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Abstract: Nonparametric regression becomes a potential solution if the parametric regression as-
sumption is too restrictive while the regression curve is assumed to be known. In multivariable
nonparametric regression, the pattern of each predictor variable’s relationship with the response
variable is not always the same; thus, a combined estimator is recommended. In addition, regression
modeling sometimes involves more than one response, i.e., multiresponse situations. Therefore, we
propose a new estimation method of performing multiresponse nonparametric regression with a
combined estimator. The objective is to estimate the regression curve using combined truncated
spline and Fourier series estimators for multiresponse nonparametric regression. The regression
curve estimation of the proposed model is obtained via two-stage estimation: (1) penalized weighted
least square and (2) weighted least square. Simulation data with sample size variation and different
error variance were applied, where the best model satisfied the result through a large sample with
small variance. Additionally, the application of the regression curve estimation to a real dataset of
human development index indicators in East Java Province, Indonesia, showed that the proposed
model had better performance than uncombined estimators. Moreover, an adequate coefficient
of determination of the best model indicated that the proposed model successfully explained the
data variation.

Keywords: combined estimator; Fourier series; multiresponse; nonparametric regression; trun-
cated spline

1. Introduction

As one of the renowned methods of regression analysis, parametric regression has
been used for many years in various scientific fields. However, some parametric regression
assumptions are too restrictive, such as identifying a regression curve’s shape with some
prespecified functional form (e.g., linear, quadratic, or cubic) [1]. In real datasets, not all
regression curves have a visible pattern due to the absence of relationship information
between response and predictor variables. Therefore, in such scenarios, nonparametric
regression analysis is more recommended [2]. Nonparametric regression is able to degrade
the misspecification risk because data inherently represent the real shape of a regression
curve without interference due to the researcher’s subjectivity [2].

To date, researchers have investigated various functions for estimating the regression
curve in nonparametric regression, such as spline [3–6], Fourier series [7–9], kernel [10–12],
polynomial [13–15], and wavelet [16–18] functions. The present study explores the non-
parametric regression approach to analyzing spatial data, i.e., the use of the nonparametric
truncated spline function in geographically weighted regression [19,20]. In nonparametric
regression with more than one predictor variable (multivariable), the pattern of the rela-
tionship between each predictor variable and the response variable is not always the same;
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therefore, in this study, we employ a nonparametric regression model with a combined
estimator. Considering the concept of semiparametric regression, some studies have pro-
posed combined estimator models to estimate the regression curve, such as spline and
kernel functions [21–23]. Similarly, in [24], the researchers developed a combined estimator
of kernel and Fourier series, whereas in [25–27], the researchers presented nonparametric
regression with a mixed estimator of truncated spline and Fourier series. Recently, re-
searchers have also been giving attention to a mixed model of longitudinal data, as carried
out by [28].

So far, studies on nonparametric regression with combined estimators have not dealt
with more than two responses, i.e., multiresponse nonparametric regression. Numerous
studies on nonparametric regression have been applied to many scientific fields, such as
sociodemographic analysis [23–26], finance [5,29], climatology [4], and economics [30],
wherein some cases have involved real data with two or more correlated response vari-
ables. Therefore, this study makes a major contribution to the research on multiresponse
nonparametric regression by using a combined estimator. Of the several types of regres-
sion functions for nonparametric regression, the truncated spline function has the major
advantages of high flexibility, good visual interpretation, and the ability to handle smooth
function characters and data that have changed behavior at certain subintervals [2]. On
the other hand, the Fourier series function is used to estimate the regression curve if the
data are smooth and follow a repeated pattern at specific intervals [9]. The Fourier series
function is also a trigonometric polynomial that can adjust the data’s local nature effectively.
In this study, we adopt a cosine Fourier series function [9], which follows a trend line as the
regression curve estimator. A Fourier series with a cosine function was employed since it is
an even function, such that the second derivative usually mathematically obtains a scalar
or a nonzero value. Furthermore, the penalties in the penalized least square method can be
well defined. Considering some of the advantages of these two functions, as outlined above,
this study highlights the combined use of truncated spline and Fourier series estimators
for multiresponse nonparametric regression.

