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Abstract: In this work, we obtained new results relating the generalized atom-bond connectivity
index with the general Randić index. Some of these inequalities for ABCα improved, when α = 1/2,
known results on the ABC index. Moreover, in order to obtain our results, we proved a kind of
converse Hölder inequality, which is interesting on its own.
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Hölder inequality

1. Introduction

Mathematical inequalities are at the basis of the processes of approximation, estima-
tion, dimensioning, interpolation, monotonicity, extremes, etc. In general, inequalities
appear in models for the study or approach to a certain reality (either objective or subjec-
tive). This reason makes it clear that when working with mathematical inequalities, we can
essentially find relationships and approximate values of the magnitudes and variables that
are associated with one or another practical problem.

In mathematical chemistry, a topological descriptor is a function that associates each
molecular graph with a real value; if it correlates well with some chemical property, it is
called a topological index. For additional information see [1], for application examples
see [2–7].

The atom-bond connectivity index of a graph G was defined in [8] as:

ABC(G) = ∑
uv∈E(G)

√
2(du + dv − 2)

dudv
=
√

2 ∑
uv∈E(G)

√
du + dv − 2

dudv
,

where uv denotes the edge of the graph G connecting the vertices u and v and du is the
degree of the vertex u.

The generalized atom-bond connectivity index was defined in [9] as:

ABCα(G) = ∑
uv∈E(G)

( du + dv − 2
dudv

)α
.

for any α ∈ R \ {0}. Note that ABC1/2 =
√

2
2 ABC and ABC−3 is the augmented Zagreb index.

There are many papers that have studied the ABC and ABCα indices (see, e.g., [9–15]).
In this paper, we obtained new inequalities relating these indices with the general Randić
index. Some of these inequalities for ABCα improved, when α = 1/2, known results on the
ABC index. In order to obtain our results, we proved a kind of converse Hölder inequality,
Theorem 3, which is interesting on its own.
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Throughout this work, a path graph Pn is a tree with n vertices and maximum degree
two and a star graph Sn is a tree with n vertices and maximum degree n− 1.

2. Inequalities Involving ABCα

In 1998, Bollobás and Erdős [16] generalized the Randić index for α ∈ R \ {0},

Rβ(G) = ∑
uv∈E(G)

(dudv)
β.

The general Randić index, also called the variable Zagreb index in 2004 by Miličević and
Nikolić [17], was extensively studied in [18–20].

The next result relates the ABCα and Rβ indices.

Theorem 1. Let G be a graph with maximum degree ∆ and minimum degree δ and α > 0,
β ∈ R \ {0}. Denote by m2 the cardinality of the set of isolated edges in G.

(1) If β/α ≤ −1 and δ > 1, then:

(2δ− 2)αδ−2α−2βRβ(G) ≤ ABCα(G) ≤ (2∆− 2)α∆−2α−2βRβ(G).

The equality in each bound is attained if and only if G is a regular graph.

(2) If β/α ≤ −1 and δ = 1, then:

2−α−β
(

Rβ(G)−m2
)
≤ ABCα(G) ≤ (2∆− 2)α∆−2α−2β

(
Rβ(G)−m2

)
.

The equality in the lower bound is attained if and only if G is a union of path graphs P3 and
m2 isolated edges. The equality in the upper bound is attained if and only if G is a union of a regular
graph and m2 isolated edges.

(3) If −1 < β/α ≤ −1/2 and δ > 1, then:

(2δ− 2)αδ−2α−2βRβ(G) ≤ ABCα(G).

The equality in the bound is attained if and only if G is a regular graph.

(4) If −1 < β/α ≤ −1/2 and δ = 1, then:

2−α−β
(

Rβ(G)−m2
)
≤ ABCα(G).

The equality in the bound is attained if and only if G is a union of path graphs P3 and m2
isolated edges.

(5) If β > 0 and δ > 1, then:

(2∆− 2)α∆−2α−2βRβ(G) ≤ ABCα(G) ≤ (2δ− 2)αδ−2α−2βRβ(G).

The equality in each bound is attained if and only if G is a regular graph.

(6) If β > 0, δ = 1 and 1 + α/β ≥ ∆, then:

(2∆− 2)α∆−2α−2β
(

Rβ(G)−m2
)
≤ ABCα(G) ≤ (∆− 1)α∆−α−β

(
Rβ(G)−m2

)
.

The equality in the lower bound is attained if and only if G is a union of a regular graph and
m2 isolated edges. The equality in the upper bound is attained if and only if G is a union of star
graphs S∆+1 and m2 isolated edges.

(7) If β > 0, δ = 1 and 1 + α/β ≤ 2, then:

(2∆− 2)α∆−2α−2β
(

Rβ(G)−m2
)
≤ ABCα(G) ≤ 2−α−β

(
Rβ(G)−m2

)
.
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The equality in the lower bound is attained if and only if G is a union of a regular graph and
m2 isolated edges. The equality in the upper bound is attained if and only if G is a union of path
graphs P3 and m2 isolated edges.

(8) If β > 0, δ = 1 and 2 < 1 + α/β < ∆, then:

(2∆− 2)α∆−2α−2β
(

Rβ(G)−m2
)
≤ ABCα(G) ≤ ααββ

(α + β)α+β

(
Rβ(G)−m2

)
.

The equality in the lower bound is attained if and only if G is a union of a regular graph and
m2 isolated edges. The equality in the upper bound is attained if and only if α/β ∈ Z+ and G is a
union of star graphs Sα/β+2 and m2 isolated edges.

