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Abstract: Two generalized mathematical models with memory for the concentration of tumor
cells have been analytically studied using the cylindrical coordinate and the integral transform
methods. The generalization consists of the formulating of two mathematical models with Caputo-
time fractional derivative, models that are suitable to highlight the influence of the history of
tumor evolution on the present behavior of the concentration of cancer cells. The time-oscillating
concentration of cancer cells has been considered on the boundary of the domain. Analytical
solutions of the fractional differential equations of the mathematical models have been determined
using the Laplace transform with respect to the time variable and the finite Hankel transform with
respect to the radial coordinate. The positive roots of the transcendental equation with Bessel
function J0(r) = 0, which are needed in our study, have been determined with the subroutine
rn = root(J0(r), r, (2n− 1)π/4, (2n + 3)π/4), n = 1, 2, . . . of the Mathcad 15 software. It is found
that the memory effects are stronger at small values of the time, t. This aspect is highlighted in the
graphical illustrations that analyze the behavior of the concentration of tumor cells. Additionally, the
concentration of cancer cells is symmetric with respect to radial angle, and its values tend to be zero
for large values of the time, t.

Keywords: cancer mathematical model; caputo derivative; integral transform; analytical solutions

1. Introduction

Cancer is the world’s second most common cause of death and is responsible for an
estimated 9.6 million deaths per year. One of the most useful and inexpensive approaches
to determine and predict the stage, size, and growth of a cancer tumor as a reaction of the
diffusion process is the mathematical modeling.

The problem of growth of glioma, a kind of brain tumor, has been modeled based
upon tumor cell diffusion coupled with growth rate by Cook et al. [1], Tracqui et al. [2], and
Woodward et al. [3], who incorporated the two most important processes in the growth
of brain tumors, namely, the proliferation of cells and the diffusion process, resulting in a
reaction diffusion equation.

A generalized diffusion-based cancer tumor model has been described by Burgess et al. [4]:

ut = ∇2(Du) + pu− ku (1)

where u(r, t) is cell concentration at time, t, and radius, r (in 3-D space),∇2 is the Laplacian
operator, p is the rate of growth of the cell (proliferation rate of cell), k is the killing rate of
the cell, and D is the diffusion coefficient.
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Moyo and Leach [5] suggested a governing equation of the cancer tumor model with
a K(x, t) = p− k variable killing rate, namely:

ut = uxx − K(x, t)u (2)

where the cancer tumor cell concentration is u(x, t).
Some exact solutions of the previous equations have been determined by the authors

using Lie symmetry analysis. Bokhari et al. [6] have employed the Lie symmetry analysis
method to obtain some exact solutions and conservation laws for killing rate, dependent
on tumor cell density.

A mathematical model for glioblastomas (a highly invasive glioma in the brain) has
been described by Murray [4], which includes the two main parameters of tumor growth,
namely the diffusion of cancer cells and the rate of cell proliferation. The solution to
the model equation based on patient parameters of tumor growth illustrates why certain
patients remain alive after identical prescription medications, specifically surgical resection
(removal) and radiation exposure.

In all the above models, the diffusion of the cell has been considered as the time rate
of change of the cell density. It is well understood that, in many cases, the best description
of the model may be the assumption of fractional diffusion.

Fractional (non-integer order) calculus can provide a succinct model to better explain
some dynamic events. The fractional calculus is successfully applied in physics, chemistry,
biology, and materials science to describe dielectrics, viscoelastic materials, and many
transport processes. The fractional calculus with Caputo differential operators [7,8] has
been widely used in many fields of science and engineering over the last few decades.
Caputo amends Darcy’s law by adding a formalism of memory, defined by the time-
fractional derivatives.

Iomin [9] has investigated the influence of cell fission on the transport properties of
the vessel network and developed a mathematical model based on the heuristic arguments
on tumor development. The constructed model is a modification of the so-called comb
structure. In the framework of this model, the author proved that the tumor development
corresponds to the fractional transport of cells. This model could also be a possible
mechanism for diffusive cancers.

A model of the cancer tumor based on the fractional time-derivative has been in-
vestigated by Iyiola and Zaman [10] using the q-homotopy analysis method. They have
determined approximate series solutions for the various considered cases. The conclusion
drawn from the research carried out in their paper is that the therapy-dependent killing
rate, K, does not only need to be a function of time, or of both, position and time, but can
also depend on the cancer cell concentration.