One of the most well-known tools for the estimation of regression is the ordinary least
square (OLS) method. However, the OLS method cannot be directly used in nonparametric
regression because of the unknown curve shape. By utilizing smooth, continuous, and
differentiable properties, as well as other components, the OLS method was modified with
conditional optimization to create the penalized least-square (PLS) regression method [31].
The combined use of estimators for multiresponse nonparametric regression leads to
the use of an error variance–covariance matrix as a weighting matrix. Therefore, PLS
optimization is still added with a weight; accordingly, the proposed model was obtained
through penalized weighted least square (PWLS) optimization. To evaluate the proposed
model performance, we employed a simulation study with three different sample sizes
and three error variances and applied the proposed model to a real dataset.

Given the view above, the objective of this study is to obtain a curve estimation using
combined truncated spline and Fourier series estimators for multiresponse nonparametric
regression. This aim is followed by estimating an error variance–covariance matrix as a
weighting matrix. To estimate the proposed model, a two-stage estimation method was
used. Stage 1 was to estimate the Fourier series component using PWLS optimization. The
following stage was to estimate the truncated spline component by utilizing weighted least
square (WLS) optimization. In addition to curve estimation, we attempted to simulate and
apply the proposed model to a dataset of the HDI in East Java Province, Indonesia. The
paper is organized as follows: Section 1 provides an overview of the topic while identifying
the knowledge gap and stating the aims of the research. Section 2 describes the truncated
spline function and the Fourier series function, along with the PWLS method. Section 3
presents the findings of the regression curve estimation via the combined use of truncated
spline and Fourier series estimators for multiresponse nonparametric regression, along
with an estimation of the variance–covariance matrix, smoothing parameter selection,
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and a simulation study following the application of a real dataset. Section 4 gives a brief
conclusion and makes future recommendations.

2. Materials and Methods
2.1. Multiresponse Nonparametric Regression, Truncated Spline Function, and Fourier
Series Function

Given paired data
(
y1i, y2i, . . . , yrix1i, x2i, . . . , xpi, z1i, z2i, . . . , zqi

)
, the relationship be-

tween response (y1i, y2i, . . . , yri) and predictor
(
x1i, x2i, . . . , xpi, z1i, z2i, . . . , zqi

)
variables is

assumed to follow multiresponse nonparametric regression, as follows:

yhi = µhi
(
x1i, x2i, . . . , xpi, z1i, z2i, . . . , zqi

)
+ εhi, εhi ∼ N

(
0, σ2

h

)
(1)

where h = 1, 2, . . . , r and i = 1, 2, . . . , n. In this study, r is defined as the number of response
variables, and n refers to the number of observations for each response and predictor
variable. For convenience, Equation (1) can be rewritten in the following matrix form:

y = µ(x, z) + ε (2)

The regression curve in Equation (1) can be assumed to be an additive model.

µhi
(

x1i, x2i, . . . , xpi, z1i, z2i, . . . , zqi
)
=

p

∑
j=1

fhj
(
xji
)
+

q

∑
k=1

ghk(zki). (3)

In Equation (3), the regression curve fhj
(
xji
)
; j = 1, 2, . . . , p is assumed to be smooth

and is approached by a truncated spline function. Meanwhile, the regression curve
ghk(zki); k = 1, 2, . . . , q is approached by a Fourier series function, which assumes that
the regression curve is unknown and is contained in continuous space C[0, π]. Hence, the
multiresponse nonparametric regression in Equation (3) can be written as

yhi =
p

∑
j=1

fhj
(
xji
)
+

q

∑
k=1

ghk(zki) + εhi, εhi ∼ N
(

0, σ2
h

)
. (4)

Under the assumption εhi ∼ N
(
0, σ2

h
)
, as described in [32], corr(εhiε`i) = ρ for h 6= `;

h, ` = 1, 2, . . . , r. This term refers to situations in which the response variables yhi and y`i
are a pair, such that a correlation between the h-th response and the `-th response yields
corr(εhiε`i) = ρ, and zero otherwise. The error correlation between responses is the same
for every response, defined as ρ = cov(εhiε`i)√

σhhσ``
; i = 1, 2, . . . , n; h 6= `; h, ` = 1, 2, . . . , r.