Proof. First of all, note that ABCα(P2) = 0 and Rβ(P2) = 1. Therefore, it suffices to
prove the theorem for the case m2 = 0, i.e., when G is a graph without isolated edges.
Hence, ∆ ≥ 2.

We computed the extremal values (for fixed λ ∈ R) of the function f : [δ, ∆]× ([δ, ∆] \
[1, 2)) −→ R given by:

f (x, y) = (x + y− 2)(xy)−λ−1.

(1) and (2). If λ ≤ −1, then −λ− 1 ≥ 0 and f is a strictly increasing function in each
variable, and so,

(2δ− 2)δ−2λ−2 ≤ f (x, y) ≤ (2∆− 2)∆−2λ−2.

The equality in the lower (respectively, upper) bound is attained if and only if (x, y) =
(δ, δ) (respectively, (x, y) = (∆, ∆)).

If δ = 1, then f (x, y) ≥ f (1, 2) = 2−λ−1, since x ∈ [1, ∆] and y ∈ [2, ∆], and the
equality in this inequality is attained if and only if (x, y) = (1, 2).

If λ = β/α, then:

(2δ− 2)αδ−2β−2α
(
dudv

)β ≤
( du + dv − 2

dudv

)α
≤ (2∆− 2)α∆−2β−2α

(
dudv

)β

for every uv ∈ E(G) and, consequently,

(2δ− 2)αδ−2α−2βRβ(G) ≤ ABCα(G) ≤ (2∆− 2)α∆−2α−2βRβ(G).

The previous argument shows that the equality in the upper bound is attained if and
only if du = dv = ∆ for every uv ∈ E(G), i.e., G is regular. If δ > 1, then the equality in the
lower bound is attained if and only if du = dv = δ for every uv ∈ E(G), i.e., G is regular.

If λ = β/α and δ = 1, then:

2−β−α
(
dudv

)β ≤
( du + dv − 2

dudv

)α

for every uv ∈ E(G) and, consequently,

2−α−βRβ(G) ≤ ABCα(G).

The equality in this bound is attained if and only if {du, dv} = {1, 2} for every
uv ∈ E(G), i.e., G is a union of path graphs P3.

(3) and (4). In what follows, by symmetry, we can assume that x ≤ y. We have:

∂ f
∂y

(x, y) = x−λ−1(y−λ−1 + (x + y− 2)(−λ− 1)y−λ−2)
= x−λ−1y−λ−2(y + (x + y− 2)(−λ− 1)

)
.
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If −1 < λ ≤ −1/2, then −λ− 1 ≥ −1/2, and so,

∂ f
∂y

(x, y) ≥ x−λ−1y−λ−2
(

y− x + y− 2
2

)
= x−λ−1y−λ−2 y− x + 2

2
≥ x−λ−1y−λ−2 > 0.

Hence,
f (x, y) ≥ f (x, x) = (2x− 2)x−2λ−2 = g(x).

We have:
g′(x) = 2x−2λ−2 + (2x− 2)(−2λ− 2)x−2λ−3

= 2x−2λ−3(x + (x− 1)(−2λ− 2)
)

= 2x−2λ−3((−2λ− 1)x + 2λ + 2
)
.

Since 2λ + 2 > 0 and −2λ− 1 ≥ 0, we have:

g′(x) = 2x−2λ−3((−2λ− 1)x + 2λ + 2
)

≥ 2x−2λ−3(2λ + 2) > 0.

Thus, g(x) ≥ g(δ) and:

f (x, y) ≥ g(x) ≥ (2δ− 2)δ−2λ−2,

if δ ≥ 2.
If λ = β/α and δ > 1, then:

(2δ− 2)αδ−2β−2α
(
dudv

)β ≤
( du + dv − 2

dudv

)α

for every uv ∈ E(G) and, consequently,

(2δ− 2)αδ−2α−2βRβ(G) ≤ ABCα(G).

The previous argument shows that the equality in this bound is attained if and only if
du = dv = δ for every uv ∈ E(G), i.e., G is regular.

Assume that δ = 1. We proved that f (x, y) ≥ g(x) ≥ g(2) = 2−2λ−1 for every
x, y ∈ [2, ∆]. Since ∂ f /∂y(1, y) > 0 for every y ∈ [2, ∆], we have f (1, y) ≥ f (1, 2) = 2−λ−1

for every y ∈ [2, ∆]. Since λ < 0, we have 2−2λ−1 > 2−λ−1 and f (x, y) ≥ 2−λ−1 for every
x ∈ [1, ∆] ∩Z, y ∈ [2, ∆] ∩Z. Furthermore, the equality in this bound is attained if and only
if (x, y) = (1, 2).

If λ = β/α, then:

2−β−α
(
dudv

)β ≤
( du + dv − 2

dudv

)α

for every uv ∈ E(G) and, consequently,

2−α−βRβ(G) ≤ ABCα(G).

The equality in this bound is attained if and only if {du, dv} = {1, 2} for every
uv ∈ E(G), i.e., G is a union of path graphs P3.

(5). Assume now that λ > 0. Thus, −λ− 1 < −1 and:

∂ f
∂y

(x, y) = x−λ−1y−λ−2(y + (x + y− 2)(−λ− 1)
)

< x−λ−1y−λ−2(2− x),



Mathematics 2021, 9, 1151 5 of 17

and:
∂ f
∂x

(x, y) < y−λ−1x−λ−2(2− y).

If δ > 1, then f is a strictly decreasing function in each variable, and so,

(2∆− 2)∆−2λ−2 ≤ f (x, y) ≤ (2δ− 2)δ−2λ−2. (1)

The equality in the lower (respectively, upper) bound is attained if and only if
(x, y) = (∆, ∆) (respectively, (x, y) = (δ, δ)).