The purpose of this article is to investigate two mathematical models regarding the
cylindrical coordinate of the cancerous tumor in which the concentration of the cancer cells
is time-dependent and also dependent on the radial coordinate.

Further, mathematical models are based on the time-fractional Caputo derivative,
which involves a power-law of the memory kernel (See Appendix A, Equation (A6)). The
fractional partial differential equations of the mathematical models are:

∂αu(r, t)
∂tα

= D
1
r

∂

∂r

(
r

∂u(r, t)
∂r

)
− Ku(r, t), t ≥ 0, r ∈ (0, 1) (3)

and

∂αu(r, θ, t)
∂tα

= D
1
r

∂

∂r

(
r

∂u(r, θ, t)
∂r

)
+

∂2u(r, θ, t)
∂θ2 − Ku(r, θ, t), t ≥ 0, r ∈ (0, 1), θ ∈ (0, 2π) (4)

In the considered models, the diffusion parameter, D, and the killing rate of cells, K, are
assumed to be constant. The solutions to the problems are obtained using the Laplace trans-
form and the finite Hankel transform under appropriate initial and boundary conditions.
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The effects of the memory parameter, as well as time, on the tumor cell concentration,
u, are studied by numerical calculations and graphical illustrations obtained with the
Mathcad software.

2. Solution of the Problems
2.1. The Concentration of Tumor Cells u(r, t)

The generalized concentration of tumor cells u(r, t) given by Equation (3) will be
determined under the following initial and boundary conditions:

u(r, 0) = 0, r ∈ [0, 1] (5)

u(1, t) = H(t)eiωt, t ≥ 0 (6)

To determine the analytical solution of Equation (3) with the initial and boundary
conditions (5) and (6), the Laplace transform with respect to the variable, t, and the finite
Hankel transform with respect to the radial coordinate, r, will be used.

Applying the Laplace transform to Equation (3) and using the initial condition (5), we
obtain the transformed equation:

sαu(r, s) = D
1
r

∂

∂r

(
r

∂u(r, s)
∂r

)
− Ku(r, s) (7)

where u(r, s) =
∞∫
0

u(r, t)e−stdt denotes the Laplace transform of function u(r, t) [11].

The transformed function u(r, s) has to satisfy the boundary condition:

u(1, s) =
1

s− iω
(8)

Applying the finite Hankel transform [12,13] to Equation (7) and using Equation (8),
we get:

uH(rn, s) = Drn
(s−iω)(sα+Dr2

n+K)
J1(rn) =

J1(rn)
rn(s−iω)

− J1(rn)
rn(s−iω)

Fn(s), Fn(s) = sα+K
sα+Dr2

n+K
.

(9)

where rn, n = 1, 2, 3 . . . are the positive roots of the transcendental equation J0(r) = 0 and

uH(rn, s) =
1∫

0
r u(r, s)J0(rrn)dr denotes the finite Hankel transform of the function u(r, s),

whose inverse transform is given by (Appendix A, Equation (A11)):

u(r, s) = 2
∞

∑
n=1

J0(rrn)

J2
1 (rn)

uH(rn, s) (10)

In the above relations, Jα(·) is the Bessel function of the first kind and order, α.
To determine the inverse Laplace transform and the inverse Hankel transform of the

function given by Equation (9), we use (10) and the formula:

L−1
{

sα−β

sα − b

}
= tβ−1Eα,β(btα), Eα,β(z) =

∞

∑
k=o

zk

Γ(αk + β)
, Re(α) > 0, Re(β) > 0 (11)

where Eα,β(z) is the Mittage–Leffler function [14].
Using the above relations and the auxiliary function f (r) = 1, whose finite Hankel

transform is:

fH(rn) =
J1(rn)

rn
, (12)
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we obtain the generalized concentration of cancer cell given by:

u(r, t) = eiωt − 2
∞

∑
n=1

Fn(t)
J0(rrn)

rn J1(rn)
(13)

where

Fn(t) = Eα,1(−antα) +

t∫
0

eiω(t−τ)[iωEα,1(−anτα) + KEα,α(−anτα)]dτ (14)

and an = Dr2
n + K, n = 1, 2, 3 . . ..

