
mathematics

Article

Residue Sum Formula for Pricing Options under the Variance
Gamma Model

Pedro Febrer 1 and João Guerra 1,2,*

����������
�������

Citation: Febrer, P.; Guerra, J.

Residue Sum Formula for Pricing

Options under the Variance Gamma

Model. Mathematics 2021, 9, 1143.

https://doi.org/10.3390/math9101143

Academic Editors: Matthias Ehrhardt,

Maria Do Rosário Grossinho and

Daniel Sevcovic

Received: 22 April 2021

Accepted: 14 May 2021

Published: 18 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ISEG—School of Economics and Management, Universidade de Lisboa, Rua do Quelhas 6,
1200-781 Lisboa, Portugal; l51849@aln.iseg.ulisboa.pt

2 REM—Research in Economics and Mathematics, CEMAPRE, Rua do Quelhas 6, 1200-781 Lisboa, Portugal
* Correspondence: jguerra@iseg.ulisboa.pt; Tel.: +351-963-671-214

Abstract: We present and prove a triple sum series formula for the European call option price in a
market model where the underlying asset price is driven by a Variance Gamma process. In order to
obtain this formula, we present some concepts and properties of multidimensional complex analysis,
with particular emphasis on the multidimensional Jordan Lemma and the application of residue
calculus to a Mellin–Barnes integral representation in C3, for the call option price. Moreover, we
derive triple sum series formulas for some of the Greeks associated to the call option and we discuss
the numerical accuracy and convergence of the main pricing formula.

Keywords: Lévy processes; variance gamma process; multidimensional complex analysis; Mellin
transform; option pricing

1. Introduction

The pricing of financial derivatives, such as options, is one of the pivotal tasks of math-
ematical finance, yet it can be an arduous task to develop a model that is consistent with the
empirical evidence, soluble, and where its numerical estimation is neither erroneous nor
time consuming. One of the first attempts to solve this quandary was the Gaussian model
that was first introduced by Fischer Black and Myron Scholes in [1] and later expanded by
Robert Merton in [2], aptly named the Black–Scholes model, where the stochastic process
driving the underlying asset price is modeled by a geometric Brownian motion. Its simplic-
ity and the admission of a close formula for the option price are the main reasons why, to
this day, it remains the most frequently used model by market practitioners. Still, the model
fails to account for sudden price drops or increases that can be expressed as discontinuous
price jumps; moreover, it assumes the volatility to remain constant for changes in relation
to the strike price and time to maturity, contrary to the evidence derived from empirical
data and, furthermore, the distributions of asset returns have been shown to be negatively
skewed and exhibit fat-tails that are not captured by the symmetric Gaussian model.

The Black–Scholes model has been generalized in many ways. Let us mention two of
the most important classes of models used in these generalizations: stochastic volatility
models and jump models (see [3]). The model that we consider in this paper is a particular
jump model, which assumes that the underlying asset price dynamics are described by
a Lévy Process, namely the Variance Gamma process, which was first proposed by Dilip
Madan and Eugene Seneta in [4]. The descriptive power of models that are based on Lévy
processes for accurately portraying financial markets (not displaying the aforementioned
problems that are present in the Black–Scholes model) has been known since the works of
Benoît Mandelbrot [5] and Eugene Fama [3], and they have been gaining traction in recent
decades with the advent of technology and computer development. Yet, the Black–Scholes
model remains mostly ubiquitous. The main reason for this state of affairs is that pricing
models that are based on Lévy processes admit, at best, a closed pricing formula for some
particular cases, but, in general, prices must be computed by numerical simulation.
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Several authors have studied the problem of option pricing under the Variance Gamma
model. Let us highlight some important contributions. In [6], the authors obtain a closed
form formula for the price of a European call option. This formula involves the evaluation
of a modified Bessel function and a degenerate Hypergeometric function. A numerical
method for option pricing based on Fourier Transform and Fast Fourier Transform was
proposed in [7] and a method based on the Fourier-cosine series was proposed in [8].
An alternative numerical approach to the problem is based on the development of finite
difference schemes for obtaining the solution of the partial integro-differential equation
(PIDE) for the option pricing function (see, for instance, [9]). A multinomial method for
option pricing of European and American options under the Variance Gamma model was
also proposed and discussed in [10].

In recent years, a different approach has been undertaken directed at α-stable Lévy
processes (see [11]), which include: the discovery of the conditions for guaranteeing the
existence of a martingale measure, which was carried out by Peter Carr and Liuren Wu
in [12]; the representation of the Green function (the fundamental solution to the space–
time fractional diffusion equation) by a Mellin–Barnes integral of a Gamma fraction, which
was done by Rudolf Gorenflo and Francesco Mainardi, among others (see [13–16] for more
details); and, the discovery that, under certain conditions, Residue Calculus can be applied
to a Mellin–Barnes integral of a Gamma fraction, converting it into a multiple sum series,
by Mikael Passare, August Tsikh, and Oleg Zhadanov in [17–19]. Let us briefly describe
why the Mellin–Barnes integral is important when studying the space–time fractional
diffusion equation (which generalizes the standard diffusion equation by replacing the
usual derivatives with fractional derivatives). The fundamental solution or Green function
of the fractional diffusion equation can be represented as a spatial density probability
function that is time dependent. After applying the Mellin transform to this Green function,
one obtains a Mellin–Barnes integral of Gamma functions in the complex plane. This
Mellin–Barnes integral can be evaluated using the residues theorem and represented by
a convergent series (for more details, see [13]). Finally, Jean-Phillipe Aguilar, Cyril Coste,
and Jan Korbel used the Green function to express the price of a European option as a
Mellin–Barnes integral in their works [20–22], and they were able to arrive at a double series
representation for the European call option price by applying the previously mentioned
results that were developed by Passare et al.

The main novelty and major contribution of the present study is that we obtain
and prove a Mellin–Barnes integral representation and the associated triple residue sum
formulas for European option prices and Greek functions, by using three-dimensional
complex analysis in C3 and considering the Variance Gamma model for the dynamics of
the underlying risky asset. We also confirmed the viability and accuracy of the formula
obtained by using numerical tests on real option data. Note that, in [20–22], a similar
approach was applied to the time-fractional diffusion and the particular case of the finite
moment Lévy stable model. However, in these papers, only two-dimensional complex
analysis in C2 was required and a double residue sum formula was obtained. Let us also
note that, in [4], the authors introduce the Variance Gamma model for option pricing, but
they use a very different approach for the calculation of the option price: the traditional
risk neutral valuation formula and numerical integration techniques, when considering
the probability density function of the Variance Gamma distribution.

The organization of the paper follows below. In Section 2, we will introduce prelimi-
nary concepts, such as the multidimensional Residue Theory and Mellin–Barnes integral,
and discuss some of their properties. In Section 3, we present the option pricing problem
and prove the representation of the triple Mellin–Barnes Integral for the option price. In
Section 4, we present the main results of the paper. By applying residue calculus, we
derive the triple series representation for the European call option price under the Variance
Gamma model and the subsequent Greek functions. In Section 5, taking advantage of the
data presented in [23], we test the accuracy of the Variance Gamma formula and its Greeks.
The last section is dedicated to some concluding remarks.
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2. Preliminary Theory
2.1. Multidimensional Residue Calculus

We start by enumerating, without proving, some of the definitions and results of
multidimensional complex analysis. A more in-depth theoretical introduction to multidi-
mensional complex analysis can be found in the textbooks [24,25].

Definition 1 (Grothendieck Residue). Let h and fi, for any index i ∈ {1, . . ., n}, be functions
in Cn, where h is holomorphic. Consider the meromorphic differential n-form

ω =
h(z)dz

f1(z). . . fn(z)
, dz = dz1 ∧ . . . ∧ dzn, (1)

which has the singularities Dj = {z ∈ C : f j(z) = 0}, such that the intersection
⋂n

j=1 Dj is
discrete. The Grothendieck residue on a singularity a ∈ ⋂n

j=1 Dj is defined as

Resaω =
1

(2πi)n

∫
Ca

ω, (2)

where Ca = {z ∈ Ua :
∣∣ f j(z)

∣∣ = ε, j = 1, . . ., n} is a cycle in a small neighborhood Ua of the
singularity a with the orientation d(arg f1) ∧ . . . ∧ d(arg fn) ≥ 0.

Before proceeding we will formalize the concept of a multidimensional polyhedron in
Cn. The two following definitions will underpin most of the theorems from Sections 2 and 3.

Definition 2 (Polyhedron). Consider a proper (the inverse images of a compact set are compact)
holomorphic map g : Cn → G where G = G1 × . . .× Gn is a domain (connected open subset of a
finite-dimensional vector space) where, for each j = 1, . . ., n, Gj ⊂ C is a domain with piecewise
smooth boundary. We define a polyhedron Π as the inverse image

Π := g−1(G), (3)

and for a multi-index K = {k1, . . ., kp} ⊂ {1, . . ., n} we define the polyhedron’s faces as

σK := {z : gk(z) ∈ ∂Gk for k ∈ K, gj(z) ∈ Gj for j ∈ KC}. (4)

Definition 3 (Compatible divisors). Consider the polyhedron Π and the family of divisors
{Di}i∈{1,...,n}, they are said to be compatible if for any i ∈ {1, . . ., n} we get

σi ∩ Di = ∅. (5)

Analogously to the one dimensional integral on the real axis, we may want to compute
an integral

∫
σ ω where ω is the meromorphic form (1) and σ is the boundary of a polyhedron

Π. For an unbounded polyhedron we need the integrand to vanish as it goes to infinity. To
achieve this goal let us introduce the auxiliary functions

ρj =

∣∣ f j
∣∣2

‖ f ‖2 , for any j ∈ {1, . . ., n}, (6)

where ‖ f ‖2 = | f1|2 + . . .+ | fn|2. Using the functions (6) we define the differential (n, p− 1)-
forms as

ξ J = ∑
j∈J

(−1)(j,J)−1ρj∂ρJ [j] ∧ω, (7)
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where J = {j1, . . ., js} ⊂ {1, . . ., n}, for 1 < s ≤ n, is a multi-index, (j, J) is the position of j
in set J and ∂ρJ [j] = ∂ρj1 ∧ . . .[j]. . . ∧ ∂js . We now define the multidimensional condition
analogous to limR→∞

∫
SR

f (z)dz = 0.

Definition 4 (Jordan condition). Consider the sphere SR = {z ∈ σ : ‖z‖ = R}, where
σ = σ12...n is the boundary of the polyhedron Π. A differential form ξ J satisfies the Jordan condition
on face σJo , with Jo = {1, . . ., n} \ J, if exists a sequence of positive real numbers Rk that goes to
infinity, such that

lim
k→∞

∫
SRk
∩ σJo

ξ J = 0. (8)

Note that, for n = 1, there exists only one form ξ = ω and thus the condition (8) corre-
sponds to the unidimensional condition limz→∞

∫
SR

f (z)dz = 0. For the multidimensional
case, consider the set N = {z ∈ Cn : ‖ f (z)‖ = 0} = ⋂n

i=1 Di. Thus, we have the following
theorem, which allows us to compute the integral of the meromorphic form (1) on the
boundary of the polyhedron as a sum of residues, and it is the main theoretical tool used in
the proof of Theorem 2.

Theorem 1 (The Jordan Lemma). Let ω be a meromorphic form with the polar divisors
{Di}i∈{1,...,n} compatible with polyhedron Π. If, for every multi-index J, the differential form
ξ J satisfies the Jordan condition on σJo , then we get∫

σ
ω = (2πi)n ∑

a∈N∩Π
Resaω (9)

The Jordan’s Lemma proof can be found in [17].