If β > 0 and λ = β/α, then:

(2∆− 2)α∆−2β−2α
(
dudv

)β ≤
( du + dv − 2

dudv

)α
≤ (2δ− 2)αδ−2β−2α

(
dudv

)β

for every uv ∈ E(G) and, consequently,

(2∆− 2)α∆−2α−2βRβ(G) ≤ ABCα(G) ≤ (2δ− 2)αδ−2α−2βRβ(G).

The equality in the lower bound is attained if and only if du = dv = ∆ for every
uv ∈ E(G), i.e., G is regular. Furthermore, the equality in the upper bound is attained if
and only if du = dv = δ for every uv ∈ E(G), i.e., G is regular.

(6). Note that:(∆2

2

)λ+1
>

∆2

2
≥ 2∆− 2 ⇒ 2−λ−1 > (2∆− 2)∆−2λ−2. (2)

We also have:

∆λ+1 > ∆ ≥ 2 ⇒ (∆− 1)∆−λ−1 > (2∆− 2)∆−2λ−2. (3)

Assume that δ = 1. If 2 ≤ x, y ≤ ∆, then f (x, y) ≤ f (2, 2) = 2−2λ−1. This inequality
and the lower bound in (1) give:

(2∆− 2)∆−2λ−2 ≤ f (x, y) ≤ 2−2λ−1, (4)

for every 2 ≤ x, y ≤ ∆.
Let us consider the function h(y) = f (1, y) = (y− 1)y−λ−1 with 2 ≤ y ≤ ∆. We have:

h′(y) = −λy−λ−1 + (λ + 1)y−λ−2 = y−λ−2(−λy + λ + 1),

and so, h strictly increases on (0, 1 + 1/λ) and strictly decreases on (1 + 1/λ, ∞).
If 1 + 1/λ ≥ ∆, then h strictly increases on (0, ∆] and:

2−λ−1 = h(2) ≤ h(y) ≤ h(∆) = (∆− 1)∆−λ−1,

for every 2 ≤ y ≤ ∆. These inequalities and Equation (4) give:

min
{

2−λ−1, (2∆− 2)∆−2λ−2} ≤ f (x, y) ≤ max
{
(∆− 1)∆−λ−1, 2−2λ−1}.

for every x ∈ [1, ∆] ∩Z, y ∈ [2, ∆] ∩Z. Since we have in this case 2−λ−1 = h(2) ≤ h(∆) =
(∆− 1)∆−λ−1, we conclude:

(∆− 1)∆−λ−1 ≤ max
{
(∆− 1)∆−λ−1, 2−2λ−1}

≤ max
{
(∆− 1)∆−λ−1, 2−λ−1} = (∆− 1)∆−λ−1.

Equation (2) gives:

min
{

2−λ−1, (2∆− 2)∆−2λ−2} = (2∆− 2)∆−2λ−2.
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Hence,
(2∆− 2)∆−2λ−2 ≤ f (x, y) ≤ (∆− 1)∆−λ−1,

for every x ∈ [1, ∆] ∩ Z, y ∈ [2, ∆] ∩ Z. The equality in the lower (respectively, upper)
bound is attained if and only if (x, y) = (∆, ∆) (respectively, (x, y) = (1, ∆)).

If β > 0 and λ = β/α, then we obtain:

(2∆− 2)α∆−2β−2α(dudv)
β ≤

(du + dv − 2
dudv

)α
≤ (∆− 1)α∆−β−α(dudv)

β,

(2∆− 2)α∆−2α−2βRβ(G) ≤ ABCα(G) ≤ (∆− 1)α∆−α−βRβ(G).

The equality in the lower bound is attained if and only if du = dv = ∆ for every
uv ∈ E(G), i.e., G is regular. The equality in the upper bound is attained if and only if
{du, dv} = {1, ∆} for every uv ∈ E(G), i.e., G is a union of star graphs S∆+1.

(7). If 1 + 1/λ ≤ 2, then h strictly decreases on [2, ∆] and:

(∆− 1)∆−λ−1 = h(∆) ≤ h(y) ≤ h(2) = 2−λ−1,

for every 2 ≤ y ≤ ∆. These inequalities and Equation (4) give:

min
{
(∆− 1)∆−λ−1, (2∆− 2)∆−2λ−2} ≤ f (x, y) ≤ max

{
2−λ−1, 2−2λ−1},

for every x ∈ [1, ∆] ∩Z, y ∈ [2, ∆] ∩Z. Equation (3) gives:

(2∆− 2)∆−2λ−2 ≤ f (x, y) ≤ 2−λ−1,

for every x ∈ [1, ∆] ∩ Z, y ∈ [2, ∆] ∩ Z. The equality in the lower (respectively, upper)
bound is attained if and only if (x, y) = (∆, ∆) (respectively, (x, y) = (1, 2)).

If β > 0 and λ = β/α, then we obtain for every uv ∈ E(G):

(2∆− 2)α∆−2β−2α(dudv)
β ≤

(du + dv − 2
dudv

)α
≤ 2−β−α(dudv)

β,

(2∆− 2)α∆−2α−2βRβ(G) ≤ ABCα(G) ≤ 2−α−βRβ(G).

The equality in the lower bound is attained if and only if du = dv = ∆ for every
uv ∈ E(G), i.e., G is regular. The equality in the upper bound is attained if and only if
{du, dv} = {1, 2} for every uv ∈ E(G), i.e., G is a union of path graphs P3.

