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Abstract: In this paper, we prove some new Ostrowski-type integral inequalities for g-differentiable
bounded functions. It is also shown that the results presented in this paper are a generalization of
know results in the literarure. Applications to special means are also discussed.
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1. Introduction

Quantum calculus, or g-calculus, is a modern term for the study of calculus without
limits. It has been studied since the early eighteenth century. Euler, a prominent mathemati-
cian, invented g-calculus, and F. H. Jackson [1] discovered the definite g-integral known
as the g-Jackson integral in 1910. Orthogonal polynomials, combinatorics, number theory,
quantum theory, simple hypergeometric functions, dynamics, and theory of relativity are
the applications of quantum calculus in mathematics and physics; see [2-4] and refernces
cited there. Kac and Cheung’s book [5] discusses the fundamentals of quantum calculus as
well as the basic theoretical terms.

Because of its enormous importance in a wide range of applied and pure sciences,
in recent decades, the definition of convex and bounded functions has received much
attention. Since the theory of inequalities and the concept of convex and bounded functions
are closely related, various inequalities for convex, differentiable convex and differentiable
bounded functions can be found in the literatur; see [6-22]. Inspired by this study, we
prove some new quantum Ostrowski’s inequalities to expand the relationship between
differentiable bounded functions and quantum integral inequalities. We prove some
new quantum Ostrowski’s inequalities to expand the relationship between differentiable
bounded functions and quantum integral inequalities, generalizing existing results in the
literature [23].

2. Basics of g-Calculus

In this portion, we recall some formerly developed concepts. We also use the following
notation in this paper (see [5]):

1
[n]qzli_q:1+‘7+q2+---+q"7l, q¢€(0,1).

In [1], the g-Jackson integral of a function F from 0 to 7 and 0 < g < 1 is defined
as follows:

[F@) dix = (- g)m ¥ ¢"F(ma") 1)
0 n=0
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provided the sum converges absolutely.

Definition 1. Reference [4]: the quantum q,-derivative for a mapping F : [m1, mo) — R at
x € [y, 7| is defined as:

F(x) = Flgx + (1 —g)m)
(1=g)(x—m)

If x = 111, we define o, Dg F (111) = limy =, DgF(x) if it exists and it is finite.

ﬂ]qu(x) = , X # . )

Definition 2. Reference [13] The quantum q™2-derivative for a mapping F : [y, 2] — Rat
x € [y, 7] is defined as:

Flgx+ (A —q)m) — F(x)
(1—-q)(m2 - x)

If x = 1, we define "Dy F (112) = limyr, ™Dy F(x) ifit exists and is finite.

,x#ﬂz.

D, F(x) =

Definition 3. Reference [4]: the quantum q, -definite integral for a mapping F : [my, mo] — R
on [11, 112) is defined as:

[F@) mdyr = (-a)m-m) L " Fa'm + (1))

m n=0

1
— (m—m) [ F(1-tm +tm) dt.
0

Definition 4. Reference [13]: The quantum q"2-definite integral for a mapping F : [y, mp] — R
on [11, 712) is defined as:

[F@ = (-gm-m) ¥ F@m o+ (- g)m)

m n=0

1
_ (nz—nl)/]:(tnl—i—(l—t)nz) dt.
0

Now, we present the classical Ostrowski inequality.

Theorem 1. Let F : |11, 1p] — R be a continuous function that is differentiable on (7t1, 112). If
| F'(x)| < M, then we have the following inequality for x € [y, 72]:

Flx)— — /mf(t>df’< & l(x_ﬂl)zﬂﬂz_xy- @3)

T — 1 Iy (1ty — 11q) 2

The quantum version of the inequality (3) given by Budak et al. can be stated as:
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Theorem 2. Reference [17]: Let F : [my,m) C R — R be a function. If |™2DyF(t),
|7, DgF (t)| < M forall t € [r11, 715], then we have the following quantum Ostrowski-type

inequality:
1|7 7
F(x)— ——— /.F(t) m gt +/.7-"(t) 2 d,t ] | (4)
Y50 X
M [ mP et (m - x)
B (7‘[2 — 7'[1) 1+4+¢g

forall x € [y, 7tp] where 0 < g < 1.

3. Quantum Ostrowski Type Inequalities

In this section, for the g-differentiable bounded functions, we prove some new
Ostrowski-type inequalities. For this, we propose a new quantum integral identity that
will be used as an aid in the development of new results.