2.2. One-Dimensional Mellin–Barnes Integral

We will start by presenting, without proof, some basic concepts and properties for the
one-dimensional Mellin–Barnes integral. For a more in depth look at Fourier, Laplace, and
Mellin Transforms, as well as their corresponding properties, we recommend the book [26].

Definition 5 (Mellin–Barnes Integral). The Mellin–Barnes Integral is given by a ratio of products
of Gamma functions of linear arguments

Φ(t) :=
1

2πi

∫ γ+i∞

γ−i∞

∏m
j=1 Γ(ajz + bj)

∏
p
k=1 Γ(ckz + dk)

t−zdz, (10)

where its characteristic quantity, ∆, is defined by

∆ =
m

∑
j=1

aj −
p

∑
k=1

ck (11)

Before proceeding, let us state the Stirling’s approximation of the gamma function
(see [27])

Γ(z) =
√

2πzz−1/2e−zO
(

1 +
1
z

)
−−−→
|z|→∞

√
2πzz−1/2e−z. (12)
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Equipped with this expression, one can easily see how ∆ governs the behavior of the
ratio of Gammas as |z| → ∞, and, therefore, which residues, of the singularities to the left
or right of the =(z) = 0 strip, one will sum to compute the integral (10):

Φ(t) =


∑

<(sn)<γ

Ressn

(
∏m

j=1 Γ(ajz+bj)

∏
p
k=1 Γ(ckz+dk)

)
t−sn if ∆ > 0,

− ∑
<(sn)>γ

Ressn

(
∏m

j=1 Γ(ajz+bj)

∏
p
k=1 Γ(ckz+dk)

)
t−sn if ∆ < 0.

(13)

For example, one can express an exponential term ex as the Mellin–Barnes integral

ex =
∞

∑
n=0

xn

n!
=

γ+i∞∫
γ−i∞

(−1)−tΓ(t)x−t dt
2πi

, (14)

where γ > 0.

2.3. Three-Dimensional Mellin–Barnes Integral

In this subsection, similarly to what we did previously for the unidimensional case, we
will present the triple Mellin–Barnes integral and deduce its formula as a sum of residues,
which will be crucial when proving the main result of this paper. In order to achieve this,
let us first consider its integral form

Φ(t) =
1

(2πi)3

∫
γ+iR3

m
∏
j=1

Γ(aj1z1 + aj2z2 + aj3z3 + bj)

p
∏

k=1
Γ(ck1z1 + ck2z2 + ck3z3 + dj)

t−z1 t−z2 t−z3 dz1 ∧ dz2 ∧ dz3. (15)

Henceforth, for brevity, we will denote the three-form integrand of (15) by ω. Its zeroes
will be the complex planes Lν

j = {(z1, z2, z3) ∈ C3 : aj1z1 + aj2z2 + aj3z3 + bj = −ν}, for any
ν ∈ N and j ∈ {1, . . ., m}, which represent each singularity given by the gamma functions

present in the numerator of the form ω. We will also denote the vectors aj :=

aj1
aj2
aj3

,

ck :=

ak1
ak2
ak3

 and, most importantly, define the characteristic vector as

∆ =
m

∑
j=1

aj −
p

∑
k=1

ck. (16)

Suppose that ∆ is a non-zero vector. In this case, we can define the plane P∆ where
its real part intersects the point γ and has ∆ as its normal vector, i.e., P∆ := {z ∈ C3 :
<(〈∆, z〉) = <(〈∆, γ〉)}, and thereupon we can define the admissible-polyhedra, Π∆, as the
real volume “below” P∆, i.e., Π∆ := {z ∈ C3 : <(〈∆, z〉)) ≤ <(〈∆, γ〉)}.

Taking all of these previous demarcations into account, we can construct an admissible
polyhedron Π ⊂ Π∆, which will be uniquely defined by the linear function g : C3 → G,
where Π = g−1(G) and

g(z) =

n1
n2
n3

(<(z)− γ) + i=(z), (17)
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with the image G = {z ∈ C3 : <(z1) ≥ 0,<(z2) ≥ 0,<(z3) ≥ 0}, i.e the first octant.
From (17), we can ascertain that its only vertex is σ1,2,3 = γ and that n1, n2, and n3 are the
normal vectors of the faces σ1, σ2, and σ3 of the polyhedron:

σ1 = {z ∈ C3 : <(〈n1, z〉) = <(〈n1, z〉),<(〈n2, z〉) ≥ <(〈n2, z〉),<(〈n3, z〉) ≥ <(〈n3, z〉)}, (18)

σ2 = {z ∈ C3 : <(〈n1, z〉) ≥ <(〈n1, z〉),<(〈n2, z〉) = <(〈n2, z〉),<(〈n3, z〉) ≥ <(〈n3, z〉)}, (19)

σ3 = {z ∈ C3 : <(〈n1, z〉) ≥ <(〈n1, z〉),<(〈n2, z〉) ≥ <(〈n2, z〉),<(〈n3, z〉) = <(〈n3, z〉)}. (20)

If the polyhedron was providently constructed, then we can balkanize the singularities,
Lν

j , into three distinct sets, such that they are compatible with the polyhedron, i.e.:

D1 =
⋃

j∈{1,...,m}
ν∈N

Lν
j ∩σ1=∅

Lν
j , D2 =

⋃
j∈{1,...,m}

ν∈N
Lν

j ∩σ2=∅

Lν
j , D3 =

⋃
j∈{1,...,m}

ν∈N
Lν

j ∩σ3=∅

Lν
j . (21)

Theorem 2 (Residue formula for the Triple Mellin–Barnes integral). Let ω be the three-
form integrand of (15) with the characteristic vector ∆ 6= 0 and divisors D1, D2, and D3, as
defined in (21), being compatible with the admissible polyhedron Π ⊂ Π∆. Subsequently, the sum
formula holds:

1
(2πi)3

∫
γ+iR3

ω = ∑
t∈Π∩D1∩D2∩D3

Restω, (22)

where the series on the right-hand side converges absolutely for any t ∈ U, for U, defined as,

U = {t ∈ (C \ 0)3 : |arg t1| < π, |arg t2| < π, |arg t3| < π, ‖arg t‖ < (π/2)α} (23)

and α is a constant that is given by,

α := min
y∈S1

(
m

∑
j=1
|〈aj, y〉| −

p

∑
j=1
|〈cj, y〉|

)
, (24)

where S1 = {y ∈ R3 : |y| = 1} is the unit sphere in R3.

For a proof of Theorem 2, please see Appendix A.

3. Option Pricing Driven by a Variance Gamma Process

Equipped with the results of the previous section, we will now center our attention on
deducing the main result of this paper, the formula for the price of a European call option
under the Variance Gamma model. Similar to the derivation presented in [20], we will
arrive at this result in two steps. First, we will derive the Mellin–Barnes representation for
the aforementioned call option price and, secondly, we will use residue calculus to derive
the triple sum series formula.

3.1. Mellin–Barnes Representation for a Call Option

Before introducing the call option price, let us recall that we can define the Variance
Gamma process as the difference between two independent gamma processes (see [6]),

XVG(τ; C, G, M) = G1
τ − G2

τ , (25)
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where τ is the time variable, G1
τ ∼ Gamma(Cτ, 1/M) and G2

τ ∼ Gamma(Cτ, 1/G) with
parameters C > 0, M > 0, and G > 0. The probability density function of a gamma process
G ∼ Gamma(α, β) is given by

fG(α,β)(x) =
βα

Γ(α)
xα−1e−βx. (26)

Under these definitions, one can, by direct computation, easily arrive at the character-
istic function for the variance gamma process XVG(τ; C, G, M),

φVG(u, τ; C, G, M) = E
[
eiuXVG(τ;C,G,M)

]
=

[
MG

MG + iu(M− G) + u2

]−Cτ

, (27)

where u ∈ R is the main variable of the characteristic function and τ is the time variable.
Let us now briefly discuss the standard problem of option pricing. For more details

about this problem, we refer to [28]. Consider that we have an underlying risky asset with
price process denoted by the stochastic process {St}t∈[0,T], where T denotes the maturity
of the European option that we want to evaluate. In our market model, we assume that
the continuously compounded risk-free interest rate is denoted by the parameter r and
q represents the dividend yield. In the standard Black–Scholes model, it is well known
that the market is arbitrage-free and complete. Moreover, we know from the fundamental
theorems of asset pricing that an equivalent martingale measure or risk-neutral measure
Q exists if and only if the market is arbitrage-free, and the measure Q is unique if and
only if the market is complete. Therefore, under the standard Black–Scholes model, the
equivalent martingale measure Q exists and it is unique. The measure Q is equivalent to
the real (physical) probability measure P and the process

{
Ste−(r−q)t

}
t∈[0,T]

is a martingale

under Q. The underlying risky asset price at time T, under the measure Q, is given by

ST = Ste
(

r−q− σ2
2

)
τ+BQ

τ , (28)

where τ = T − t and BQ
τ is a standard Brownian motion under measure Q.

When considering Lévy Processes (like the Variance Gamma process), the market
is, in general, incomplete and many equivalent martingale measures exist. Using the
mean correcting martingale measure is one standard way to choose just one equivalent
martingale measure. Under this particular measure, in the market model that is driven by
the Variance Gamma process, we have that the risky asset price at time T is given by

ST = Ste(r−q)τ−µτ+XVG(τ;C,G,M), (29)

where µ := log(φVG(−i, 1; C, G, M)) is the mean correcting parameter. For more details on
the mean correcting martingale measure and the mean correcting parameter, see Chapter 6
of [23]. Let us recall that a European call option with maturity T and strike price K > 0
is a contract that gives the buyer of the contract the right, but not the obligation, to buy
the underlying risky asset at time T by the price K. The payoff of the call option is given
by (ST − K)+. Using the well-known risk-neutral valuation formula for option pricing,
we can write the price at time t of a European call option with maturity T and strike price
K > 0 as the discounted expected value

C(S, K, r, q, τ) = e−rτEQ[(Se(r−q)τ−µτ+XVG(τ;C,G,M) − K)+], (30)

where the variables are the underlying risky asset price at time t (denoted by S = St), the
strike price of the option K, the risk-free interest rate r, the dividend yield q, and the time
until maturity τ = T − t.
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Using the notation introduced in the previous paragraphs, we can now state and
derive the Mellin–Barnes integral representation in C3 for the European call option price
under the Variance Gamma model.