(8). If 2 < 1 + 1/λ < ∆, then:

h(y) ≥ min
{

h(2), h(∆)
}
= min

{
2−λ−1, (∆− 1)∆−λ−1},

for every 2 ≤ y ≤ ∆. Furthermore,

h(y) ≤ h(1 + 1/λ) =
1
λ

(λ + 1
λ

)−λ−1
=

λλ

(λ + 1)λ+1 ,

for every 2 ≤ y ≤ ∆. These facts and (4) give:

min
{

2−λ−1, (∆− 1)∆−λ−1, (2∆− 2)∆−2λ−2} ≤ f (x, y)

≤ max
{ λλ

(λ + 1)λ+1 , 2−2λ−1
}

for every x ∈ [1, ∆] ∩Z, y ∈ [2, ∆] ∩Z.
Equations (2) and (3) give:

min
{

2−λ−1, (∆− 1)∆−λ−1, (2∆− 2)∆−2λ−2} = (2∆− 2)∆−2λ−2.
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Since h(2) ≤ h(1 + 1/λ), we obtain:

2−2λ−1 < 2−λ−1 ≤ λλ

(λ + 1)λ+1 ,

and so,

(2∆− 2)∆−2λ−2 ≤ f (x, y) ≤ λλ

(λ + 1)λ+1

for every x ∈ [1, ∆] ∩ Z, y ∈ [2, ∆] ∩ Z. The equality in the lower (respectively, upper)
bound is attained if and only if (x, y) = (∆, ∆) (respectively, (x, y) = (1, 1 + 1/λ)).

If β > 0 and λ = β/α, then we obtain:

( λλ

(λ + 1)λ+1

)α
=

(β/α)β

(β/α + 1)β+α
=

ααββ

(α + β)α+β
,

and we have for every uv ∈ E(G):

(2∆− 2)α∆−2β−2α(dudv)
β ≤

(du + dv − 2
dudv

)α
≤ ααββ

(α + β)α+β
(dudv)

β,

(2∆− 2)α∆−2α−2βRβ(G) ≤ ABCα(G) ≤ ααββ

(α + β)α+β
Rβ(G).

The equality in the lower bound is attained if and only if du = dv = ∆ for every
uv ∈ E(G), i.e., G is regular. The equality in the upper bound is attained if and only if
α/β ∈ Z+ and {du, dv} = {1, 1+ α/β} for every uv ∈ E(G), i.e., G is a union of star graphs
Sα/β+2.

Note that ABCα(G) is not well defined if α < 0 and G has an isolated edge. The
argument in the proof of Theorem 1 gives directly the following result for α < 0.

Theorem 2. Let G be a graph without isolated edges, with maximum degree ∆ and minimum
degree δ, and α < 0, β ∈ R \ {0}.

(1) If β/α ≤ −1 and δ > 1, then:

(2∆− 2)α∆−2α−2βRβ(G) ≤ ABCα(G) ≤ (2δ− 2)αδ−2α−2βRβ(G).

The equality in each bound is attained if and only if G is a regular graph.
(2) If β/α ≤ −1 and δ = 1, then:

(2∆− 2)α∆−2α−2βRβ(G) ≤ ABCα(G) ≤ 2−α−βRβ(G).

The equality in the lower bound is attained if and only if G is a regular graph. The equality in
the upper bound is attained if and only if G is a union of path graphs P3.

(3) If −1 < β/α ≤ −1/2 and δ > 1, then:

ABCα(G) ≤ (2δ− 2)αδ−2α−2βRβ(G).

The equality in the bound is attained if and only if G is a regular graph.
(4) If −1 < β/α ≤ −1/2 and δ = 1, then:

ABCα(G) ≤ 2−α−βRβ(G).

The equality in the bound is attained if and only if G is a union of path graphs P3.
(5) If β < 0 and δ > 1, then:

(2δ− 2)αδ−2α−2βRβ(G) ≤ ABCα(G) ≤ (2∆− 2)α∆−2α−2βRβ(G).
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The equality in each bound is attained if and only if G is a regular graph.

(6) If β < 0, δ = 1 and 1 + α/β ≥ ∆, then:

(∆− 1)α∆−α−βRβ(G) ≤ ABCα(G) ≤ (2∆− 2)α∆−2α−2βRβ(G).

The equality in the lower bound is attained if and only if G is a union of star graphs S∆+1.
The equality in the upper bound is attained if and only if G is a regular graph.

(7) If β < 0, δ = 1 and 1 + α/β ≤ 2, then:

2−α−βRβ(G) ≤ ABCα(G) ≤ (2∆− 2)α∆−2α−2βRβ(G).

The equality in the lower bound is attained if and only if G is a union of path graphs P3. The
equality in the upper bound is attained if and only if G is a regular graph.

(8) If β < 0, δ = 1 and 2 < 1 + α/β < ∆, then:

|α|α|β|β

|α + β|α+β
Rβ(G) ≤ ABCα(G) ≤ (2∆− 2)α∆−2α−2βRβ(G).

The equality in the lower bound is attained if and only if α/β ∈ Z+ and G is a union of star
graphs Sα/β+2. The equality in the upper bound is attained if and only if G is a regular graph.

Note that Theorems 1 and 2 generalize the classical inequalities:

2
√

δ− 1 R(G) ≤ ABC(G) ≤ 2
√

∆− 1 R(G). (5)

Theorem 1 has the following consequence.

Corollary 1. Let G be a graph with minimum degree δ and m2 isolated edges.

(1) If δ > 1, then:

2

√
1− 1

δ
R−1/4(G) ≤ ABC(G).