Thus, the regression curve fhj
(
xji
)

in Equation (4) is approached by a linear truncated
spline function with knots Khj1, Khj2, . . . , Khju, as follows:

fhj
(
xji
)
= αhjxji +

u

∑
s=1

βhjs

(
xji − Khjs

)
+

, (5)

with the truncated function

(
xji − Khjs

)
+
=

{ (
xji − Khjs

)
+

, xji ≥ Khjs

0 , xji < Khjs

Adopting the Fourier series function in [9], ghk(zki) in Equation (4) is approached by a
Fourier series cosine function following the trend line (bhkzki), as given in Equation (6):

ghk(zki) = bhkzki +
1
2

aohk +
T

∑
t=1

athk cos tzki. (6)
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2.2. Penalized Weighted Least Square

Suppose that the dataset
(
y1i, y2i, . . . , yri, x1i, x2i, . . . , xpi, z1i, z2i, . . . , zqi

)
follows the

multiresponse nonparametric regression in Equation (1) and is rewritten in matrix form
as Equation (2). The random error ε in Equation (2) is normally distributed, with mean
0 and error variance–covariance matrix W, such that it can be written as ε ∼ N(0, W).
In particular, W as a weighting matrix plays an important role in accommodating the
correlation between responses. If there is a correlation between responses, the correlation is
defined as ρ = σh`√

σhhσ``
, such that σh` = ρ

√
σhhσ``. Note that I is the identity matrix. When

all observations come in pairs, W has σh,` elements, as described below:

W =


σ11 σ12 · · · σ1r
σ12 σ22 · · · σ2r

...
...

. . .
...

σ1r σ2r · · · σrr

⊗ I

= Σ⊗ I

The regression curve of the combined truncated spline and Fourier series estimators
for multiresponse nonparametric regression was estimated by carrying out the following
PWLS optimization:

Min
gk∈C[0,π]

N−1
r
∑

h=1

n
∑

i=1
whi

(
yhi −

p
∑

j=1
fhj
(

xji
)
−

q
∑

k=1
ghk(zki)

)2

+
q
∑

k=1
λk
∫ π

0
2
π

(
g′′k (zk)

)2dzk

, (7)

where N refers to the number of observations for all response variables, alternatively
written as N = ∑r

h=1 nh. The first component in Equation (7) is a function that measures
the goodness-of-fit (GoF), while the second component is the penalty. In addition, whi is a
weighted component, and λk serves as a positive smoothing parameter that controls the
balance between the GoF and the penalty. In this study, during the process of regression
curve estimation, the parameters whi and λk are given. Note that the superscript T refers to
transpose and the superscript “ refers to the second derivative of the function.

As stated in the Introduction section, we estimated the regression curve of the pro-
posed model in two stages. The first stage involves completing the estimation of the
regression curve ghk(zki) through PWLS optimization, which results in Theorem 1 (see the
Section 3.1). Subsequently, the second stage involves completing the estimated regression
curve fhj

(
xji
)

using WLS optimization, which results in Theorem 2 (see the Section 3.1).

3. Results
3.1. Curve Estimation of Combined Truncated Spline and Fourier Series Estimators for
Multiresponse Nonparametric Regression

As previously stated, PWLS and WLS optimization were used to obtain combined
truncated spline and Fourier series estimators for multiresponse nonparametric regression.
Therefore, some lemmas and theorems were required. Whenever Lemma 1 presents the GoF,
Lemma 2 presents the penalty of the PWLS optimization. By using the results of Lemma
1 and Lemma 2, the first stage estimation is obtained, which is formulated in Theorem
1. The second stage involves estimating the regression curve using WLS optimization, as
presented in Lemma 3, with the main result presented in Theorem 2. All the proofs of the
lemmas and theorems are presented in Appendices A–E.

Lemma 1. If the multiresponse nonparametric regression model is written as Equation (4) and the
regression curve ghk(zki) is as given in Equation (6), the GoF can be formulated as follows:

R(g1, . . . , gr) = N−1(v− Za)TW(v− Za),
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where W is the nh× nh weighting matrix,
v =

[
vT

1 vT
2 · · · vT

r
]T ; vh =

[
vh1 vh2 · · · vhn

]T ; vhi = yhi −∑p
j=1 fhj(xji

)

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · Zr

, a =
[

aT
1 aT

2 . . . aT
r
]T ,

Zh =


z11 1/2 cos 1z11 cos 2z11 · · · cos Tz11 · · · zq1 1/2 cos 1zq1 cos 2zq1 · · · cos Tzq1
z12 1/2 cos 1z12 cos 2z12 · · · cos Tz12 · · · zq2 1/2 cos 1zq2 cos 2zq2 · · · cos Tzq2

...
...

...
...

. . .
... · · ·

...
...

...
...

. . .
...

z1n 1/2 cos 1z1n cos 2z1n · · · cos Tz1n · · · zqn 1/2 cos 1zqn cos 2zqn · · · cos Tzqn

,

ah =
[

b1h a01h a11h a21h · · · aT1h · · · bqh a0qh a1qh a2qh · · · aTqh
]T

.