Proposition 1 (The Mellin–Barnes representation for a Call Option under Variance Gamma).
Let us denote [log] := log S

K + (r− q)τ − µτ, where µ = log(φVG(−i, 1; C, G, M)). Consider
the polyhedra P1, P2 ⊂ C3, which is defined by

P1 := {z ∈ C3 : 0 < <(z1) < 1, 0 < <(z2), 0 < <(z3) < Cτ,

<(z1) +<(z2) +<(z3) > 1 + 2Cτ}, (31)

P2 := {z ∈ C3 : 0 < <(z1) < 1, 0 < <(z2) < Cτ, 0 < <(z3) < Cτ}. (32)

Subsequently, the price of a European call option that is driven by the Variance Gamma process is
given by the formula

CVG(S, K, r, q, τ) =
K(GM)Cτe−rτ

Γ(Cτ)2 (I1
VG(S, K, r, q, τ) + 1[log]>0 I2

VG(S, K, r, q, τ)) (33)

where, for any c1 ∈ P1 and c2,∈ P2, we define I1
VG and I2

VG by

I1
VG(S, K, r, q, τ) :=

∫
c1+iR3

(−1)−t Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − ty)Γ(−1− 2Cτ + t + tx + ty)

Γ(1− Cτ + tx)

×M−tx G−ty (−[log])1+2Cτ−t−tx−ty
dt

2πi
∧ dtx

2πi
∧

dty

2πi
, (34)

I2
VG(S, K, r, q, τ) :=

∫
c2+iR3

(−1)Cτ−t−tx
Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − tx)Γ(Cτ − ty)

Γ(2 + 2Cτ − t− tx − ty)

×M−tx G−ty [log]1+2Cτ−t−tx−ty
dt

2πi
∧ dtx

2πi
∧

dty

2πi
. (35)

Proof. For the mean correcting martingale measure Q, the price of a European Call Option
under the Variance Gamma process (25) is given by (see (30))

CVG(S, K, r, q, τ) = e−rτEQ[(ST − K)+]

= e−rτEQ[(Se(r−q)τ−µτ+XVG(τ;C,G,M) − K)+]

= e−rτ
∫ +∞

0

∫ +∞

0
(Se(r−q)τ−µτ+x−y − K)+gG1

τ
(x)gG2

τ
(y)dx dy

= Ke−rτ
∫ +∞

0

∫ +∞

0

(
e[log]+x−y − 1

)+
gG1

τ
(x)gG2

τ
(y)dx dy. (36)

By definition, G1
τ ∼ Gamma(Cτ, 1/M) and G2

τ ∼ Gamma(Cτ, 1/G); hence, from (26),
their probability density functions are given, respectively, by gG1

τ
(x) = MCτ

Γ(Cτ)
xCτ−1e−Mx

and gG2
τ
(y) = GCτ

Γ(Cτ)
yCτ−1e−Gy. Thus,

CVG(S, K, r, q, τ) =
K(GM)Cτe−rτ

Γ(Cτ)2

∫ +∞

0

∫ +∞

0

(
e[log]+x−y − 1

)+
xCτ−1e−MxyCτ−1e−Gydx dy. (37)

In order for the term (e[log]+x−y − 1)+ to be different from zero, we must have
y ≤ x + [log]. Additionally, notice that, by definition, both x and y are non-negative; hence,
the values for which the integrand in (37) is not zero are given by the set {(x, y) ∈ R2 :
−[log] < x, y < x+ [log]}, with the removal of the values in the set {(x, y) ∈ R2 : −[log] <
x < 0, y < x + [log]} for the cases where [log] > 0. Thus, CVG can be expressed as the sum
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CVG(S, K, r, q, τ) =
K(GM)Cτe−rτ

Γ(Cτ)2 (I1
VG(S, K, r, q, τ) + 1[log]>0 I2

VG(S, K, r, q, τ)) (38)

where I1
VG and I2

VG are given by

I1
VG(S, K, r, q, τ) =

∫ +∞

−[log]

∫ x+[log]

0

(
e[log]+x−y − 1

)
xCτ−1e−MxyCτ−1e−Gydy dx, (39)

I2
VG(S, K, r, q, τ) = −

∫ 0

−[log]

∫ x+[log]

0

(
e[log]+x−y − 1

)
xCτ−1e−MxyCτ−1e−Gydy dx. (40)

By the Mellin–Barnes representation of the exponential that is given by Equation (14),

for c1 =

[
c11
c12

]
where c11, c12 < 0, we can represent both terms e−Mx and e−Gy as the inte-

grals
∫ c11+i∞

c11−i∞ Γ(tx)M−tx x−tx dtx
2πi and

∫ c12+i∞
c12−i∞ Γ(ty)G−ty x−ty dty

2πi , respectively. Implementing
these new representations on the integral of Equation (39) results in

I1
VG(S, K, r, q, τ) =

∫
c1+iR2

Γ(tx)Γ(ty)M−tx G−ty

×
∫ +∞

−[log]

∫ x+[log]

0

(
e[log]+x−y − 1

)
yCτ−1−ty dy xCτ−1−tx dx

dtx

2πi
dty

2πi
. (41)

Applying integration by parts over the y variable to Equation (41) produces

∫
c1+iR2

Γ(tx)Γ(ty)Γ(Cτ − ty)

Γ(Cτ − ty + 1)
M−tx G−ty

∫ +∞

−[log]

∫ x+[log]

0
e[log]+x−yyCτ−ty dy xCτ−1−tx dx

dtx

2πi
dty

2πi
. (42)

The Mellin–Barnes exponential representation for e[log]+x−y is given by the integral∫ c13+i∞
c13−i∞ Γ(t)([log] + x− y)−t dty

2πi , where c13 < 0. This substitution of terms in (42) will yield

∫
c1+iR3

(−1)−t Γ(t)Γ(tx)Γ(ty)Γ(Cτ − ty)

Γ(Cτ − ty + 1)
M−tx G−ty

×
∫ +∞

−[log]

∫ x+[log]

0
([log] + x− y)−tyCτ−ty dy xCτ−1−tx dx

dt
2πi

dtx

2πi
dty

2πi
, (43)

where c1 was extended to the third dimension, i.e., c1 =

c11
c12
c13

. For the integral

∫ x+[log]
0 ([log] + x − y)−tyCτ−ty dy in (43), consider the variable change y := ([log] + x)s.

This change of variables will result in the expression

∫ x+[log]

0
([log] + x− y)−tyCτ−ty dy = ([log] + x)1+Cτ−t−ty

Γ(1− t)Γ(Cτ − ty + 1)
Γ(2 + Cτ − t− ty)

. (44)

Replacing (44), in the original integral (43) we obtain

∫
c1+iR3

(−1)−t Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − ty)

Γ(2 + Cτ − t− ty)
M−tx G−ty

×
∫ +∞

−[log]
([log] + x)1+Cτ−t−ty xCτ−1−tx dx

dt
2πi

dtx

2πi
dty

2πi
. (45)
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Similarly, for the integral
∫ ∞
−[log]([log] + x)1+Cτ−t−ty xCτ−1−tx dx in (45), consider the

variable change x := [log] 1
s . This exchange will result in∫ +∞

−[log]
([log] + x)1+Cτ−t−ty xCτ−1−tx dx

= (−[log])1+2Cτ−t−tx−ty
Γ(2 + Cτ − t− ty)Γ(−1− 2Cτ + t + tx + ty)

Γ(1− Cτ + tx)
. (46)

By replacing (46) on the integral (45) and subsequntly inserting the resulting term on
the original expression (39), we finally obtain Formula (34). This integral converges if all
of the arguments of the Gamma functions in the numerator are positive. This happens
when <(t),<(tx),<(ty) > 0, <(t) < 1, <(ty) < Cτ, and <(t) +<(tx) +<(ty) > 2Cτ + 1,
i.e., <(t) ∈ P1.

Conversely, we can charter the same steps for the integral (40) of I2
VG that we did

for (39) of I1
VG; apply the Mellin–Barnes representation of the exponential term to both

e−Mx and e−Gy. Subsequently, use integration by parts over the variable y, and again apply
the Mellin–Barnes representation of e[log]+x−y, and finally apply the change of variables
x := ([log] + x)s, in order to obtain

∫
c2+iR2

(−1)1−t Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − ty)

Γ(2 + Cτ − t− ty)
M−tx G−ty

×
∫ 0

−[log]
([log] + x)1+Cτ−t−ty xCτ−1−tx dx

dt
2πi

dtx

2πi
dty

2πi
. (47)

Notice that the integral (47) is simply the expression (45), with the difference that the
variable x in the integral

∫ 0
−[log]([log] + x)1+Cτ−t−ty xCτ−1−tx dx ranges between −[log] and

0 instead of −[log] and +∞. Therefore, for this case, we will apply the variable change
x := −[log]s, which will result in∫ 0

−[log]
([log] + x)1+Cτ−t−ty xCτ−1−tx dx = [log]1+2Cτ−t−tx−ty(−1)1+Cτ−tx

×
Γ(2 + Cτ − t− ty)Γ(Cτ − tx)

Γ(2 + 2Cτ − t− tx − ty)
. (48)

Replacing (48) on the integral (47) and subsequently implanting the resulting expres-
sion, we obtain Formula (35). This integral formula converges if all of the arguments of the
Gamma functions in the numerator are positive. This happens when <(t),<(tx),<(ty) > 0,
<(t) < 1, and <(tx),<(ty) < Cτ, i.e., <(t) ∈ P2.

3.2. Residue Summation Formula for a Call Option

Now, we will state and prove the main result of this paper: the triple representation
formula for the European call option under the Variance Gamma model.

Theorem 3 (European Call Option Price under the Variance Gamma Process). The price
for the European Call-Option under the Variance Gamma process XVG(τ; C, G, M) is given by
the formula

CVG(S, K, r, q, τ) =
K(GM)Cτe−rτ

Γ(Cτ)2 (C1
VG(S, K, r, q, τ) + C2

VG(S, K, r, q, τ)

+ 1[log]>0C3
VG(S, K, r, q, τ)), (49)
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where C1
VG, C2

VG and C3
VG are defined by

C1
VG(S, K, r, q, τ) :=

∞

∑
k=0
n=0
m=0

(−1)n+m Γ(Cτ + m)Γ(−1− 2Cτ − k− n−m)

n!m!Γ(1− Cτ − n)

×MnGm(−[log])1+2Cτ+k+n+m, (50)

C2
VG(S, K, r, q, τ) :=

∞

∑
k=0
n=0
m=0

(−1)m Γ(Cτ + m)Γ(1 + 2Cτ + k− n + m)

n!m!Γ(2 + Cτ + k− n + m)
M−1−2Cτ−k+n−mGm[log]n, (51)

C3
VG(S, K, r, q, τ) :=

∞

∑
k=0
n=0
m=0

(−1)Cτ+m Γ(Cτ + n)Γ(Cτ + m)

n!m!Γ(2 + 2Cτ + k + n + m)
MnGm[log]1+2Cτ+k+n+m. (52)

Proof. The Formula (34) for I1
VG can be written as

I1
VG(S, K, r, q, τ) =

∫
c1+iR3

ω1
VG, (53)

where c1 is a three-dimensional point

c11
c12
c13

 ∈ P1 and ω1
VG is a complex differential three-

form that is defined by

ω1
VG := (−1)−t Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − ty)Γ(−1− 2Cτ + t + tx + ty)

Γ(1− Cτ + tx)

×M−tx G−ty(−[log])1+2Cτ+t+tx+ty
dt

2πi
∧ dtx

2πi
∧ dtx

2πi
. (54)

By (16), we can compute the characteristic vector of ω1 as ∆1 =

1
1
1

, and then use

it to constrict the values of t to the space where convergence is obtained, i.e., <(tx) <
c1 + c2 + c3 −<(t)−<(ty). Thus, the admissible half-space Π∆1 is the space that is located
under this plane,

Π∆1 :=
{

t ∈ C3 : <(tx) < c1 + c2 + c3 −<(t)−<(ty)
}

. (55)

Given the half-space Π∆1 that is defined by (55), we will now construct an admissible
polyhedron Π1 = σ1 := g−1

1 (G), as in the case (17), where G is the first octant, which will
be uniquely defined by the linear function

g1(t) =

−1 0 0
0 0 −1
−1 −1 −1

 <(t)− c1
<(tx)− c2
<(ty)− c3

+ i

 =(t)=(tx)
=(ty)

. (56)

Under the linear function (56), the polyhedron Π1 will be admissible, which is,

Π1 = {t ∈ C3 : <(t) < c1, <(ty) < c3,<(t) +<(tx) +<(ty) < c1 + c2 + c3} ⊂ Π∆1 , (57)



Mathematics 2021, 9, 1143 12 of 29

and its faces σ1
1 , σ1

2 , and σ1
3 and vertex σ1

{1,2,3} will be

σ1
1 = {t ∈ C3 : <(t) = c1, <(ty) ≤ c3,<(t) +<(tx) +<(ty) ≤ c1 + c2 + c3}, (58)