The equality in the bound is attained if and only if G is a regular graph.

(2) If δ = 1, then
21/4(R−1/4(G)−m2

)
≤ ABC(G).

The equality in the bound is attained if and only if G is a union of path graphs P3 and m2
isolated edges.

Corollary 1 improves the inequality:

2
(

1− 1√
δ

)
R−1/4(G) ≤ ABC(G)

in ([21], Theorem 2.5).

In [22], Lemma 4, the following result appeared.

Lemma 1. Let (X, µ) be a measure space and f , g : X → R measurable functions. If there exist
positive constants ω, Ω with ω|g| ≤ | f | ≤ Ω|g| µ-a.e., then:

‖ f ‖2‖g‖2 ≤
1
2

(√
Ω
ω

+

√
ω

Ω

)
‖ f g‖1. (6)

If these norms are finite, the equality in the bound is attained if and only if ω = Ω and
| f | = ω|g| µ-a.e. or f = g = 0 µ-a.e.
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We need the following converse Hölder inequality, which is interesting on its own.
This result generalizes Lemma 1 and improves the inequality in [23] (Theorem 2).

Theorem 3. Let (X, µ) be a measure space, f , g : X → R measurable functions, and 1 < p, q < ∞
with 1/p + 1/q = 1. If there exist positive constants a, b with a|g|q ≤ | f |p ≤ b|g|q µ-a.e., then:

‖ f ‖p‖g‖q ≤ Kp(a, b)‖ f g‖1, (7)

with:

Kp(a, b) =


1
p

( a
b

)1/(2q)
+

1
q

( b
a

)1/(2p)
, if 1 < p < 2,

1
p

( b
a

)1/(2q)
+

1
q

( a
b

)1/(2p)
, if p ≥ 2.

If these norms are finite, the equality in the bound is attained if and only if a = b and
| f |p = a|g|q µ-a.e. or f = g = 0 µ-a.e.

Remark 1. Since:

K2(a, b) =
1
2

( b
a

)1/4
+

1
2

( a
b

)1/4
,

Theorem 3 generalizes Lemma 1 (note that a = ω2 and b = Ω2).

Proof. If p = 2, then Lemma 1 (with ω = a1/2 and Ω = b1/2) gives the result. Assume
now p 6= 2, and let us define:

kp(a, b) = max
{ 1

p

( a
b

)1/(2q)
+

1
q

( b
a

)1/(2p)
,

1
p

( b
a

)1/(2q)
+

1
q

( a
b

)1/(2p) }
.

We will check at the end of the proof that kp(a, b) = Kp(a, b).
Let us consider t ∈ (0, 1) and define:

Gt(x) := tx1−t + (1− t)x−t

for x > 0. Since:

G′t(x) = t(1− t)x−t − t(1− t)x−t−1 = t(1− t)x−t−1(x− 1),

Gt is strictly decreasing on (0, 1) and strictly increasing on (1, ∞). Thus, if 0 < s ≤ S are
two constants and we consider s ≤ x ≤ S, then:

Gt(x) ≤ max{Gt(s), Gt(S)} =: A,

and if Gt(x) = A for some s ≤ x ≤ S, then x = s or x = S.
Note that if Gt(s) 6= Gt(S), the following facts hold: if Gt(s) > Gt(S) and

Gt(x) = A = Gt(s), then x = s; if Gt(s) < Gt(S) and Gt(x) = A = Gt(S), then x = S.
If x1, x2 > 0 and sx2 ≤ x1 ≤ Sx2, then:

t
( x1

x2

)1−t
+ (1− t)

( x2

x1

)t
≤ A,

tx1 + (1− t)x2 ≤ Axt
1x1−t

2 .

By continuity, this last inequality holds for every x1, x2 ≥ 0 with sx2 ≤ x1 ≤ Sx2. If
the equality is attained for some x1, x2 ≥ 0 with sx2 ≤ x1 ≤ Sx2, then x1 = sx2 or x1 = Sx2
(the cases x1 = 0 and x2 = 0 are direct).
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Choose t = 1/p (thus, 1− t = 1/q), x = xt
1 = x1/p

1 and y = x1−t
2 = x1/q

2 . Thus,

xp

p
+

yq

q
≤ Axy (8)

for every x, y ≥ 0 with syq ≤ xp ≤ Syq. If the equality is attained for some x, y ≥ 0 with
syq ≤ xp ≤ Syq, then xp = syq or xp = Syq.

If ‖ f ‖p = 0 or ‖g‖q = 0, then a|g|q ≤ | f |p ≤ b|g|q µ-a.e. gives ‖ f ‖p = ‖g‖q = 0,
and the equality in (7) holds. Assume now that ‖ f ‖p 6= 0 6= ‖g‖q.

Let us define the function:
h := (ab)1/(2q)|g|.

We have:√
a
b

hq = a|g|q,

√
b
a

hq = b|g|q,
√

a
b

hq ≤ | f |p ≤
√

b
a

hq.

If x = | f |, y = h, s = (a/b)1/2, and S = (b/a)1/2, then shq ≤ | f |p ≤ Shq and (8) gives:

1
p
| f |p + 1

q
hq ≤ A| f |h.

If the equality in this inequality is attained at some point, then:

| f |p =

√
a
b

hq or | f |p =

√
b
a

hq

at that point.
Note that:

G1/p(x) =
1
p

x1/q +
1
q

( 1
x

)1/p

and so,

A = max{Gt(s), Gt(S)} = max
{

G1/p
(
(a/b)1/2 ), G1/p

(
(b/a)1/2 )} = kp(a, b).