For α = 1, the concentration cells (13) has the simpler form:

u(r, t) = eiωt −
∞

∑
n=1

(
K + iω
an + iω

eiωt − an − K
an + iω

e−ant
)

J0(rrn)

rn J1(rn)
(15)

Figures 1 and 2 have been plotted to highlight the influence of the memory parameter,
α, on the concentration of the tumor cells. These figures are presented for different values
of the fractional parameter, α, at four values of time, t, namely t ∈ {0.5, 1, 15, 20}. Figure 1
corresponds to the sine-variation of concentration u(1, t) and Figure 2 corresponds to the
cosine-variation of the concentration u(1, t). It can be observed that, for large values of
time, t, the values of concentration u(r, t) are of the order 10−4 − 10−3, and the influence of
the fractional parameter is insignificant. This behavior is due to the evolution in time of the
Caputo kernel hC(t, α) = t−α

Γ(1−α)
, 0 < α < 1, which has small values for large amounts of

time; therefore, the damping of the rate of concentration is negligible. For this reason, the
influence of the fractional parameter is insignificant for large values of time, t. However,
for small values of time, t, the values of the Caputo kernel have a significant influence on
the rate of concentration. In this case, the memory of the diffusion process has a significant
influence on the concentration of tumor cells. It is easily seen that a diffusion process with
small values of the memory parameter leads to a smaller concentration of the tumor cells
in the case of short time of treatment.

2.2. The Concentration of Tumor Cells u(r, θ, t)

This section deals with the findings of the solution of the fractional differential Equa-
tion (4), along with the initial and boundary conditions:

u(r, θ, 0) = 0, r ∈ [0, 1], θ ∈ [0, 2π] (16)

u(1, θ, t) = H(t)eiωt, t > 0, θ ∈ (0, 2π) (17)

u(r, 0, t) = u(r, 2π, t) = 0, t > 0, r ∈ (0, 1) (18)

Applying the Laplace transform to Equation (4) and using the initial condition (16),
we obtain the transformed equation:

sαu(r, θ, t) = D
1
r

∂

∂r

(
r

∂u(r, θ, s)
∂r

)
+

∂2u(r, θ, s)
∂θ2 − Ku(r, θ, s) (19)

where u(r, θ, s) =
∞∫
0

u(r, θ, t)e−stdt is the Laplace transform of function u(r, θ, t).

The function u(r, θ, s) has to satisfy the boundary conditions:

u(1, θ, s) = 1
s−iω , θ ∈ (0, 2π),

u(r, 0, s) = u(r, 2π, s) = 0, r ∈ (0, 1).
(20)
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Figure 1. The variation of function u(r, t) versus r for the boundary condition u(1, t) = sin(ωt), ω = π/2 for different
values of the fractional parameter, α.

Mathematics 2021, 9, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 1. The variation of function ( , )u r t  versus r  for the boundary condition (1, ) sin( ), / 2u t t  = =  for 

different values of the fractional parameter, α. 

 

Figure 2. The variation of function ( , )u r t  versus r  for the boundary condition (1, ) cos( ), / 2u t t  = =  for 

different values of the fractional parameter, α. 
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Applying the finite Hankel transform to Equation (19) and using Equation (20), we
obtain the differential equation:

∂2uH(rn, θ, s)
∂θ2 − (sα + Dr2

n + K)uH(rn, θ, s) +
Drn J1(rn)

s− iω
= 0 (21)

where rn, n = 1, 2, 3 . . . are the positive roots of the transcendental Equation J0(r) = 0 and

uH(rn, θ, s) =
1∫

0
ru(r, θ, s)J0(rrn)dr is the finite Hankel transform of the function u(r, θ, s).

The general solution of Equation (21) is:

uH(rn, θ, s) = C1eθ
√

sα+an + C2e−θ
√

sα+an +
Drn J1(rn)

(s− iω)(sα + an)
(22)

where an = Dr2
n + K, n = 1, 2, 3 . . ..