σ1
2 = {t ∈ C3 : <(t) ≤ c1, <(ty) = c3,<(t) +<(tx) +<(ty) ≤ c1 + c2 + c3}, (59)

σ1
3 = {t ∈ C3 : <(t) ≤ c1, <(ty) ≤ c3<(t) +<(tx) +<(ty) = c1 + c2 + c3}, (60)

σ1
{1,2,3} = {t ∈ C3 : <(t) = c, <(ty) = c3,<(t) +<(tx) +<(ty) = c1 + c2 + c3} = c. (61)

Finally, we can group (where we used the notation t = (t, tx, ty)) into three families

D1
1 = {t ∈ C3 : t ∈ Z}, (62)

D1
2 = {t ∈ C3 : ty = −n ∨ Cτ − ty = −n, n ∈ N}, (63)

D1
3 = {t ∈ C3 : tx = −n ∨ −1− Cτ + t + tx + ty = −n, n ∈ N}, (64)

that are compatible with the polyhedron Π1, i.e., σ1
1 ∩D1

1 = ∅, σ1
2 ∩D1

2 = ∅, and σ1
3 ∩D1

3 = ∅,
thus verifying all of the conditions needed to apply Theorem 2. Note that this theorem is
a version of the Jordan Lemma (Theorem 1) that allows us to represent the integral (53),
which is an integral that appears in the formula for the call option price (33), as a sum of
residues of the complex differential three-form ω1

VG in (54).
Before applying the residue summation, notice that the form ω1

VG can be considered
as having two sets of discontinuity points under the polyhedron Π1; the first set is defined
as S1 := {t ∈ C3 : t = −k, tx = −n, ty = −m, (k, n, m) ∈ N3}, which represents the
singularity points that are given by the functions Γ(t), Γ(tx), and Γ(ty), and the second set
is defined as S2 := {t ∈ C3 : t = −k, ty = −m, −1− 2Cτ + t + tx + ty = −n, (k, n, m) ∈
N3}, which represents the discontinuity points that are given by the functions Γ(t), Γ(tx)
and Γ(−1− 2Cτt + tx + ty).

Given this delineated partition, we can now express equation (53) as

I1
VG = C1

VG + C2
VG, (65)

where we define the terms C1
VG and C2

VG, respectively, by

C1
VG := ∑

s∈S1

Ressω1
VG, C2

VG := ∑
s∈S2

Ressω1
VG. (66)

The computation of the residues for the first set S1 present in the first series C1
VG of (66)

is straightforward

Res(−k,−n,−m)ω
1
VG = (−1)n+m Γ(Cτ+m)Γ(−1−2Cτ+k+n+m)

n!m!Γ(1−Cτ−n) MnGm(−[log])1+2Cτ+k+n+m. (67)

Embedding the result (67) on the first equation of (66) will produce the sum For-
mula (50). On the other hand, for the computation of the residues of the set S2 presented
in the second series of (66), let us consider the variable change u := t, uy := ty, and
ux := −1− 2Cτ + t + tx + ty. If we apply these variables changes to the expression (54),
the form ω1

VG will be written as

ω1
VG = (−1)−u Γ(u)Γ(1 + 2Cτ − u + ux − uy)Γ(uy)Γ(1− u)Γ(Cτ − uy)Γ(ux)

Γ(2 + Cτ − u + ux + uy)

×M−1−2Cτ+u−ux+uy G−uy(−[log])−ux
du
2πi
∧ dux

2πi
∧

duy

2πi
. (68)

Subsequently, the residues of the second series C2
VG in (66) are given by

Res(−k,−n,−m)ω
1
VG = (−1)n+m Γ(1+2Cτ+k−n+m)Γ(Cτ+m)

n!m!Γ(2+Cτ+k−n+m)
M−1−2Cτ−k+n−mGm(−[log])n. (69)
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Replacing (69) on the second equation of (66) will yield the sum Formula (51).
Analogously to what we did for I1

VG, the expression (35) of I2
VG can be written as

I2
VG(S, K, r, q, τ) =

∫
c2+iR

ω2
VG, (70)

where c2 is a three-dimensional point

c21
c22
c23

 ∈ P2 and ω2
VG is a complex differential three-

form defined by

ω2
VG := (−1)Cτ−t−tx

Γ(t)Γ(tx)Γ(ty)Γ(1− t)Γ(Cτ − tx)Γ(Cτ − ty)

Γ(2 + 2Cτ − t− tx − ty)

×M−tx G−ty(−[log])1+2Cτ−t−tx−ty
dt

2πi
∧ dtx

2πi
∧ dtx

2πi
. (71)

Just like in the previous case, we use (16) to compute the characteristic vector of ω2
VG

as ∆2 =

1
1
1

, and then use it to determine the set for t where convergence is achieved, i.e.,

<(tx) < c1 + c2 + c3−<(t)−<(ty). Thus, we conclude that the admissible half-space Π∆2

is located under this plane,

Π∆2 =
{

t ∈ C3 : <(tx) < +c1 + c2 + c3 −<(t)−<(ty)
}

. (72)

Similarly to what we did for Π∆1 , given the expression (72) for Π∆2 , we will now
construct an admissible polyhedron Π2 = σ2 := g−1

2 (G), as in the case (17), where G is the
first octant and g2 is the linear function

g2(t) = −I(<(t)− c2) + i=(t), (73)

where I is the identity matrix. Under the linear function prescribed in (73), the polyhedron
Π2 will be admissible,

Π2 :=
{

t ∈ C3 : <(t) < c21, <(tx) < c22, <(ty) < c23

}
⊂ Π∆2 , (74)

and its faces σ2
1 , σ2

2 , and σ2
3 and vertex σ2

{1,2,3} will be

σ2
1 =

{
t ∈ C3 : <(t) = c21, <(tx) ≤ c22, <(ty) ≤ c23

}
, (75)

σ2
2 =

{
t ∈ C3 : <(tx) = c22, <(t) ≤ c21, <(tx) ≤ c23

}
, (76)

σ2
3 =

{
t ∈ C3 : <(ty) = c23, <(t) ≤ c21, <(tx) ≤ c22

}
, (77)

σ2
{1,2,3} =

{
t ∈ C3 : <(t) = c21, <(tx) = c22, <(ty) = c23

}
= c2. (78)

Finally, we will group the divisors of ω2
VG into three sets:

D2
1 = {t ∈ C3 : t ∈ Z}, (79)

D2
2 = {t ∈ C3 : tx = −n ∨ Cτ − tx = −n, n ∈ N}, (80)

D2
3 = {t ∈ C3 : ty = −n ∨ Cτ − ty = −n, n ∈ N}. (81)

that are compatible with polyhedron Π2 ⊂ Π∆2 , i.e., σ2
1 ∩ D1 = ∅, σ2

2 ∩ D2 = ∅, and
σ2

3 ∩ D3 = ∅, thus satisfying all of the conditions needed to apply Theorem 2.
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Unlike the ω1
VG case, the form ω2

VG under the polyhedron Π2 has only one set of
residues S3 = {t ∈ C3 : t = −k, tx = −n, ty = −m, (k, n, m) ∈ N3} that result from the
functions Γ(t), Γ(tx), and Γ(ty). Therefore, Equation (35) can be expressed as

I2
VG = C3

VG := ∑
s∈S3

Ressω2
VG. (82)

The computation of the residues of set S3 in the series of (82) is straightforward:

Res(−k,−n,−m)ω
2
VG = (−1)Cτ+m Γ(Cτ + n)Γ(Cτ + m)

n!m!Γ(2 + 2Cτ + k + n + m)
MnGm(−[log])1+2Cτ+k+n+m. (83)

Swapping the term in (83) with Equation (82) will yield the sum Formula (52). Because
the derived expressions (50), (51), and (52) ascertain the equalities I1

VG = C1
VG + C2

VG and
I2
VG = C3

VG, this, in turn, proves expression (49).

The price formula for the European call option that is given by the expression (49)
entails an easily derivable price for the European put option through the use of Put–
Call parity:

PVG(S, K, r, q, τ) = CVG(S, K, r, q, τ)− S(1− e− log S
K−(r−q)τ). (84)

3.3. The Greeks

Given the simple formula for the European call option deduced previously, one may
inquire about the availability of an equally simple measure for risk exposure. The Greeks
quantify the sensibility of the option price to changes in the model parameters. In this
section, we will show the existence of a series of formulas for the ∆, Γ, ρ, and Θ functions,
which will be obtained by a differentiation of (49) on the appropriate parameter.

Theorem 4 (The Greeks). The delta, gamma, rho, and theta functions for a European option under
the Variance Gamma process XVG(τ; C, G, M) are given by:

• Delta is defined as ∆C := ∂C
∂S , hence:

∆C(S, K, r, q, τ) =
K(GM)Cτe−rτ

SΓ(Cτ)2

∞

∑
k=0
n=0
m=0

∆1 + ∆2 + 1[log]>0∆3, (85)

where ∆1, ∆2, and ∆3 are defined by

∆1 = (−1)n+m Γ(Cτ + m)Γ(−2Cτ − k− n−m)

n!m!Γ(1− Cτ − n)
MnGm(−[log])2Cτ+k+n+m, (86)

∆2 = (−1)m Γ(Cτ + m)Γ(2Cτ + k− n + m)

n!m!Γ(1 + Cτ + k− n + m)
M−2Cτ−k+n−mGm[log]n, (87)

∆3 = (−1)Cτ+m Γ(Cτ + n)Γ(Cτ + m)

n!m!Γ(1 + 2Cτ + k + n + m)
MnGm[log]2Cτ+k+n+m. (88)

• Gamma is defined as ΓC := ∂2C
∂S2 , hence:

ΓC(S, K, r, q, τ) =
K(GM)Cτe−rτ

S2Γ(Cτ)2

∞

∑
k=0
n=0
m=0

(Γ1 − ∆1) + (Γ2 − ∆2) + 1[log]>0(Γ3 − ∆3), (89)

where ∆1, ∆2 and ∆3 are described by (86), (87) and (88), respectively, and Γ1, Γ2 and Γ3 are
defined by

Γ1 = (−1)n+m Γ(Cτ + m)Γ(1− 2Cτ − k− n−m)

n!m!Γ(1− Cτ − n)
MnGm(−[log])−1+2Cτ+k+n+m, (90)
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Γ2 = (−1)m Γ(Cτ + m)Γ(−1 + 2Cτ + k− n + m)

n!m!Γ(Cτ + k− n + m)
M1−2Cτ−k+n−mGm[log]n, (91)

Γ3 = (−1)Cτ+m Γ(Cτ + n)Γ(Cτ + m)

n!m!Γ(2Cτ + k + n + m)
MnGm[log]−1+2Cτ+k+n+m. (92)

• Rho is defined as ρC := ∂C
∂r , hence:

ρC(S, K, r, q, τ) = τS∆C(S, K, r, q, τ)− τC(S, K, r, q, τ)

=
Kτ(GM)Cτe−rτ

Γ(Cτ)2

∞

∑
k=0
n=0
m=0

(C1
VG − ∆1) + (C2

VG − ∆2) + 1[log]>0(C
3
VG − ∆3), (93)

where C1
VG, C2

VG, C2
VG, Γ1, Γ2, and Γ3 are described by (50), (51), (52), (90), (91), and (92),

respectively.
• Theta is defined as ΘC := ∂C

∂t = − ∂C
∂τ , hence:

ΘC(S, K, r, q, τ) = −K(GM)Cτe−rτ

Γ(Cτ)2 ×

∞

∑
k=0
n=0
m=0

(θ1C1
VG + (r− q− µ)∆1) + (θ2C2

VG + (r− q− µ)∆2 + 1[log]>0(θ3C3
VG + (r− q− µ)∆3)), (94)

where C1
VG, C2

VG, C3
VG, ∆1, ∆2 and ∆3 are expressed in (50), (51), (52), (86), (87), and (88),

respectively, and θ1, θ2, and θ3 are defined by

θ1 =C log(GM)− r− 2Cψ(Cτ) + Cψ(Cτ + m)

− 2Cψ(−1− 2Cτ − k− n−m) + Cψ(1− Cτ − n) + 2C log(−[log]), (95)

θ2 =C log(GM)− r− 2Cψ(Cτ) + Cψ(Cτ + m)

+ 2Cψ(1 + 2Cτ + k− n + m)− Cψ(2 + Cτ + k + n + m)− 2C log(M), (96)

θ3 =C log(GM)− r− 2Cψ(Cτ) + Cψ(Cτ + n) + Cψ(Cτ + m)

− 2Cψ(2 + 2Cτ + k− n + m) + Cπi + 2C log([log]), (97)

where ψ is the digamma function ψ(z) = d log Γ(z)
dz = −γ + ∑∞

n=0

(
1

n+1 −
1

n+z

)
.