Hence,
1
p
| f |p + 1

q
hq ≤ kp(a, b)| f |h,

1
p
‖ f ‖p

p +
1
q
‖h‖q

q ≤ kp(a, b)‖ f h‖1.

Recall that these norms are well defined, although they can be infinite.
If these norms are finite and the equality in the last inequality is attained, then:

| f |p =

√
a
b

hq or | f |p =

√
b
a

hq

µ-a.e. Young’s inequality states that:

xy ≤ xp

p
+

yq

q

for every x, y ≥ 0, and the equality holds if and only if xp = yq. Thus,

‖ f ‖p‖h‖q ≤
1
p
‖ f ‖p

p +
1
q
‖h‖q

q ≤ kp(a, b)‖ f h‖1.
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Therefore, by homogeneity, we conclude:

‖ f ‖p‖g‖q ≤ kp(a, b)‖ f g‖1.

Let us prove now that kp(a, b) = Kp(a, b). Consider the function Ht(x) := Gt(x)−
Gt(1/x) for t ∈ (0, 1) and x ∈ (0, 1]. We have:

H′t(x) = G′t(x) +
1
x2 G′t

( 1
x

)
= t(1− t) x−t−1(x− 1) + t(1− t)

1
x2 xt+1

( 1
x
− 1
)

= t(1− t) x−t−1(x− 1) + t(1− t) xt−2(1− x)

= t(1− t)(1− x) x−t−1(x2t−1 − 1).

If t ∈ (0, 1/2), then 2t− 1 < 0 and H′t(x) > 0 for every x ∈ (0, 1), and so, Ht(x) <
Ht(1) = 0 for every x ∈ (0, 1). Hence, Gt(x) < Gt(1/x) for every x ∈ (0, 1). If p > 2 and
a < b, then G1/p

(
(a/b)1/2 ) < G1/p

(
(b/a)1/2 ), and:

kp(a, b) =
1
p

( b
a

)1/(2q)
+

1
q

( a
b

)1/(2p)
.

If t ∈ (1/2, 1), then 2t− 1 > 0 and H′t(x) < 0 for every x ∈ (0, 1), and so, Ht(x) >
Ht(1) = 0 for every x ∈ (0, 1). Hence, Gt(x) > Gt(1/x) for every x ∈ (0, 1). If 1 < p < 2
and a < b, then G1/p

(
(a/b)1/2 ) > G1/p

(
(b/a)1/2 ), and:

kp(a, b) =
1
p

( a
b

)1/(2q)
+

1
q

( b
a

)1/(2p)
.

Therefore, kp(a, b) = Kp(a, b).

If a = b and | f |p = a|g|q µ-a.e. or f = g = 0 µ-a.e., then a computation gives that the
equality in (7) is attained.

Finally, assume that the equality in (7) is attained. Seeking for a contradiction, assume
that a 6= b. The previous argument gives that:

| f |p =

√
a
b

hq or | f |p =

√
b
a

hq

µ-a.e. Since we proved G1/p
(
(a/b)1/2 ) 6= G1/p

(
(b/a)1/2 ) (recall that p 6= 2 and a < b),

we can conclude that:

| f |p =

√
a
b

hq µ-a.e. or | f |p =

√
b
a

hq µ-a.e.

Hence,

‖ f ‖p
p =

√
a
b
‖h‖q

q or ‖ f ‖p
p =

√
b
a
‖h‖q

q.

Since the equality in Young’s inequality gives ‖ f ‖p
p = ‖h‖q

q, we obtain a = b, a contra-
diction. Therefore, a = b and | f |p = hq µ-a.e. Hence, | f |p = a |g|q µ-a.e.

Theorem 3 has the following consequence.
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Corollary 2. If 1 < p, q < ∞ with 1/p+ 1/q = 1, xj, yj ≥ 0 and ayq
j ≤ xp

j ≤ byq
j for 1 ≤ j ≤ k

and some positive constants a, b, then:

( k

∑
j=1

xp
j

)1/p( k

∑
j=1

yq
j

)1/q
≤ Kp(a, b)

k

∑
j=1

xjyj,

where Kp(a, b) is the constant in Theorem 3. If xj > 0 for some 1 ≤ j ≤ k, then the equality in the
bound is attained if and only if a = b and xp

j = ayq
j for every 1 ≤ j ≤ k.

The Platt number is defined (see, e.g., [24]) as:

F(G) = ∑
uv∈E(G)

(
du + dv − 2

)
.

Theorem 4. Let G be a graph with m2 isolated edges and 0 < α < 1.

(1) Then:
ABCα(G) ≤ F(G)α

(
R−α/(1−α)(G)−m2

)1−α.

The equality in this bound is attained for the union of any regular or biregular graph and m2
isolated edges; if G is the union of a connected graph and m2 isolated edges, then the equality in this
bound is attained if and only if G is the union of any regular or biregular connected graph and m2
isolated edges.

(2) If δ > 1, then:

ABCα(G) ≥
(∆− 1)α/2∆α2/(1−α)(δ− 1)(1−α)/2δαF(G)αR−α/(1−α)(G)1−α

α(∆− 1)1/2∆α/(1−α) + (1− α)(δ− 1)1/2δα/(1−α)
,

if α ∈ (0, 1/2], and:

ABCα(G) ≥
(δ− 1)α/2δα2/(1−α)(∆− 1)(1−α)/2∆αF(G)αR−α/(1−α)(G)1−α

α(δ− 1)1/2δα/(1−α) + (1− α)(∆− 1)1/2∆α/(1−α)
,

if α ∈ (1/2, 1). The equality in these bounds is attained if and only if G is regular.