Lemma 1. Let F : [y, 2] — R be a continuous and q-differentiable function on the given
interval |71y, 715]. Then, the following equality holds for the quantum integrals:

X i T —
/ (t— (711+hn2 . ”1>> Dy F (1) ﬂld,,t+/ 2<t— (nZ—hnz . ”1>) D, F(t) Mdgt
m X
F(m) + F(m)
2

- [/ F(qt+ (1= q)m) mdgt + /:2 Fqt+ (1 —q)m2) ”quf} ©®)

4si

= (m—m)h + (72 — 711) (1 — h) F(x)

where h € [0,1] and 111 + h™25 < x < mp — h™257,

Proof. Using the fundamental concepts of g integration and derivative [24], we have

/ (t— (711 +h 2 ”1)> 1 DgF (t) mdgt ©)

m

_ <x— (m +h”25”1))f(x)+h”2;”Uf(nl) —/x Flgt+ (1— g)my) mydgt

Usi

and

T — 1M T — 7

= h }'(nz)f(x7<7r27h 5 ))F(x)f/xm}'(qt+(1fq)7r2)ﬂqut.

After the addition of equalities (6) and (7), we obtain the required equality (5). O
Remark 1. By taking the limit as g — 1~ in Lemma 1, we have

[ (o) (- (o 257) i

Fm) + F(m)
2

+ (702 — 1) (1 = B) F(x) — /”2 F(b)dt

™

= (m—m)h

which is given by Dragomir et al. in [23] (Theorem 2).
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Remark 2. In Lemma 1, if we set h = 0, then we have

X TT
/ (t— 1) Dy F(t) nldqt—i—/x “(t— 1) D, F(F) ™d,t

m

- (- F@ - |

m

X

T
Flat+ (=) iyt + [ F Gt + (- g)ma) ]

Theorem 3. Assume that the conditions of Lemma 1 hold. If |z, DgF ()|, | 2Dy F (t)| < M, then

7

]:(7'[1) —|-]:(7T2)

‘(nz—rrl)h + (o — 1) (1 — h) F(x)

2
X Uyl
| s =) e+ [ F e (- ) =g
sl X
< M(P(m, 2, h,xq) + Q(m1, 2, h, X3 q)),
where
X —
P(my, o, h,x;q) = / (t— (711 +hﬂ2 5 711)> m dgt
4s|
and .
2 J—
Q(T[l/ nZIh/x;q) :/ <t_ <7T2 _hﬂ:z 2 nl)) nqut.
X

Proof. From Lemma 1 and properties of the modulus, we have

]'—(71’1) +f(7[2)

5 + (2 — 1) (1 — h) F(x)

‘(7772_7771)]’1

_ [/x F(qt+ (1= q)m) mdgt + /X”Z Flgt+ 1= am) Nqut} ‘

ys|

x Ty — 7T
< / (t(nl+h 22 1)) |1 DgF (t)| mydqt
st
7T .
+/ : (t— (ﬂz—hﬂz 5 ﬂl>) 2Dy F(t)| ™2dgt
X
X _ Tt —
< M (t— <7r1+h”2 nl)) nldqt+M/ : (t— (nz—hM» Tt
s 2 X 2

= M(P(my, o, h,x;9) + Q(m1, 712, 1, X; q)).
O

Remark 3. By taking the limit as g — 1~ in Theorem 3, we obtain the following inequality:

TT:

]:(7-[1>+‘7:(7T2) zf(t)df‘ (8)

’(nz —m)h—————" + (M — ) (1~ ) F(x) — /

< M %(nz—ﬂl)z{h2+(h—1)2} + (xnl—zHTZ)z]

which is given by Dragomir et al. in [23] (Theorem 2).

Remark 4. In Theorem 3, if we put h = 0, then we have:

(712 — 701) F(x) — Vx Flgt+ (1 —q)m) mdgt + _/:2 Flgt+(1—q)m) ”quf} ‘

Us|

S M(P(T[LTCZrOrx;q)+Q(7T1r7-[2/01x1'q))‘



Mathematics 2021, 9, 1155 50f8

Theorem 4. Assume that the conditions of Lemma 1 hold. If for p > 1, |7 DgF(t)|"

|2Dy F (t |p < M, then

7

]:(7'[1) + .7:(7'[2)

5 + (1o — 1) (1 — h) F(x)

‘(nz—m)h

_Ux Flgt+(1—q)m) mdqt+/;2 Flqt+ (1—q)m2) ”qufH

T

< M((x — ) Ay (g, o, b, x;.9) + (712 — x) Aa (701, 772, B, X5 )

where
X s %
Al(ﬂ:l/ 7T2/h,x}f]) = </ <t_ <7T1 +h7-[2 > 7T1>> nldqt> ’
m
1
g Ty — 7T s 5
Ao (11, 710, h,x;9) = </ (t— <712—h 22 1)) nldqt>
X
1,1
ﬂTld E + ria 1.