Proof. The previous results are easily obtained from a direct differentiation of the expres-
sions (50), (51), and (52) for the terms C1

VG, C2
VG, and C3

VG, for the chosen parameter (i.e., S,
r, or t), and sequentially proper rearrangement of the terms.

4. Numerical Results

The formulas of the previous section can be heuristically observed to be sound. In
order to do this, we start by comparing the results that were obtained by Formula (49)
with both a Monte Carlo simulation for the European call option (under the Variance
Gamma process) and the actual values that were observed on the market. We will also
verify that it is well behaved, which is, its price for any initial stock value and its implied
volatility smile are similar to the expected behavior observed in any stock. We also take
these results to observe the speed of convergence of the new method. To conclude, we will
study the behavior of the Greek functions (85), (89), (93), and (94), which were derived in
the previous section, and then compare them to the ones in the Black–Scholes model.

We compare the option prices that were obtained from Formula (49) with the prices
obtained from the Black–Scholes model and the Monte Carlo simulation of the Variance
Gamma model. Our goal with this comparison is to test the viability and accuracy of
Formula (49) against these well-known benchmark models and standard approaches to
option pricing. We could also compare the option prices that were obtained from our
formula with the ones obtained under the Variance Gamma model with other numerical
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techniques, such as the closed form formula in [6], the Fast Fourier Transform method
of [7], the Fourier-cosine series proposed in [8], the finite differences method in [9], or
the multinomial method of [10]. However, such a comparison of the numerical results
from our formula with the results that were obtained from all of these numerical methods
is out of the scope of this paper and would require much more numerical analysis and
computational work.

4.1. Variance Gamma Formula Values and Behavior

For the aforementioned comparison, we will use the values of European call options
with the S&P500 as the underlying asset, bought at the close of the market on 18 April 2002.
According to [23], at the close of the market on 18 April 2002, we had a risk-free rate of
return r = 1.9%, a dividend rate of q = 1.2%, and the stock price closed at S0 = 1124.47,
with a volatility parameter, for the Black–Scholes model, of σ = 0.1812 and risk neutral
parameters C = 1.3574, G = 5.8704, and M = 14.2699 for the Variance Gamma model.

We will take advantage of 75 actual recorded values that are presented in Table 1, and
make an error estimation for each model, by calculating their respective root mean square

error, which is given by the formula RMSE =
√

∑n
i=1(market pricei −model pricei)

2/n.
Under this metric, Table 2 presents the deviations from the observed results.

Therefore, not only is the Formula (49) more expedient due to much lower compu-
tational time, but it also outperforms the Monte-Carlo method (and, consequently, the
Black–Scholes by a wide margin). From Figure 1, one can also observe that the formulas
for the European options under the Variance Gamma (49) and (84) present typical behavior.
For example, a change in the initial asset price influences the price formula as one would
expect, yet with some substantial differences from the Black–Scholes model.

Figure 1. European Options prices under the Black–Scholes and Variance Gamma models and their
differences, for K = 1100, τ = 35× 7/365 and different values of S0.
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Table 1. Table containing the values for the Variance Gamma Formula (49) for n = 22, m = 27, and k = 7, denoted by "F”, the Monte Carlo method with 10000 simulated trajectories,
denoted by "MC”, and the observed market values are denoted by "Real”.

Time of Maturity

Strike May June September December March June December
Price 2002 2002 2002 2002 2003 2003 2003

F MC Real F MC Real F MC Real F MC Real F MC Real F MC Real F MC Real

975 152.76 151.72 - 156.80 156.19 - 166.83 168.05 161.60 176.13 176.13 173.30 184.76 183.79 - 192.81 194.67 - 207.41 206.05 -
995 133.42 132.40 - 138.17 137.60 - 149.64 150.82 144.80 159.98 160.09 157.00 169.40 168.42 - 178.07 179.85 182.10 193.65 192.31 -

1025 104.69 103.73 - 110.74 110.27 - 124.65 125.79 120.10 136.64 136.93 133.10 147.27 146.28 146.50 156.88 158.52 - 173.84 172.57 -
1050 81.09 80.20 - 88.49 88.16 84.50 104.71 105.81 100.70 118.12 118.59 114.80 129.75 128.65 - 140.10 141.69 143.00 158.15 156.92 171.40
1075 57.95 57.12 - 67.00 66.78 64.30 85.75 86.78 82.50 100.59 101.29 97.60 113.15 111.92 - 124.20 125.73 - 143.24 142.10 -
1090 44.39 43.58 43.10 54.58 54.41 - 74.92 75.90 - 90.59 91.42 - 103.68 102.36 - 115.11 116.57 - 134.67 133.62 -
1100 35.53 34.74 35.60 46.56 46.42 - 67.97 68.91 65.50 84.15 85.08 81.20 97.57 96.19 96.20 109.23 110.66 111.30 129.13 128.15 140.40
1110 26.88 26.12 - 38.79 38.69 39.50 61.25 62.16 - 77.92 78.92 - 91.65 90.18 - 103.52 104.91 - 123.71 122.81 -
1120 18.50 17.81 22.90 31.33 31.25 33.50 54.79 55.68 - 71.91 72.96 - 85.90 84.37 - 97.97 99.33 - 118.43 117.61 -
1125 14.47 13.82 20.20 27.74 27.69 30.70 51.66 52.54 51.00 68.98 70.07 66.90 83.10 81.54 81.70 95.25 96.61 97.00 115.84 115.07 -
1130 10.60 10.00 - 24.26 24.25 28.00 48.60 49.50 - 66.11 67.23 - 80.34 78.76 - 92.58 93.91 - 113.29 112.55 -
1135 7.09 6.53 - 20.93 20.93 25.60 45.63 46.45 45.50 63.30 64.45 - 77.63 76.04 - 89.94 91.26 - 110.76 110.07 -
1140 5.99 5.49 13.30 17.77 17.79 23.20 42.73 43.52 - 60.55 61.73 58.90 74.97 73.36 - 87.35 88.66 - 108.28 107.62 -
1150 4.66 4.26 - 12.55 12.60 19.10 37.20 37.92 38.10 55.23 56.44 53.90 69.81 68.17 68.30 82.30 83.58 83.30 103.40 102.81 112.80
1160 3.75 3.44 - 10.02 10.09 15.30 32.06 32.72 - 50.17 51.39 - 64.84 63.20 - 77.43 78.65 - 98.67 98.13 -
1170 3.08 2.82 - 8.24 8.32 12.10 27.37 27.96 - 45.38 46.59 - 60.09 58.46 - 72.72 73.88 - 94.07 93.58 -
1175 2.81 2.57 - 7.52 7.61 10.90 25.23 25.78 27.70 43.09 44.28 42.50 57.79 56.18 56.60 70.44 71.56 - 91.82 91.36 99.80
1200 1.82 1.68 - 4.93 5.06 - 17.15 17.54 19.60 32.79 33.78 33.00 47.14 45.62 46.10 59.70 60.65 60.90 81.11 80.74 -
1225 1.22 1.15 - 3.35 3.55 - 12.16 12.50 13.20 24.61 25.46 24.90 37.91 36.50 36.90 50.10 50.90 49.80 71.28 70.97 -
1250 0.84 0.80 - 2.34 2.53 - 8.79 9.12 - 18.59 19.29 18.30 30.17 28.88 29.30 41.67 42.34 41.20 62.30 62.03 66.90
1275 0.59 0.57 - 1.67 1.84 - 6.45 6.76 - 14.14 14.76 13.20 23.92 22.71 22.50 34.40 34.92 - 54.19 53.94 -
1300 0.42 0.41 - 1.20 1.34 - 4.79 5.08 - 10.84 11.40 - 18.96 17.90 17.20 28.24 28.59 27.10 46.90 46.63 49.50
1325 0.31 0.30 - 0.88 0.98 - 3.59 3.82 - 8.35 8.85 - 15.06 14.15 12.80 23.12 23.33 - 40.42 40.09 -
1350 0.23 0.22 - 0.65 0.71 - 2.71 2.92 - 6.47 6.88 - 11.99 11.23 - 18.92 19.01 17.10 34.71 34.31 35.70
1400 0.12 0.13 - 0.36 0.41 - 1.58 1.72 - 3.95 4.16 - 7.66 7.16 - 12.67 12.67 10.10 25.37 24.87 25.20
1450 0.07 0.09 - 0.21 0.24 - 0.95 1.03 - 2.45 2.55 - 4.95 4.62 - 8.51 8.46 - 18.42 17.69 17.00
1500 0.04 0.06 - 0.13 0.14 - 0.58 0.67 - 1.55 1.61 - 3.23 3.03 - 5.76 5.66 - 13.33 12.48 12.20
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Table 2. Root Mean Square Error.

RMSE

Black–Scholes 6.6692
Variance Gamma Monte Carlo 3.9979

Variance Gamma Formula 3.7373

Let us note that, in [23], the author estimates the model parameters and calculates the
option prices for the same option data and the same Variance Gamma model while using
the Fast Fourier transform method of [7], and it obtains a RMSE value of 3.56, which is a
little smaller than the one we obtained. We have also calculated the RMSE by the same
numerical method and we obtained a RMSE of 3.74. These small discrepancies are perhaps
a result of small differences in the precise computation of the maturities of some options.

More importantly the Formula (49) also displays the volatility smile typically present
in most assets, with values relatively close to the empirical observed on present asset, as
can be seen from Figure 2.

Figure 2. Implied Volatility for the empirical data and Black–Scholes and Variance Gamma models,
where S0 = 1124.47, K = 1100, and τ = 35× 7/365.

4.2. Convergence of the Variance Gamma Formula

In order to study the numerical convergence and precision of the new formula, we
must first realize that observing the value of each isolated term in the triple sum (49) is
fallacious, since an unit increase of, for instance, parameter n will lead to the sum of an
extra m × k terms, which may lead to an error of substantially higher magnitude than
each individual term. Let us denote each term of the sum (49) by CVG(n, m, k). Given this
notation, we can write CVG = ∑∞

n=0 ∑∞
m=0 ∑∞

k=0 CVG(n, m, k). To determine the values nmax,
mmax, and kmax, for which the sum CVG converges, for all values K and τ of Table 1, we will
apply the Euclidean norm to the 189 resulting values from the three possible double sum
series: the series computed by summing the terms of CVG for a fixed n and 0 ≤ m, k ≤ n,
i.e., Cn const

VG (n) = ∑n
m=0 ∑n

k=0 CVG(n, m, k), the series computed by summing the terms
of CVG for a fixed m and 0 ≤ n, k ≤ m, i.e., Cm const

VG (m) = ∑m
n=0 ∑m

k=0 CVG(n, m, k), and
the series computed by summing the terms of CVG for a fixed k and 0 ≤ n, m ≤ k, i.e.,
Ck const

VG (k) = ∑k
n=0 ∑k

m=0 CVG(n, m, k).
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Table 3. Convergence of the three double series.