Using the boundary conditions (20), we obtain for the transformed velocity the form:

uH(rn, θ, s) = Drn J1(rn)
(s−iω)(sα+an)

(
e−2π

√
sα+an−1

)
eθ
√

sα+an

e2π
√

sα+an−e−2π
√

sα+an
+ Drn J1(rn)

(s−iω)(sα+an)

(
1−e2π

√
sα+an

)
e−θ
√

sα+an

e2π
√

sα+an−e−2π
√

sα+an
+

+ Drn J1(rn)
(s−iω)(sα+an)

.
(23)

Let w1(s) =
√

sα + an and, using the expansion 1
1−e−4πw1(s)

=
∞
∑

k=0
e−4πkw1(s), we obtain:

uH(rn, θ, s) =
J1(rn)

rn(s− iω)
− Fn(s)

J1(rn)

rn
+

Drn J1(rn)

(s− iω)
Gn(s) (24)

where:
Fn(s) =

sα + K
(s− iω)(sα + an)

(25)

Gn(s) =
∞

∑
k=0

[
e−(4kπ+4π−θ)

√
sα+an

sα + an
− e−(4kπ+2π−θ)

√
sα+an

sα + an
+

e−(4kπ+2π+θ)
√

sα+an

sα + an
− e−(4kπ+θ)

√
sα+an

sα + an

]
(26)

Applying the inverse Hankel transform to Equation (25), we have:

u(r, θ, s) =
1

s− iω
− 2

∞

∑
n=1

Fn(s)
J0(rrn)

rn J1(rn)
+ 2

∞

∑
n=1

Drn J0(rrn)

J1(rn)

Gn(s)
s− iω

(27)

To determine the inverse Laplace transform of Gn(s), we consider the auxiliary func-

tion H(s) = e−a
√

s

s , whose inverse Laplace transform is h(t) = erfc
(

a
2
√

t

)
, erfc(·) being

the complementary error function. Let w(s), H1(s) be the functions w(s) = sα + an and

H1(s) = e−z
√

sα+an
sα+an

.

It is easy to see that H1(s) = H(w(s)), and therefore, L−1{H1(s)} =
∞∫
0

h(y)ψ(t, y)dy,

where ψ(t, y) = L−1
{

e−yw(s)
}
= L−1

{
e−yan e−ysα

}
=

{
e−yan φ(0,−α,−yt−α), 0 < α < 1,

e−yan δ(t− y), α = 1.
.

In the above relationship, φ(0,−α,−yt−α) is the Wright function [15], which satisfies the
property tβ−1φ(β,−α,−yt−α) = L−1

{
1
sβ e−ysα

}
, 0 < α < 1, and δ(·) is Dirac’s distribution.

Finally, we get the solution:

u(r, θ, t) = eiωt − 2
∞

∑
n=1

fn(t)
J0(rrn)

J1(rn)
+ 2

∞

∑
n=1

Drn J0(rrn)

J1(rn)

t∫
0

eiω(t−τ)gn(τ)dτ (28)

where:
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fn(t) = L−1{F(s)} = Eα,1(−antα) +

t∫
0

eiω(t−τ)
[
iωEα,1(−anτα) + Kτα−1Eα,α(−anτα)

]
dτ (29)

gn(t) =
∞

∑
k=0

∞∫
0

[
erfc

(
4kπ+4π−θ

2
√

y

)
− erfc

(
4kπ+2π−θ

2
√

y

)
+ erfc

(
4kπ+2π+θ

2
√

y

)
− erfc

(
4kπ+θ

2
√

y

)]
×

×e−anyt−1φ(0,−α,−yt−α)dy, 0 < α < 1.
(30)

For α = 1, the functions fn(t), gn(t) have the simpler expressions:

fn(t) = 1
an+iω

[
(K + iω)eiωt + Dr2

ne−ant],
gn(t) =

∞
∑

k=0

[
erfc

(
4kπ+4π−θ

2
√

t

)
− erfc

(
4kπ+2π−θ

2
√

t

)]
e−ant+

∞
∑

k=0

[
erfc

(
4kπ+2π+θ

2
√

t

)
− erfc

(
4kπ+θ

2
√

t

)]
e−ant.

(31)

Based on Equation (28), the evolution in space and in time of the concentration of
cancer cells, as well as the influence of the memory parameter on its evolution, have been
analyzed and presented in graphs in Figures 3–5. The cases of sinusoidal and co-sinusoidal
variation of u(r, θ, t) concentration were considered.