The proof of Lemma 1 is given in Appendix A.

Lemma 2. If the multiresponse nonparametric regression model is written as Equation (4) and the
regression curve ghk(zki) is as presented in Equation (6), the penalty component is as follows:

P
(
λ1, λ2, . . . , λq

)
= aTD(λ)a

where

D(λ) =



0 0 0 0 · · · 0 · · · 0 0 0 0 · · · 0
0 0 0 0 · · · 0 · · · 0 0 0 0 · · · 0
0 0 λ114 0 · · · 0 · · · 0 0 0 0 · · · 0
0 0 0 λ124 · · · 0 · · · 0 0 0 0 · · · 0
...

...
...

...
. . .

... · · ·
...

...
...

...
. . .

...
0 0 0 0 · · · λ1T4 · · · 0 0 0 0 · · · 0
...

...
...

... · · ·
...

. . .
...

...
...

... · · ·
...

0 0 0 0 · · · 0 · · · 0 0 0 0 · · · 0
0 0 0 0 · · · 0 · · · 0 0 0 0 · · · 0
0 0 0 0 · · · 0 · · · 0 0 λq14 0 · · · 0
0 0 0 0 · · · 0 · · · 0 0 0 λq24 · · · 0
...

...
...

...
. . .

... · · ·
...

...
...

...
. . .

...

0 0 0 0 · · · 0
... 0 0 0 0 · · · λqT4



.

A complete description of the proof of Lemma 2 can be found in Appendix B.
Having discussed how to construct the GoF and the penalty, Theorem 1 addresses

potential solutions to the first-stage estimation using PWLS optimization in Equation (7).

Theorem 1. If the GoF and the penalty of the model are given in Lemma 1 and Lemma 2, the curve
estimation for multiresponse nonparametric regression can be attained from PWLS optimization,
as follows:

ĝ(K,λ,T)(x, z
)
=

(
Z
[

ZTWZ + ND(λ
)]−1

ZTW
)

v.

The evidence of Theorem 1 is given in Appendix C. The second stage involves esti-
mating the regression curve using WLS optimization, as described in Lemma 3, with the
result in Theorem 2.
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Lemma 3. If the regression curve fhj
(
xji
)

is as described in Equation (5), WLS optimization can
be obtained as

[(I−H)(y− Jγ)]TW[(I−H)(y− Jγ)],

where H =
(

Z
[

ZTWZ + ND(λ
)]−1ZTW

)
,

Si =


(x11 − Kh11)+ (x11 − Kh12)+ · · · (x11 − Kh1u)+ · · · (xp1 − Khp1)+ (x11 − Khp2)+ · · · (x11 − Khpu)+
(x12 − Kh11)+ (x12 − Kh12)+ · · · (x12 − Kh1u)+ · · · (xp2 − Khp1)+ (x12 − Khp2)+ · · · (x12 − Khpu)+

...
...

. . .
... · · ·

...
...

. . .
...

(x1n − Kh11)+ (x1n − Kh12)+ · · · (x1n − Kh1u)+ · · · (xpn − Khp1)+ (x1n − Khp2)+ · · · (x1n − Khpu)+

,γ =



α1
α2
...
αr

β1
β2
...
βr


αh =

[
α1h α2h · · · αph

]T , βh =
[

βh11 βh12 · · · βh1u · · · βhp1 βhp2 · · · βhpu
]T .

As a note, Lemma 3′s proof is provided in Appendix D.

Theorem 2. If WLS optimization is given by Lemma 3, the regression curve estimation for
multiresponse nonparametric regression can be attained from WLS optimization such that

f̂(K,λ,T)(x, z) = J
[
JT
(

I− 2HT
)

WJ + JTHTWHJ
]−1[

JT
(

HT − I
)

W(H− I)
]
y. (8)

= JK−1Ly, (9)

where K =
[
JT(I− 2HT)WJ + JTHTWHJ

]
and L =

[
JT(HT − I

)
W(H− I)

]
.

The proof of Theorem 2 is given in Appendix E.
After obtaining f̂(K,λ,T)(x, z) in Theorem 2, the result of ĝ(K,λ,T)(x, z

)
in Theorem 1

can be rewritten as Equation (12). First, substituting Equation (9) into Equation (A9) gives
Equation (10):

â =
[

ZTWZ + ND(λ
)]−1

ZTWv

=
[

ZTWZ + ND(λ
)]−1

ZTW(y− f)

=
[

ZTWZ + ND(λ
)]−1

ZTW
(

y− JK−1Ly
)

=
[

ZTWZ + ND(λ
)]−1

ZTW
(

I− JK−1L
)

y. (10)

If the result of Equation (10) is substituted into Equation (A10), the regression curve
estimation of the Fourier series can be rewritten as Equation (12). As a note, Equation (A9)
and Equation (A10) can be found in Appendix C.