Double Series Sum Double Series Sum
Cn const

VG (n) Cm const
VG (m) Ck const

VG (k) Cn const
VG (n) Cm const

VG (m) Ck const
VG (k)

0 1573.462 1573.462 1573.462 14 3.451 5.456 0.000
1 942.085 1624.942 93.249 15 1.263 2.653 0.000
2 1473.360 2138.478 14.602 16 0.430 1.277 0.000
3 396.878 2185.591 0.656 17 0.137 0.609 0.000
4 530.501 1834.503 0.121 18 0.041 0.288 0.000
5 350.999 1328.181 0.008 19 0.011 0.135 0.000
6 358.913 862.780 0.001 20 0.003 0.063 0.000
7 287.068 518.316 0.000 21 0.001 0.029 0.000
8 214.182 294.406 0.000 22 0.000 0.013 0.000
9 139.772 160.554 0.000 23 0.000 0.006 0.000
10 81.751 84.932 0.000 24 0.000 0.003 0.000
11 42.733 43.875 0.000 25 0.000 0.001 0.000
12 20.221 22.236 0.000 26 0.000 0.001 0.000
13 8.716 11.090 0.000 27 0.000 0.000 0.000

From the values shown in Table 3, for any K and τ of Table 1, we can assure conver-
gence with a two-decimal precision, when the sum of the three double sum series has a
result lower than 0.005, for instance, n = 22, m = 27, and k = 7.

Let us note that, in [20,22], the authors studied the convergence of their double series
for the option price with a 10−3 precision, while considering the price of a single European
call option (with fixed maturity and strike) under the fractional diffusion process and the
finite moment Lévy stable process. They have concluded that is enough to sum the terms
in the series up to n = 6 and m = 6. The results are quite different, because, in their models
the call option price is given by a double series (not a triple series), the convergence was
estimated for a single option (we calculate the convergence for options of all maturities
and strikes in our data set), and their underlying model is not the Variance Gamma model.

4.3. The Greek Formulas Behavior

We terminate this section by visualizing and contrasting the behavior of Greek func-
tions under the two models. The Greek functions for the Variance Gamma model seem
similar enough to the ones of the Black–Scholes model, yet they exhibit enough discrepan-
cies to be worthy of note, primarily in the behavior of the Gamma and Theta functions, as
can be seen in Figure 3. These discrepancies can have important consequences in establish-
ing hedging strategies and the associated expected profit and loss. We refer to [22] for a
detailed discussion of this subject in the case of the finite moment log-stable model.

Furthermore, while some greek functions properties, such as ∆C, ΓC, ρC,−ΘC > 0, can
be difficult to prove analytically from the Formulas (85), (89), (93), and (94), one can easily
observe their validity, by generating the graphs of Figure 3 for a variety of different values
of S, K, r, q and τ.
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Figure 3. Greek functions under the Black–Scholes and Variance Gamma models, for K = 1100 and
τ = 35× 7/365.

5. Conclusions

We have derived a triple Mellin–Barnes integral representation for the price of a
European call option in a market model where a Variance Gamma process drives the price
of the underlying asset. Subsequently, we applied the multidimensional residue calculus to
the aforementioned integral and computed a triple sum series for the European call option
price (49). Triple sum series for the delta, gamma, rho, and theta Greeks were also found
by direct differentiation. When numerically tested, Formula (49) exhibited the behavior
that was typically observed in the market for European options, and it outperformed the
Monte-Carlo simulation method in both accuracy and computational time. The Greeks
also displayed their usual behavior.

For practical applications, the simplicity of the aforementioned formulas (such as
the lack of necessity of simulations for pricing European options, or of complex numer-
ical schemes to compute the Greeks), coupled with their higher rates of precision and
much lower computation time, makes them ideal for financial practitioners. For example,
Formulas (85) and (89) can be used directly to generate a portfolio with optimal delta and
gamma hedge strategies.

In terms of future research, the most obvious course of action would be to compare the
performance of Formula (49), in terms of accuracy and computational time, to other semi-
closed formulas such as the Bessel functions representation formula or the Fast Fourier
Transform method for the price of a European call option under the Variance Gamma
model (as discussed in [6,7]).

In terms of generalization of the theoretical results, the more pressing question will be
the ability to use a similar reasoning to that presented in Section 3 to arrive at a sum series
for the more general CGMY process and Generalized Tempered Stable process, even if this
necessitates a higher dimensional Mellin–Barnes integral. One also might inquire further
into the pricing of more complex financial instruments, like American or Barrier options,
and especially instruments like Asian options, where the integral that is involved in their
definition seems to make them a prime candidate for residue calculus.
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Appendix A. Proof of Theorem 2

Proof. In the first part of the proof, we will show that the Mellin–Barnes integral in (15)
converges in the set U that is defined by (23). Let us start by noting that, for any z ∈ C, we
have the inequality∣∣∣√2πzz−1/2e−z

∣∣∣ = √2π(|z|ei arg(z))<(z)+i=(z)−1/2e−<(z)−i=(z) arg(z)

=
√

2π|z|<(z)−1/2e− arg(z)=(z)−<(z)

≥ c1|z|<(z)−1/2e−
π
2 |=(z|)−|<(z)|, (A1)

for some constant c1, as well as the inequality∣∣∣√2πzz−1/2e−z
∣∣∣ = √2π|z|<(z)−1/2e− arg(z)=(z)−<(z)

≤ c2|z|<(z)−1/2e−
π
2 |=(z)|+|<(z)|. (A2)

The last inequality (A2) is verified if and only if the inequality − arg(z)=(z)−<(z) ≤
−π

2 |=(z)| + |<(z)| is valid. Inasmuch as we can write sj = reiθ , where r ∈ R+
0 and

θ ∈ [−π, π], the inequality can be written as rθ sin θ − r cos θ ≤ −π
2 |r sin θ| + |r cos θ|,

which holds for any r ∈ R+ and θ ∈]− π, π[. If z does not intersect the set Z−0 + i{0}, then,
as |z| → ∞, we can apply the Stirling Formula (12) and, from the expressions (A1) and
(A2), we know there exist constants c1 and c2, such that

c1|z|<(z)−1/2e−
π
2 |=(z)|−|<(z)| < |Γ(z)| < c2(ε)|z|<(z)−1/2e−

π
2 |=(z)|+|<(z)|. (A3)

On the other hand, if we constrict the real value, x, to a compact set K ⊂ R \ Z−0 , x
will be bounded and the gamma function will be continuous in the domain K + iR. Thus,
we can denote its supremum as M = supx∈K |x| < ∞ and infimum as m = infx∈K |x|.
Under this notation, we have e−M < e−|x| and e|x| < eM, additionally as |y| → ∞ we
have |x + iy| =

√
x2 + y2 ∼ (1 + |y|). Applying these properties to (A3) results in the

inequalities

k1(|y|+ 1)x−1/2e−
π
2 |y| < |Γ(x + iy)| < k2(ε)(|y|+ 1)x−1/2e−

π
2 |y|, (A4)

for some constants k1 and k2. Taking advantage of the inequalities (A4), we can bound the
integrand of expression (15) by
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∣∣∣∣∣ ∏m
j=1 Γ(sj(z))

∏
p
k=1 Γ(qk(z))

t−z

∣∣∣∣∣ ≤ C
∏m

j=1

(
|〈aj, x〉|

)〈aj ,x〉+bj−1/2

∏
p
j=1

(
|〈cj, x〉|

)〈cj ,x〉+bj−1/2

× exp

(
|〈y, arg t〉| − π

2

(
m

∑
j=1
|〈aj, y〉| −

p

∑
j=1
|〈cj, y〉|

))
, (A5)

for some constant C. If, for all y ∈ R3 and t ∈ (C \ {0})3, the inequality

|〈y, arg t〉| < π

2

(
m

∑
j=1
|〈aj, y〉| −

m

∑
j=1
|〈aj, y〉|

)
(A6)

is satisfied, then the integrand in (15) decreases exponentially as ‖y‖ → ∞, which makes
the integral converge absolutely. Taking into account (24), the inequality (A6) will hold if

max
y∈S1
|〈y, arg t〉| < π

2
α. (A7)

By the Cauchy–Schwartz inequality, we have

max
y∈S1
|〈y, arg t〉| ≤ max

y∈S1
‖y‖‖arg t‖ = ‖arg t‖, (A8)

and, since we are working in U, ‖arg t‖ < π
2 α, which concludes the first part of our proof.

In the second part of the proof, we will extrapolate the proof that is presented in [19]
to the three-dimensional case. We begin by separating the gammas in the numerator of the
form ω into three groups Γ1, Γ2, and Γ3, such that, for the singularities in (17), the zeroes of
f1 do not intersect D1, the ones of f2, D2, and the ones of f3, D3. Similarly, we also denote
the multiple gammas in the denominator of ω by Γ4. Taking this new notation into account,
we can write the form ω in the standard form (1), i.e.,

ω =
hdz1 ∧ dz2 ∧ dz3

f1 f2 f3
, (A9)

where f1, f2, f3, and h are defined by

f1 =
1
Γ1

, f2 =
1
Γ2

, f3 =
1
Γ3

, h =
t−z1
1 t−z2

2 t−z3
3

Γ4
. (A10)

The proof of the theorem follows once we are able to validate the compatibility and
Jordan conditions, i.e., (8), under the polyhedron Π. By definition, the zeroes D1, D2, and
D3 are compatible with the polyhedron Π. We can, without a loss of generality, apply the
linear change of variables g−1, the inverse of the linear transformation (17), which will
result in the real part of σ being the first octant, the real part of σ1, σ2, and σ3 the {y, z}-
plane, {x, z}-plane and the {x, y}-plane, respectively, the real part of σ{1,2}, σ{1,3} and σ{2,3}
the z-axis, y-axis and the x-axis, respectively, and <(γ) = <(σ{1,2,3}) = 0. Under this new
change of variables, it will suffice for us to prove the Jordan lemma for the differential forms

ξ1 =
h f 1dz

f2 f3‖ f ‖ , ξ2 =
h f 2dz

f1 f3‖ f ‖ , ξ3 =
h f 3dz

f1 f2‖ f ‖ , ξ{2,3} = h
f 2d f 3 − f 3d f 2

f1|| f ||4
dz, (A11)

ξ{1,3} = h
f 1d f 3 − f 3d f 1

f2|| f ||4
dz, ξ{1,2} = h

f 1d f 2 − f 2d f 1
f3|| f ||4

dz, (A12)

ξ{1,2,3} = ξ1
{1,2,3} + ξ2

{1,2,3} + ξ3
{1,2,3}, (A13)
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on the corresponding half-spaces

σ{2,3} = l1 + iR3, σ{1,3} = l2 + iR3, σ{1,2} = l3 + iR3, (A14)

σ1 = P{2,3} + iR3, σ2 = P{1,3} + iR3, σ3 = P{1,2} + iR3, σ∅ = V + iR3, (A15)

where, ξ1
{1,2,3}, ξ2

{1,2,3}, and ξ3
{1,2,3} are defined by

ξ1
{1,2,3} = h

f 1d f 2d f 3 − f 2d f 1d f 3 + f 3d f 1d f 2
|| f ||6 dz, (A16)

ξ2
{1,2,3} = −2h

f 1 f 3d f 2

(
f1d f 1 + f2d f 2 + f3d f 3

)
|| f ||8 dz, (A17)

ξ3
{1,2,3} = h

f 1 f 2 f 3

(
f1d f 1 + f2d f 2 + f3d f 3

)2

|| f ||10 dz, (A18)

and l1, l2, l3, P{2,3}, P{1,3}, and P{1,2} are subsequently defined by l1 = {x ∈ R3 : x1 ≥ 0, x2 =

0, x3 = 0}, l2 = {x ∈ R3 : x1 = 0, x2 ≥ 0, x3 = 0}, l3 = {x ∈ R3 : x1 = 0, x2 = 0, x3 ≥ 0},
P2,3 = {x ∈ R3 : x1 = 0, x2 ≥ 0, x3 ≥ 0}, P1,3 = {x ∈ R3 : x1 ≥ 0, x2 = 0, x3 ≥ 0},
P1,2 = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 = 0} and V = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}.