Figures 3 and 4 present the profiles of concentration of tumor cells versus the radial
angle, θ, for the fractional parameter α = 0.5 at the instant t = 0.5. As expected, the
profiles of concentration are symmetric with respect to the radial angle due to equal
boundary conditions in the positions θ = 0, θ = 2π. Additionally, Figures 3 and 4 show
the variation of the concentration of tumor cells with the radial coordinate, r. As can be
seen in Figures 3 and 4, for the considered case, the concentration is increasing with the
radial distance, r.
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Figures 5 and 6 have been plotted to highlight the influence of the fractional parameter,
α, on the concentration of tumor cells. These figures present profiles of the concentration
u(r, θ, t) versus r for different values of the memory parameter at small values of time, t. It
can be observed in Figures 5 and 6 that, for small values of time, the memory effects are
stronger. This behavior is due to the time-evolution of the Caputo kernel, which, for small
amounts of time, has bigger values, therefore the influence on the rate of concentration will
be stronger.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 15 
 

 

 

Figure 5. The variation of function ( , , )u r t  versus radial coordinate, r , for the boundary condition 

(1, , ) sin( ), / 2u t t   = =  and different values of the fractional parameter, α. 

 

Figure 6. The variation of function ( , , )u r t  versus radial coordinate, r , for the boundary condition 

(1, , ) cos( ), / 2u t t   = =  and different values of the fractional parameter, α. 

Figure 6. The variation of function u(r, θ, t) versus radial coordinate, r, for the boundary condition u(1, θ, t) = cos(ωt), ω = π/2
and different values of the fractional parameter, α.

The time variation of the tumor cell concentration is shown in Figures 7 and 8 for
different values of the α fractional parameter. The graphs in Figures 7 and 8 were drawn for
the spatial positions r = 0.2, θ ∈ {π/2, π} and r = 0.4, θ ∈ {π/2, π}, for K = 1, D = 0.5
and ω = π/20, respectively. In Figure 7 are plotted the concentration profiles for the
boundary condition u(1, θ, t) = sin(ωt), while Figure 8 presents the case corresponding
to u(1, θ, t) = cos(ωt). In both cases, the influence of the memory parameter is different
for small values of time, t, and for large values of time, t; namely, for small values of the
time, t, the concentration is decreasing with the fractional parameters and has the opposite
behavior for large values of the time, t.

For large values of the time, t, the concentration of tumor cells tends to be zero. This
property is obtained graphically, but it is obvious from Equation (22), along with the
property lim

t→∞
f (t) = lim

s→0
s L{ f (t)}.
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fractional parameter, α.
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3. Conclusions

Two generalized mathematical models for the concentration of tumor cells have been
analytically studied by using the integral transform method.

The generalization consists of the development of mathematical models with Caputo-
time fractional derivatives that are suitable for highlighting the memory effects.

Cylindrical coordinate has been employed in our study, and the time-oscillating
concentration of cancer cells on the boundary r = 1 has been considered.

Analytical solutions of the fractional differential equations of the mathematical models
have been determined using the Laplace transform with respect to the time variable and
the finite Hankel transform with respect to the radial coordinate, r.

The positive roots of the transcendental equation with Bessel function J0(r) = 0, which
are needed in our study, have been determined with the subroutine rn = root(J0(r), r, (2n−
1)π/4, (2n + 3)π/4), n = 1, 2, . . . of the Mathcad 15 software.

Because the Caputo kernel has the power-law form, namely hC(t, α) = t−α

Γ(1−α)
, 0 <

α < 1, the memory effects are stronger at small values of time, t. This aspect is highlighted
in the graphical illustrations, which analyze the behavior of the concentration of tumor cells.

It is found that concentration of cancer cells is symmetric with respect to the radial
angle, and its values tend to be zero for large values of time, t.
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Appendix A

This Appendix A presents the mathematical notions necessary to solve the problems
studied in the article.

Appendix A.1. Caputo Time-Fractional Derivative

Suppose that α ∈ [n− 1, n), n ∈ N, n > 0.
Function

hn−α(t) =
tn−α−1

Γ(n− α)
, t > 0 (A1)

is called the Caputo kernel or power-law kernel.
The Laplace transform of the Caputo kernel is:

L{hn−α(t)} =
∞∫

0

hn−α(t)e−stdt =
1

sn−α
, t > 0 (A2)

Definition A1. The Caputo time-fractional derivative of function f ∈ Cn[0, T], T > 0, is defined
as [16]:

∂α f (t)
∂tα

= hn−α(t) ∗ f (n)(t) =
1

Γ(n− α)

t∫
0

(t− σ)n−α−1 f (n)(σ)dσ (A3)
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where the notation “∗” denotes the convolution product. Using Equations (2) and (3) and the
properties of the Laplace transform, we obtain the Laplace transform of the Caputo derivative
given by:

L
{

∂α f (t)
∂tα

}
= L

{
hn−α(t) ∗ f (n)(t)

}
= 1

sn−α L
{

f (n)(t)
}
=

1
sn−α

(
snL{ f (t)} −

n−1
∑

k=0
sn−k−1 f (k)(0)

)
= sαL{ f (t)} −

n−1
∑

k=0
sα−k−1 f (k)(0).

