which
interprets the convergence rates of the numerical scheme with various h and τ and various
norms. From Table 3, we can see that the discrete En is conservative. This property is
consistent with the original equation. The numerical experiment shows that our discrete
scheme is efficient.
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Table 1. The errors at different times with various h and τ.

h=τ=1/4 h=τ=1/8

‖en‖∞ ‖en‖ ‖en‖∞ ‖en‖

t = 2 2.31861708× 10−4 1.23912354× 10−3 5.80241511× 10−5 4.38690718× 10−4

t = 4 4.68968494× 10−4 2.46559087× 10−3 1.17406720× 10−4 8.73135975× 10−4

t = 6 7.06502002× 10−4 3.66896388× 10−3 1.77078291× 10−4 1.30146495× 10−3

t = 8 9.33077015× 10−4 4.84157574× 10−3 2.34850462× 10−4 1.72786004× 10−3

t = 10 1.14711186× 10−3 5.97898965× 10−3 2.91676007× 10−4 2.16772647× 10−3

Table 2. The convergence rateswith various h and τ and various norms.

‖en(h, τ)‖/‖en(h/2, τ/2)‖ ‖en(h, τ)‖∞/‖en(h/2, τ/2)‖∞

τ=h=1/2 τ=h=1/4 τ=h=1/8 τ=h=1/2 τ=h=1/4 τ=h=1/8

t = 2 — 2.81334134 2.82459484 — 3.98408169 3.99595175

t = 4 — 2.81287147 2.82383379 — 3.96857153 3.99439224

t = 6 — 2.81210118 2.81910310 — 3.98033046 3.98977197

t = 8 — 2.81112183 2.80206476 — 3.96316463 3.97306867

t = 10 — 2.81001148 2.75818454 — 3.97437701 3.93282902

Table 3. Discrete En values at different times with various h and τ.

h=τ=1/2 h=τ=1/4 h=τ=1/8

t = 2 3.08675012 6.17349199 12.34697937

t = 4 3.08676651 6.17350095 12.34698364

t = 6 3.08679087 6.17351432 12.34698593

t = 8 3.08681918 6.17352996 12.34696462

t = 10 3.08684844 6.17354622 12.34685552

8. Conclusions

In this paper, a second-order implicit nonlinear discrete scheme for the Rosenau-KdV
equation is proposed via the multiple integral finite volume method (MIFVM). The discrete
scheme possesses the conservative property of the original equation. The solvability,
uniqueness, convergence, and unconditional stability of the scheme were demonstrated
in detail. Numerical experiments verified that the discrete scheme given by MIFVM
is effective.
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2. Başhan, A. A novel approach via mixed Crank–Nicolson scheme and differential quadrature method for numerical solutions of

solitons of mKdV equation. Pramana-J. Phys. 2019, 92, 84. [CrossRef]
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