Further, the computation of the integral ξ1 over σ{2,3} will be analogous to ξ2 over
σ{1,3} and ξ3 over σ{1,2}, as will the computation of ξ{2,3} over σ1 be analogous to ξ{1,3}
over σ2 and ξ{1,2} over σ3. Thus, it will suffice to examine just three cases.

Let us consider the sequence of sets Uk = {x + iy ∈ C3 : ‖x‖ ≤ Rk, ‖y‖ ≤ Rk}, where
Rk → ∞ as k→ ∞. Define the surface Sk = ∂Uk and let ξ be one of the seven integrands of
(A11)–(A13) defined on its corresponding σ of (A14) or (A15). It is a well-known property
of Lebesgue integrals that there exists a constant c ∈ R, such that:∫

σ∩Sk

ξ ≤ ‖Sk‖ sup
(σ∩Sk)\Z

‖ξ‖ ≤ cR5
k sup
(σ∩Sk)\Z

‖ξ‖, (A19)

where Z is a set with zero Lebesgue measure. We will prove that, as k → ∞, ‖ξ‖ →
0 at an exponential rate, which results in the integral in (A19), and, consequently, all
(A41), (A45), and (A46) being zero. In order to achieve this, we will divide σ ∩ Sk into two
sets

Bk = {x + iy ∈ σ : ‖x‖ ≤ Rk, ‖y‖ = Rk}, Ok = {x + iy ∈ σ : ‖x‖ = Rk, ‖y‖ ≤ Rk}. (A20)

Depending on the σ that we are working with, this separation will yield different
results. For instance, for σ1, we have Bk = {x + iy ∈ C3 : 0 ≤ x1 ≤ Rk, ‖y‖ = Rk}
and Ok = {x + iy ∈ C3 : x1 = Rk, ‖y‖ ≤ Rk}, for σ1,2 we have Bk = {x + iy ∈ C3 :
x2

1 + x2
2 ≤ R2

k , ‖y‖ = Rk} and Ok = {x + iy ∈ C3 : x2
1 + x2

2 = R2
k , ‖y‖ ≤ Rk} and for

σ1,2,3 we have Bk =
{

x + iy ∈ C3 : x2
1 + x2

2 + x2
3 ≤ R2

k , ‖y‖ = Rk
}

and Ok = {x + iy ∈ C3 :
x2

1 + x2
2 + x2

3 = Rk, ‖y‖ ≤ Rk}.
As a final tool for our proof, consider the set Uδ = {z ∈ C3 :

∣∣sj(z) + ν
∣∣ ≥ δ >

0, j = 1, . . ., m; ν ∈ N}, which removes a neighborhood in U around the singularities that
are present in the numerator of the ratio of products of gamma functions in ω. Hence, we
can write the left most term of (A19) as∫

σ∩Sk

ξ =
∫

Ok∩Uδ

ξ +
∫

Bk∩Uδ

ξ +
∫

σ∩Sk∩U c
δ

ξ. (A21)

Our proof will consist of three steps: firstly, to estimate the value of ‖ω‖|Ok∩Uδ
;

secondly, to estimate the value of ‖ω‖|Bk∩Uδ
; and thirdly, to extend the two previous results
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to the value of the integral to the set of neighborhoods U c
δ (in the proof of Lemmas A1, A2,

and A3).
Step 1:
Recall that, for any z ∈ C3, we have sj(z) = 〈aj, x〉+ bj + i〈aj, y〉, also for any point

in the three-dimensional space, x ∈ R3, there exist θ ∈ [0, 2π[ and φ ∈ [0, π[, such that
x = ‖x‖x̂ = ‖x‖(sin φ cos θ, sin φ sin θ, cos φ), hence the real part of sj(z) for z ∈ Ok is
given by <(sj(z)) = Rk〈aj, x̂〉+ bj. Having fixed θ and φ, and given that we are working
in the space Ok ∩ Uδ, we will choose the radii Rk, such that <(sj(z)) will not intersect the
singularities of the form ω, (the latter case will be dealt in the lemmas). Thus, the numerator
of the form ω can be segregated into two terms, the ones where 〈aj, x̂〉 > 0, which we will
order as µ + 1 ≤ j ≤ m, and the ones where 〈aj, x̂〉 < 0, which we will order as 1 ≤ j ≤ µ.
Analogously, we can sort the denominator of ω, where 〈cj, x̂〉 > 0, for χ + 1 ≤ j ≤ p,
and 〈cj, x̂〉 < 0, for 1 ≤ j ≤ χ. In this case, as Rk → +∞, we have <(sj|Ok ) → +∞ and
<(qj|Ok )→ +∞ for µ ≤ j ≤ m and χ ≤ j ≤ p, respectively, and <((1− sj)|Ok )→ +∞ and
<((1− qj)|Ok ) → +∞ for 1 ≤ j ≤ µ and 1 ≤ j ≤ χ, respectively. Therefore, if we use the
relation Γ(sj)Γ(1− sj) = π/ sin(πsj) and then apply the Stirling Formula (12), we get

∣∣∣∣Γ1Γ2Γ3

Γ4

∣∣∣∣∣∣∣∣
Ok

≤ c0

∣∣∣∣∣∣∏
µ
j=1(1− sj)

sj−1/2 ∏m
j=µ+1 s

sj−1/2
j e−∑m

j=1 sj ∏χ
j=1 sin(πqj)

∏
µ
j=1(1− sj)

sj−1/2 ∏m
j=µ+1 s

sj−1/2
j e−∑m

j=1 sj ∏χ
j=1 sin(πqj)

∣∣∣∣∣∣ (A22)

where c0 is an undetermined constant independent of either k or y values.
Because all of the linear equations sj and qj are on the set Ok, we have ‖x‖ = Rk and

‖y‖ ≤ Rk. Given this parametrization, the modulus of the functions sj, 1− sj, qj, and 1− qj
are bounded below by A1Rk and above by A2Rk for some constants A1, A2 > 0. Now, if
we take note that Rk〈ai, x̂〉 < 0 and −Rk

∥∥cj
∥∥ ≤ Rk〈cj, x̂〉 < 0 for 1 ≤ i ≤ µ and χ ≤ j ≤ p,

respectively, and Rk‖ai‖ ≥ Rk〈ai, x̂〉 > 0 and Rk
∥∥cj
∥∥ ≥ Rk〈cj, x̂〉 > 0 for 1 ≤ i ≤ µ and

χ ≤ j ≤ p, respectively, we conclude that∣∣∣∣∣∣ ∏
µ
j=1(1− sj)

sj−1/2 ∏m
j=µ+1 s

sj−1/2
j

∏χ
j=1(1− qj)

qj−1/2 ∏
p
j=χ+1 q

qj−1/2
j

∣∣∣∣∣∣ ≤
≤

∏
µ
j=1(A1Rk)

Rk〈aj ,x̂〉+bj−1/2 ∏m
j=µ+1(A2Rk)

Rk〈aj ,x̂〉+bj−1/2

∏χ
j=1(A2Rk)

Rk〈cj ,x̂〉+dj−1/2 ∏
p
j=χ+1(A1Rk)

Rk〈cj ,x̂〉+dj−1/2

× e−∑
µ
j=1 =(sj) arg(1−sj)−∑m

j=µ+1 =(sj) arg(sj)

e−∑
µ
j=1 =(qj) arg(1−qj)−∑m

j=µ+1 =(qj) arg(qj)

≤ c1Rc2
k cRk

3 Rc4‖y‖
k RRk〈∆,x̂〉

k , (A23)

where c1, c2, c3, and c4 are constants that we can define without any recourse to the angles
θ and ψ, making the upper bound (A23) hold for every z ∈ Ok ∩ Uδ.

Observe that, since we are working in Ok ∩ Uδ, there does not exist a sequence
zi ∈ Ok ∩ Uδ, such that sin(π(〈aj, z〉 + bj)) goes to zero; otherwise, inasmuch as sin
and 〈aj, z〉+ bj are continuous, we would have zi ∈ U c

δ , which is a contradiction, hence
0 < infz∈Ok∩Uδ

sin(π(〈aj, z〉 + bj)) and supz∈Ok∩Uδ
1/ ∏

µ
j=1 sin(π(〈aj, z〉 + bj)) < ∞. On

the other hand, for the sin’s in the denominator of ω, there exists a constant c, such that∣∣∣∣∣ χ

∏
j=1

sin(πqj)

∣∣∣∣∣ = χ

∏
j=1

∣∣∣∣∣ eiπ<(qj)e−π=(qj) − e−iπ<(qj)eπ=(qj)

2i

∣∣∣∣∣ χ

∏
j=1

eπ|=(qj)| ≤ ecRk . (A24)
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Similarly, by applying the Cauchy–Schwartz inequality to the modulus of t−z, we have:∣∣∣t−z1
1 t−z2

2 t−z3
3

∣∣∣ ≤ e−‖x‖〈log |t|,x̂〉e| arg t|Rk . (A25)

Therefore, all of the terms of ω not present in (A22) grow, at most, exponentially as
Rk → ∞. If we combine the results from (A23), (A24), and (A25), we get∣∣∣∣Γ1Γ2Γ3

Γ4
t−z
∣∣∣∣∣∣∣∣

Ok∩Uδ

≤ c(t)Rk RRk∆x
k , (A26)

where ∆x := 〈∆, x̂〉 and c(t) > 0 is a function independent from k and y. Because ∆x < 0,
from (A26) as k→ ∞, the first integral of (A21) vanishes.