(A4)

Remark A1. It is easy to notice that:

lim
α→n

hn−α(t) = L−1
{

lim
α→n

L{hn−α(t)}
}
= L−1

{
lim
α→n

1
sn−α

}
= L−1{1} = δ(t) (A5)

whereδ(t) is the Dirac’s distribution. Definition (3) can be extended for α ∈ [n− 1, n] as:

∂α f (t)
∂tα

=

 hn−α(t) ∗ f (n)(t) = 1
Γ(n−α)

t∫
0
(t− σ)n−α−1 f (n)(σ)dσ, n− 1 ≤ α < n.

δ(t) ∗ f (n)(t) = f (n)(t), α = n.
(A6)

Appendix A.2. Bessel Functions

The standard Bessel Equation is [17]:

z2 d2y
dz2 + z

dy
dz

+ (z2 − ν2)y = 0 (A7)

Two linearly independent solutions of Equation (7) are the Bessel functions of the
first kind of order ν, denoted by Jν(z), J−ν(z). Another solution of Equation (7) is the
Bessel function of the second kind of order ν, denoted by Yν(z). The general solution of
Equation (6) is given by y(z) = A1 Jν(z) + A2 J−ν(z) or y(z) = B1 Jν(z) + B2Yν(z).

Here are some properties of the Bessel function Jν(z):

Jν(z) = zν
∞
∑

k=0

(−1)kz2k

22k+νk!Γ(k+1+ν)
, J0(0) = 1, Jn(0) = 0, n = 1, 2, . . . ,

Jν−1(z) + Jν+1(z) = 2ν
z Jν(z), Jν−1(z)− Jν+1(z) = 2J′ν(z), zJ′ν(z) + νJν(z) = zJν−1(z).

(A8)

Denote by jn,m, the zeros of function Jν(z). The zeros of successive orders of the Bessel
functions of the first kind interlace in the sense that:

jn−1,m < jn,m < jn−1,m+1, n, m = 1, 2, . . . (A9)

Appendix A.3. Finite Hankel Transform

Let f (r) be a continuous function defined on [0, 1]. The finite Hankel transform of f (r)
is defined by [18]:

fH(rn,m) =

1∫
0

r f (r)Jn(rrn,m)dr (A10)

where rn,m, m = 1, 2, . . . , are the positive zeros of the transcendental equation Jn(r) = 0.
The inverse Hankel transform is represented by the following Fourier-Bessel series:

f (r) = 2
∞

∑
m=1

fH(rn,m)
Jn(rrn,m)

J2
n+1(rn,m)

(A11)
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Appendix A.4. Laplace Transform

Let f (t) be a piecewise function on (0, ∞) and of the exponential order a > 0 to infinity.
The Laplace transform of f (t) is defined as [18]:

L{ f (t)} = f (s) =
∞∫

0

f (t)e−stdt (A12)

where s, Re(s) > a is the transform parameter. The inversion formula is:

L−1
{

f (s)
}
= f (t) =

1
2πi

c+i∞∫
c−i∞

est f (s)ds (A13)

We present some properties of the Laplace transform used in this work:

L
{

e−at f (t)
}
= f (s + a),

L{H(t− a) f (t− a)} = e−asL{ f (t)},

L
{

f (n)(t)
}
= snL{ f (t)} −

n−1
∑

k=0
sn−k−1 f (k)(0).