(3) If δ = 1, then:

ABCα(G) ≥
2α(∆− 1)α/2∆α2/(1−α)F(G)α

(
R−α/(1−α)(G)−m2

)1−α

α(2∆− 2)1/2∆α/(1−α) + (1− α)2α/(2−2α)
,

if α ∈ (0, 1/2], and:

ABCα(G) ≥
2α2/(2−2α)∆α(2∆− 2)(1−α)/2F(G)α

(
R−α/(1−α)(G)−m2

)1−α

α2α/(2−2α) + (1− α)(2∆− 2)1/2∆α/(1−α)
,

if α ∈ (1/2, 1).

Proof. Since ABCα(P2) = 0 and Rβ(P2) = 1, it suffices to prove the theorem for the case
m2 = 0, i.e., when G is a graph without isolated edges. Hence, ∆ ≥ 2.
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Hölder’s inequality gives:

ABCα(G) = ∑
uv∈E(G)

( du + dv − 2
dudv

)α

≤
(

∑
uv∈E(G)

(
(du + dv − 2)α

)1/α
)α(

∑
uv∈E(G)

( 1
(dudv)α

)1/(1−α))1−α

=
(

∑
uv∈E(G)

(
du + dv − 2

))α(
∑

uv∈E(G)

(
dudv

)−α/(1−α)
)1−α

= F(G)αR−α/(1−α)(G)1−α.

If G is a regular or biregular graph with m edges, then:

F(G)αR−α/(1−α)(G)1−α =
(
(∆ + δ− 2)m

)α(
(∆δ)−α/(1−α)m

)1−α

=
(∆ + δ− 2)α

(∆δ)α
m = ABCα(G).

Assume that G is connected and that the equality in the first inequality is attained.
Hölder’s inequality gives that there exists a constant c with:

du + dv − 2 = c(dudv)
−α/(1−α)

for every uv ∈ E(G). Note that the function H : [1, ∞) × [1, ∞) → [0, ∞) given by
H(x, y) = (x + y− 2)(xy)α/(1−α) is increasing in each variable. If uv, uw ∈ E(G), then:

c = (du + dv − 2)(dudv)
α/(1−α) = (du + dw − 2)(dudw)

α/(1−α)

implies dw = dv. Thus, for each vertex u ∈ V(G), every neighbor of u has the same degree.
Since G is a connected graph, this holds if and only if G is regular or biregular.

Assume now that δ > 1. If α ∈ (0, 1/2], then:

K1/α

(
(2δ− 2)δ2α/(1−α), (2∆− 2)∆2α/(1−α)

)
= α

(∆− 1
δ− 1

)(1−α)/2(∆
δ

)α
+ (1− α)

( δ− 1
∆− 1

)α/2( δ

∆

)α2/(1−α)

=
α(∆− 1)(1−α)/2∆α(∆− 1)α/2∆α2/(1−α) + (1− α)(δ− 1)α/2δα2/(1−α)(δ− 1)(1−α)/2δα

(∆− 1)α/2∆α2/(1−α)(δ− 1)(1−α)/2δα

=
α(∆− 1)1/2∆α/(1−α) + (1− α)(δ− 1)1/2δα/(1−α)

(∆− 1)α/2∆α2/(1−α)(δ− 1)(1−α)/2δα
.

If α ∈ (1/2, 1), then a similar computation gives:

K1/α

(
(2δ− 2)δ2α/(1−α), (2∆− 2)∆2α/(1−α)

)
=

α(δ− 1)1/2δα/(1−α) + (1− α)(∆− 1)1/2∆α/(1−α)

(δ− 1)α/2δα2/(1−α)(∆− 1)(1−α)/2∆α
.

Since:

(2δ− 2)δ2α/(1−α) ≤ (du + dv − 2)(dudv)
α/(1−α) =

du + dv − 2
(dudv)−α/(1−α)

≤ (2∆− 2)∆2α/(1−α),
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Corollary 2 gives:

ABCα(G) = ∑
uv∈E(G)

( du + dv − 2
dudv

)α

≥

(
∑uv∈E(G)

(
du + dv − 2

))α(
∑uv∈E(G)

(
dudv

)−α/(1−α)
)1−α

K1/α

(
(2δ− 2)δ2α/(1−α), (2∆− 2)∆2α/(1−α)

)
=

F(G)αR−α/(1−α)(G)1−α

K1/α

(
(2δ− 2)δ2α/(1−α), (2∆− 2)∆2α/(1−α)

) .

This gives the second and third inequalities.
If the graph is regular, then:

F(G)αR−α/(1−α)(G)1−α

K1/α

(
(2δ− 2)δ2α/(1−α), (2∆− 2)∆2α/(1−α)

)
=

(
(2δ− 2)m

)α(
δ−2α/(1−α)m

)1−α

K1/α

(
(2δ− 2)δ2α/(1−α), (2δ− 2)δ2α/(1−α)

)
=

(2δ− 2)α

δ2α
m = ABCα(G).

If we have the equality in the second or third inequality, then Corollary 2 gives
(2δ − 2)δ2α/(1−α) = (2∆ − 2)∆2α/(1−α). Since the function h(t) = (2t − 2)t2α/(1−α) is
strictly increasing on [1, ∞), we conclude that δ = ∆ and G is regular.