Step 2:
Before tacking the second integral in (A21), note that, in Bk ∩ Uδ, we have 0 ≤

‖x‖ ≤ Rk and ‖y‖ = Rk. Similarly to step 1, for Rk big enough, the modulus of the
functions sj, 1− sj, qj, and 1− qj is bounded below by A1Rk and above by A2Rk, for some
constants A1, A2 > 0. When combining these restrictions with the inequality (A3), we
obtain∣∣Γ(sj)

∣∣ < c2(A2Rk)
‖x‖〈aj ,x̂〉

∣∣sj
∣∣bj−1/2e−

π
2 |=(sj)|+|<(sj)| if 〈aj, x̂〉 ≥ 0, (A27)∣∣Γ(sj)

∣∣ < c2(A1‖x‖)‖x‖〈aj ,x̂〉
∣∣sj
∣∣bj−1/2e−

π
2 |=(sj)|+|<(sj)| if 〈aj, x̂〉 < 0, (A28)∣∣Γ(qj)

∣∣ > c1(A1‖x‖)‖x‖〈cj ,x̂〉
∣∣qj
∣∣dj−1/2e−

π
2 |=(qj)|−|<(qj)| if 〈cj, x̂〉 > 0, (A29)∣∣Γ(qj)

∣∣ > c1(A1Rk)
‖x‖〈cj ,x̂〉

∣∣qj
∣∣dj−1/2e−

π
2 |=(qj)|−|<(qj)| if 〈cj, x̂〉 ≤ 0. (A30)

Just like we did in step one, we will fix θ and φ, i.e., fix x̂, and use the above estimates
and the fact that=(sj) = 〈aj, y〉 and=(qj) = 〈cj, y〉, we can bound the value of

∣∣∣ Γ1Γ2Γ3
Γ4

t−z
∣∣∣ by∣∣∣∣Γ1Γ2Γ3

Γ4
t−z
∣∣∣∣ ≤ C‖x‖A‖x‖RB

k D(x, y)E‖x‖eF(y), (A31)

where A, B and C and E are constants and D(x, y) and F(y) are the functions

A =

〈
µ

∑
j=1

aj −
p

∑
j=χ+1

cj, x̂

〉
, B =

〈
m

∑
j=µ+1

aj −
χ

∑
j=1

cj, x̂

〉
, C ≥ c−p

1 cm
2 , (A32)

E = A

〈
∑

µ
j=1 aj−∑

p
j=χ+1 cj ,x̂

〉
1 A

〈
∑m

j=µ+1 aj−∑χ
j=1 cj ,x̂

〉
2 e∑m

j=1|〈aj ,x̂〉|+∑
p
j=1|〈cj ,x̂〉|, (A33)

D(x, y) =
∏m

j=1
∣∣〈aj, x〉+ bj + i〈aj, y〉

∣∣bj−1/2

∏
p
j=1

∣∣〈cj, x〉+ dj + i〈cj, y〉
∣∣dj−1/2 , (A34)

F(y) = |〈y, arg t〉| − π

2

(
m

∑
j=1
|〈ajy〉| −

p

∑
j=1
|〈cj, y〉|

)
. (A35)

From the proof of Theorem 2 in paper [19], F(y) is negative for all y ∈ σ. Therefore,
because ‖y‖ = Rk, as Rk → ∞, eF(y) goes to zero at an exponential rate. If ‖x‖ increases
as Rk increases, we can just use the arguments from step 1 to show that ‖ξ‖ goes to zero,
hence E‖x‖ must be bounded. Because D(x, y) increases, at most, at a polynomial rate,
our last requirement is to show that ‖x‖A‖x‖RB

k increases, at most, at a slower rate than
eF(y) decreases.

The first thing to note is that, by the construction of (A32), A is negative and B is
positive. Secondly, by definition, for any x + iy ∈ σ, we have ∆x = 〈∆, x̂〉 < 0; hence, since
A + B = ∆x < 0, we have −B/A < 1. Consider the function fR(x) = xAxRBx, fR(x) has
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a maximum
(

e−
B
A

)R−B/A

. Therefore, even if we choose ‖x‖ = xM, the term ‖x‖A‖x‖RB
k

will increase at a rate lower than eF(y) decreases. We conclude that, as k→ ∞, the second
integral of (A21) vanishes.

Step 3:
We will now undertake the third integral of (A21) where the singularities of the form

ω are present. Let us define Pj,ν = {x + yi ∈ C3 : 〈aj, x〉 = −bj − ν, 〈aj, y〉 = 0} and
Vj,ν ⊃ Pj,ν as the open sets that contain the discontinuity that is given by the values in Pj,ν.
If we fix the angles θx, φx, θy, φy, for the aforementioned discontinuity, we can restate the
previous equations as ‖x‖〈aj, x̂〉 = −bj − ν and ‖y‖〈aj, ŷ〉 = 0.

For the case where Pj,ν ∩Ok 6= ∅, we have ‖x‖ = Rk, and the real part of the singular-
ities will be given by the one dimensional segments Tk,j,ν = {x ∈ R3 : ‖x‖ = Rk, 〈aj, x〉 =
−bj − ν}. Hence, we can chose the radii Rk’s, such that, for each point x = Rk1 x̂ =
Rk(sin φ cos θ, sin φ sin θ, cos φ) belonging the two dimensional segment of Tk1,j,ν, when we
increase the radius from Rk1 to Rk2 , the points with the same angles θ and φ, but now with
the higher length Rk2 , i.e., Rk2 x̂, will not intersect Tk2,j,µ, for any µ ∈ N and k2 > k1, and
will intersect the remaining Tk1,i,µ at most one time, for any µ ∈ N, j 6= i and k2 > k1. We
can construct the radii Rk’s in order for this event to occur, because the set containing all
of the two dimensional segments Tk,j,ν is countable. In fact, we can define its (surjective)
enumerating function as:

η : N3 −→ {Tk,j,ν}k,j,ν

(k, j, ν) 7−→ Tk,j,ν, (A36)

where k ∈ N represents the radii Rk, j ∈ {1, . . ., m} represents the Gamma function, and
ν ∈ N the zero in the Gamma function. This entails that, as k→ ∞, the upper bound (A23)
deduced in step 1 will still hold for any angles θx and φx.

The case where Pj,ν ∩ Bk 6= ∅ is slightly more complicated. Let us consider Sj,ν = {i ∈
{1, 2, . . ., m} : ∀z∈Vj,ν〈ai, z〉 /∈ Z−0 }, the multi-index set of the gammas that do not have a
singularity under si(z), and Zj,ν = {i ∈ {1, 2, . . ., m} : ∀z∈Vj,ν〈ai, z〉 ∈ Z−0 }, the multi-index
set of the gammas that have a singularity under si(z).

Because we are dealing with a case where x ∈ K \ Z−0 , where K is compact, by the
inequalities (A4), the estimate upper bound for the modulus of ωt−z is given by

∣∣∣∣∣ ∏m
j=1 Γ(sj(z))

∏
p
k=1 Γ(qk(z))

t−z

∣∣∣∣∣ ≤
∏

i∈Sj,ν

(|〈ai, x〉|+ 1)〈ai ,x〉+bi−1/2

∏
p
k=1

(
|〈cj, x〉|+ 1

)〈cj ,x〉+bj−1/2

× exp

(
|〈y, arg t〉| − π

2

(
m

∑
j=1
|〈aj, y〉| −

p

∑
j=1
|〈cj, y〉|

))∣∣∣∣∣∣ ∏
i∈Zj,ν

Γ(〈ai, z〉+ bi)

∣∣∣∣∣∣. (A37)

Consider α, as defined in (24). For each t in the domain U that is defined in (23), we
have ‖arg t‖ < (π/2)α. If we apply the Cauchy–Schwartz inequality, we obtain:

|〈y, arg t〉| ≤ π

2
α′‖y‖ for some α′ < α, (A38)

Consider the parametrization that is given by x = p0
1, y = v0λ + v1θ + p0

2 of the plane
Pj,ν ∩ Bk, where (p0

1 and p0
2 are points and v1 and v2 are vectors). The neighborhood Vjν

around Pjν ∩ Bk can be defined as the intersection of the parallel planes {x + iy ∈ C3 : x =
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p1, y = v0λ + v1θ + p2} with Bk, where p1 and p2 are in the neighborhood of p0
1 and p0

2. If
we take into account that ∑Zj,ν

〈aj, y〉 vanishes on Pj,ν, we have ∑
i∈Sj,ν

|〈ai, y〉| −
p

∑
k=1
|〈ci, y〉|

∣∣∣∣∣∣
Vj,ν

=

 ∑
i∈Sj,ν

|〈ai, v0〉| −
p

∑
k=1
|〈ci, v0〉|

‖λ‖
+

 ∑
i∈Sj,ν

|〈ai, v1〉| −
p

∑
k=1
|〈ci, v1〉|

‖θ‖+ K1 ≥ α‖y‖+ K2, (A39)

where the K1 and K2 are the bounded constants. Hence, for any x + iy ∈ Vj,ν, the following
inequality will hold

|〈y, arg t〉| − π

2

 ∑
i∈Sj,ν

|〈ai, y〉| −
p

∑
k=1
|〈ck, y〉|

 ≤ π

2
(α′ − α)‖y‖+ K2. (A40)

In other words,
∣∣∣∣∏i∈Sj,ν

Γ(si(z))

∏
p
k=1 Γ(qk(z))

t−z
∣∣∣∣ decreases exponentially as Rk increases.

What remains to be shown is that the forms ξ1, ξ{2,3}, and ξ{1,2,3} (the proofs for the
remaining forms are identical) decrease as Rk increases, whether or not they are in Uδ or
its complement. We will have to show that the forms are bounded at any point where
the Gamma functions are discontinuous. In the following, we present three lemmas with
these results and prove the first one. The remaining two proofs are similar and the same
techniques can be used. As a consequence of these three lemmas, the proof of our main
theorem concludes.

Lemma A1. There exists a sequence of radii Rk, such that Rk → ∞ and for which

lim
k→∞

∫
σ{2,3}∩Sk

ξ1 = 0. (A41)

Proof. For the form ξ1, recall that ξ1 = ρ1 ∧ω, which can be written as

ξ1 =
| f1|2

‖ f ‖2 ∧ hdz =

1
|Γ1|2

1
|Γ1|2

+ 1
|Γ2|2

+ 1
|Γ3|2
∧ Γ1Γ2Γ3

Γ4
t−zdz, (A42)

where Γ1, Γ2, Γ3, and Γ4 are products of a subset of Gamma functions present in the
numerator and denominator of ω defined at the beginning of the proof of Theorem 8.
Knowing this, the following inequality for the norm of ξ1 will hold true for any z ∈ Uδ:

‖ξ1‖ ≤
1

1 + |Γ1|2

|Γ2|2
+ |Γ1|2

|Γ3|2

‖ω‖ (A43)

The first factor of the inequality (A43) is bounded by 1 and the second factor, as we
deduced previously, decreases exponentially as Rk increases.

On the other hand, the complementary set, U c
δ , will include the complex planes

Lν
j = {z ∈ C3 : sj(z) = −ν} of D1, D2 and D3. Recall that, from (21), we have D1 ∩ σ1 = ∅,

D2 ∩ σ2 = ∅, and D3 ∩ σ3 = ∅, which implies that σ{2,3} ∩ (D2 ∪ D3) = ∅. Because we are
working in σ{2,3}, we will only consider the planes Lν

j in D1. We will represent Γ1 as the
product Γ′1 · Γ′′1 , where Γ′1 is the product of the functions Γ(sj(z)) in Γ1 without singularities
on Lν

j and Γ′′1 is the product of the functions Γ(sj(z)) in Γ1 with singularities on Lν
j , where

we will denote, by s, the number of factors in Γ′′1 . Taking this notation into account, the
following inequality for the norm of ξ1 will hold true for any z ∈ U c

δ :
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‖ξ1‖ ≤

−2s︷ ︸︸ ︷
1

1 + |Γ
′
1|

2|Γ′′1 |
2

|Γ2|2
+
|Γ′1|

2|Γ′′1 |
2

|Γ3|2

s︷︸︸︷∣∣Γ′′1 ∣∣∥∥∥∥Γ′1Γ2Γ3

Γ4
t−z
∥∥∥∥. (A44)

The first factor has a zero of order 2s, the second factor has a pole of order s, and the
third factor decreases exponentially as Rk increases. Therefore, the product of the first and
second factors has a zero of order s. This, in conjunction with the previous deductions,
completes the proof of Lemma A1.

Lemma A2. There exists a sequence of radii Rk, such that Rk → ∞, and for which

lim
k→∞

∫
σ1∩Sk

ξ{2,3} = 0. (A45)

Lemma A3. There exists a sequence of radii Rk, such that Rk → ∞, and for which

lim
k→∞

∫
σ∅∩Sk

ξ{1,2,3} = 0. (A46)
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