Proof. From Lemma 1 and Holder’s inequality, we have

F(m) + F(mp)

‘(ﬁz—m)h + (2 — 711) (1 — h) F(x)

2
—[/nl Flat+ (1 —q)m) miyt+ [ qt+(1—q)7r2)”2dth
< /x (t—<n1+h m)) |7y DgF (1) ey gt
+/n2 (t—( )> 2Dy F(t)| ™2dgt
= (f (t_(w m)) i) (o 0 i)
(10 (w2 ) ([ remiriop =)’
< M((x — m) Ay (my, 702, b, x;q) + (12 — %) A (711, 702, 1, %))

O

Remark 5. By taking the limit as ¢ — 17 in Theorem 4, we have:

’(ﬂz—ﬁl)hw+(ﬂz—ﬂ1) /7:255 ’
<M <x_n1)("("1+h7”z7“))|(x(”ﬁh’“ 5| (hmgm)

s+1

(5= (ma =) (- (ma =g - () ™)

s+1

+ (2 —x)
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Remark 6. In Theorem 4, if we put h = 0, we have:

(2= ) 7) = [ [ Flat+ (=) gt + [ Flat-+ (- gys) |
< M((x —m)A1(m, m2,0,xq) + (M2 — x)Az2(m1, 12,0, X;9)).

4. Application to Special Means
For arbitrary positive numbers 711, 715 (717 # 712), we consider the means as follows:

1. The arithmetic mean

7T + 7T
A= Al ) = 2 er 2,
2. The harmonic mean
_ _2mm
H="H(m,mm) = m———
3.  The logarithmic mean
L=L(m,m) =02

4. The p-logarithmic mean

7, if 711 = Tl
1
‘CP = ‘CP(T[LHZ) = ngﬂfnfﬂ P i 7& -
) (m—m) | 7 N7 T

Proposition 1. For 111, 1 € R, 1y < 110 and p € R\{—1,0}, the following inequality is true:
‘(1 — ) +hA(nf, 7)) —ﬁg(m,nz)‘ )

2 —1)? X — T
h +(Z 1) ] +( ﬂvj(_ﬂ';l 2)) }Gp(ﬂl,ﬂz)

< {(77?2 — 1)

where

€p(m1, 110) = ‘P‘ngil/ ifp>1,
P plal " if p € (—o0,1]\{~1,0}.

Proof. The inequality (8) for the mapping F : (0,00) — (0,00), F(x) = x? leads to
this conclusion. [

Proposition 2. For 11, mp € R, 711 < 112, the following inequality is true:

[(1—h)H(my, ) L(1q, 710) + L(711, 713) xh — xH (711, 702) |
< XH(7T1, 7T2)2£(7'[1, ) {(7_[2 B 7_[1) W2+ (h— 1)2] N (x — A(rmq, 7'[2)) }

e 4 Ty — 7

Proof. The inequality (8) for the mapping F : (0,00) — (0,00), F(x) = 1 leads to
this conclusion. [

Proposition 3. For 711, m, € R, 1y < mp and p € R\{—1,0}, the following inequality is true:
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’(1 — h)xP +hA(7tf, 7t§> - E§(7T1,7T2)‘

(6= (o n2))|(x = (e g ) ) [+ (e2g) ™

s+1

(= (2= nmg™)) | (x = (e - nm5™) )| - (h@)s“

s+ 1

< |(x—m)

-|—(7‘L’2 —x)

€p(71, 12).
Proof. The inequality in Remark 5, for the mapping F : (0,00) — (0,0), F(x) = x?, leads
to this conclusion. [

Proposition 4. For 111, mp € R, 711 < 71, the following inequality is true:

[(1—h)H(my, ) L(mq, 712) + L(711, 712) xh — xH (711, 7102) |

(x— (nﬁﬂ%))‘(x— (nl +h@>)r+ (h@)w

s+1

BN Gl G [ o N | N G

s+1

xH(my, 10) L(711, 7T2)
4G

IA

(x — )

Proof. The inequality (9) for the mapping F : (0,00) — (0,00), F(x) = 1, leads to
this conclusion. O

5. Conclusions

Some new Ostrowski-type integral inequalities for g-differentiable bounded func-
tions are established in the present research, generalizing existing results in the literature.
Applications to special means are also discussed.
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