Finally, assume that δ = 1. If α ∈ (0, 1/2], then:

K1/α

(
2α/(1−α), (2∆− 2)∆2α/(1−α)

)
= α (2∆− 2)(1−α)/2

( ∆
21/2

)α
+ (1− α)

( 1
2∆− 2

)α/2(21/2

∆

)α2/(1−α)

=
α(2∆− 2)(1−α)/2∆α(2∆− 2)α/2∆α2/(1−α) + (1− α)2α2/(2−2α)2α/2

(2∆− 2)α/2∆α2/(1−α)2α/2

=
α(2∆− 2)1/2∆α/(1−α) + (1− α)2α/(2−2α)

2α(∆− 1)α/2∆α2/(1−α)
.

If α ∈ (1/2, 1), then a similar computation gives:

K1/α

(
2α/(1−α), (2∆− 2)∆2α/(1−α)

)
=

α2α/(2−2α) + (1− α)(2∆− 2)1/2∆α/(1−α)

2α2/(2−2α)∆α(2∆− 2)(1−α)/2
.

Since:
2α/(1−α) ≤ (du + dv − 2)(dudv)

α/(1−α) =
du + dv − 2

(dudv)−α/(1−α)

≤ (2∆− 2)∆2α/(1−α),
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Corollary 2 gives:

ABCα(G) = ∑
uv∈E(G)

( du + dv − 2
dudv

)α

≥

(
∑uv∈E(G)

(
du + dv − 2

))α(
∑uv∈E(G)

(
dudv

)−α/(1−α)
)1−α

K1/α

(
2α/(1−α), (2∆− 2)∆2α/(1−α)

)
=

F(G)αR−α/(1−α)(G)1−α

K1/α

(
2α/(1−α), (2∆− 2)∆2α/(1−α)

) .

This gives the fourth and fifth inequalities.

Theorem 4 has the following consequence.

Corollary 3. Let G be a graph with m2 isolated edges.

(1) Then:
ABC(G) ≤

√
2F(G)

(
R−1(G)−m2

)
.

The equality in this bound is attained for the union of any regular or biregular graph and m2
isolated edges; if G is the union of a connected graph and m2 isolated edges, then the equality in this
bound is attained if and only if G is the union of any regular or biregular connected graph and m2
isolated edges.

(2) If δ > 1, then:

ABC(G) ≥ 2
√

2∆δ (∆− 1)1/4(δ− 1)1/4F(G)1/2R−1(G)1/2

∆
√

∆− 1 + δ
√

δ− 1
.

The equality in this bound is attained if and only if G is regular.

(3) If δ = 1, then:

ABC(G) ≥
2
√

2∆ (∆− 1)1/4F(G)1/2(R−1(G)−m2
)1/2

∆
√

∆− 1 + 1
.

Theorem 5. If G is a graph with m edges and m2 isolated edges and α ∈ R, then:

ABCα(G) ≤ (m−m2 − 1)α
(

R−α(G)−m2
)
, if α > 0,

ABCα(G) ≥ (m− 1)αR−α(G), if α < 0 and m2 = 0.

The equality in the first bound is attained if and only if G is the union of a star graph and m2
isolated edges. The equality in the second bound is attained if and only if G is a star graph.

Proof. Since ABCα(P2) = 0 and Rβ(P2) = 1, it suffices to prove the theorem for the case
m2 = 0, i.e., when G is a graph without isolated edges.

In any graph, the inequality du + dv ≤ m + 1 holds for every uv ∈ E(G). If α > 0, then:(
du+dv−2

dudv

)α

(
1

dudv

)α = (du + dv − 2)α ≤ (m− 1)α,

(
du + dv − 2

dudv

)α

≤ (m− 1)α(dudv)
−α,

ABCα(G) ≤ (m− 1)αR−α(G).

If α < 0, then we obtain the converse inequality.
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If G is a star graph, then du + dv = m + 1 for every uv ∈ E(G), and the equality is
attained for every α.

If the equality is attained in some inequality, then the previous argument gives that
du + dv = m + 1 for every uv ∈ E(G). In particular, G is a connected graph. If m = 2,
then {du, dv} = {1, 2} for every uv ∈ E(G), and so, G = P3 = S3. Assume now m ≥ 3.
Seeking for a contradiction, assume that {du, dv} 6= {m, 1} for some uv ∈ E(G). Since
du + dv = m + 1, we have 2 ≤ du, dv ≤ m− 1, and so, there exist two different vertices
u′, v′ ∈ V(G) \ {u, v} with uu′, vv′ ∈ E(G). Since vv′ is not incident on u and u′, we have
du + du′ < m + 1, a contradiction. Hence, {du, dv} = {m, 1} for every uv ∈ E(G), and so,
G is a star graph.

Corollary 4. If G is a graph with m edges and m2 isolated edges, then:

ABC(G) ≤
√

2(m−m2 − 1)
(

R(G)−m2
)
,

and the equality is attained if and only if G is the union of a star graph and m2 isolated edges.

Note that Theorem 5 (and Corollary 4) improves Items (1) and (2) in Theorems 1 and
2 for many graphs (when m < 2∆− 1).

3. Conclusions

Topological indices have become a useful tool for the study of theoretical and practical
problems in different areas of science. An important line of research associated with
topological indices is to find optimal bounds and relations between known topological
indices, in particular to obtain bounds for the topological indices associated with invariant
parameters of a graph (see [1]).

From the theoretical point of view in this research, a new type of Hölder converse
inequality was proposed (Theorem 3 and Corollary 2). From the practical point of view,
this inequality was successfully applied to establish new relationships of the generaliza-
tions of the indexes ABC and R; in particular, it was applied to prove Theorem 4 and
Corollary 3. In addition, other new relationships were obtained between these indices
(Theorems 1, 2, and 5) that generalized and improved already known results.
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