(A14)

Appendix A.5. Mittag–Leffler Functions

The special functions [14]

Eα(z) =
∞
∑

k=0

zk

Γ(1+αk) ,

Eα,β(z) =
∞
∑

k=0

zk

Γ(β+αk) , α, β, z ∈ C, Re(α) > 0, Re(β) > 0,
(A15)

are called Mittag–Leffler functions. The following integral representation is important
for applications:

∞∫
0

e−sttαm+β−1E(m)
α,β (±ctα)dt =

m!sα−β

(sα ∓ c)m+1 , m = 0, 1, . . . (A16)

References
1. Cook, J.; Woodward, D.E.; Tracqui, P.; Murray, J.D. Resection of gliomas and life expectancy. J. Neuro Oncol. 1995, 24, 131–135.
2. Tracqui, P.; Cruywagen, G.C.; Woodward, D.E.; Bartoo, G.T.; Murray, J.D.; Alvord, E.C. A mathematical model of glioma growth:

The effect of chemotherapy on spatio-temporal growth. Cell Prolif. 1995, 28, 17–31. [CrossRef] [PubMed]
3. Woodward, D.E.; Cook, J.; Tracqui, P. A mathematical model of glioma growth, The effect of extent of surgical resection. Cell

Prolif. 1996, 26, 269–288. [CrossRef] [PubMed]
4. Burgess, P.K.; Kulesa, P.M.; Murray, J.D.; Alvord, E.C. The interaction of growth rates and diffusion coefficients in a three-

dimensional mathematical model of gliomas. J. Neuropathol. Exper. Neurol. 1997, 56, 704–713. [CrossRef]
5. Moyo, S.; Leach, P.G.L. Symmetry methods applied to a mathematical model of a tumor of the brain. Proc. Inst. Math. NAS Ukr.

2004, 50, 204–210.
6. Bokhari, A.; Kara, A.; Zaman, F. On the solutions and conservation laws of the model for tumor growth in the brain. J. Math. Anal.

Appl. 2009, 350, 256–261. [CrossRef]
7. Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999.
8. Hristov, J. Bio-Heat Models Revisited: Concepts, Derivations, Nondimensalization and Fractionalization Approaches. Front. Phys.

2019, 7. [CrossRef]
9. Iomin, A. Superdiffusion of cancer on a comb structure. J. Phys. Conf. Ser. 2005, 7, 57–67. [CrossRef]
10. Iyiola, O.S.; Zaman, F.D. A fractional diffusion equation model for cancer tumor. AIP Adv. 2014, 4, 107121. [CrossRef]
11. Abbott, S.; Schiff, J.L. The Laplace Transform: Theory and Applications. Math. Gaz. 2001, 85, 178. [CrossRef]
12. Piessens, R. The Hankel Transform. The Transforms and Applications Handbook, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA, 2000.
13. Tripathi, M.P.; Singh, B.P.; Singh, O.P. Stable Numerical Evaluation of Finite Hankel Transforms and Their Application. Int. J.

Anal. 2014, 2014, 670562. [CrossRef]

http://doi.org/10.1111/j.1365-2184.1995.tb00036.x
http://www.ncbi.nlm.nih.gov/pubmed/7833383
http://doi.org/10.1111/j.1365-2184.1996.tb01580.x
http://www.ncbi.nlm.nih.gov/pubmed/8809120
http://doi.org/10.1097/00005072-199706000-00008
http://doi.org/10.1016/j.jmaa.2008.09.065
http://doi.org/10.3389/fphy.2019.00189
http://doi.org/10.1088/1742-6596/7/1/005
http://doi.org/10.1063/1.4898331
http://doi.org/10.2307/3620536
http://doi.org/10.1155/2014/670562


Mathematics 2021, 9, 1156 14 of 14

14. Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler Functions and Their Applications. J. Appl. Math. 2011, 2011, 298628.
[CrossRef]

15. Stankovic, B. On the function of EM Wright. Publ. L’Institut Math. Nouv. Serie Tome 1970, 10, 113–124.
16. Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus. Models and Numerical Methods; World Scientific: Toh Tuck

Link, Singapore, 2011.
17. Jeffrei, A.; Dai, H.H. Handbook of Mathematical Formulas and Integrals, 4th ed.; Elsevier-Academic Press: Cambridge, MA, USA, 2008.
18. Debnath, L.; Bhatta, D. Integral Transforms and Their Applications, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007.

http://doi.org/10.1155/2011/298628

	Introduction 
	Solution of the Problems 
	The Concentration of Tumor Cells u(r,t)  
	The Concentration of Tumor Cells u(r,,t)  

	Conclusions 
	
	Caputo Time-Fractional Derivative 
	Bessel Functions 
	Finite Hankel Transform 
	Laplace Transform 
	Mittag–Leffler Functions 

	References