ĝ(K,λ,T)(x, z) = Zâ

= Z
([

ZTWZ + ND(λ
)]−1

ZTW
(

I− JK−1L
)

y
)

(11)

= H
(

I− JK−1L
)

y. (12)

Another main finding of this study is the regression curve of the combined trun-
cated spline and Fourier series estimators for multiresponse nonparametric regression, as
presented in Corollary 1.
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Corollary 1. According to the main result in Equation (8) and Equation (11), the regression curve
estimation of the combined truncated spline and Fourier series estimators for the additive model is
presented below:

µ̂(K,λ,T)(x, z) =
[
JK−1L + H

(
I− JK−1L

)]
y.

Proof. By using an additive model in Equation (3), the regression curve estimation of
the combined estimator for multiresponse nonparametric regression can be written in the
following matrix form:

µ̂(K,λ,T)(x, z) = f̂(K,λ,T)(x, z) + ĝ(K,λ,T)(x, z).

Based on the result of f̂(K,λ,T)(x, z) in Equation (8) and ĝ(K,λ,T)(x, z) in Equation (11),
thus µ̂(K,λ,T)(x, z) can be drawn as

µ̂(K,λ,T)(x, z) =
{

J
[
JT(I− 2HT)WJ + JTHTWHJ

]−1[JT(HT − I
)
W(H− I)

]
y
}

+
{

Z
([

ZTWZ + ND(λ
)]−1ZTW

(
I− JK−1L

)
y
)}

.
(13)

= C(K,λ, T)y

For simplification, by substituting Equation (9) and Equation (12) into Equation (13),
µ̂(K,λ,T)(x, z) can also be expressed as

µ̂(K,λ,T)(x, z) =
[
JK−1L + H

(
I− JK−1L

)]
y.

�

3.2. Estimation of Error Variance–Covariance Matrix

The result in Equation (13) shows that curve estimation of the proposed model leads
to the use of an error variance–covariance matrix as a weighting matrix. Hence, estimation
of the error variance–covariance matrix is presented in Theorem 3.

Theorem 3. If the regression curve estimation is given by Corollary 1 and random error ε is
normally distributed with mean 0 and error variance–covariance matrix W such that it can be
written as ε ∼ N(0, W), the error variance–covariance matrix estimation is as follows:

Ŵ =


σ̂11 σ̂12 · · · σ̂1r
σ̂12 σ̂22 · · · σ̂2r

...
...

. . .
...

σ̂1r σ̂2r · · · σ̂rr

⊗ I

where

σ̂11 =
[y1−(JF+ZG)y1]

T [y1−(JF+ZG)y1]
n , σ̂22 =

[y2−(JF+ZG)y2]
T [y2−(JF+ZG)y2]
n , σ̂rr =

[yr−(JF+ZG)yr ]
T [yr−(JF+ZG)yr ]
n ,

σ̂12 =
[y1−(JF+ZG)y1]

T [y2−(JF+ZG)y2]
n , σ̂1r =

[y1−(JF+ZG)y1]
T [yr−(JF+ZG)yr ]
n , σ̂2r =

[y2−(JF+ZG)y2]
T [yr−(JF+ZG)yr ]
n ,

F =

(([
I−

(
JTJ
)−1

JTZ
(

ZTZ
)−1

ZTJ
]−1(

JTJ
)−1

JT

)
−
((

JTJ
)−1

JTZ
(

ZTZ
)−1

ZT
))

,

G =

(([
I−

(
ZTZ

)−1
ZTJ

(
JTJ
)−1

JTZ
]−1(

ZTZ
)−1

ZT

)
−
((

ZTZ
)−1

ZTJ
(

JTJ
)−1

JT
))

.
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The proof of Theorem 3 is given in Appendix F.

3.3. Smoothing Parameter Selection

Another critical step in nonparametric regression modeling is selecting the optimal
knot, oscillation parameter, and smoothing parameter. A large smoothing parameter
produces a smoother estimator function but constrains the capability mapping of data. In
contrast, if the smoothing parameter is too small, the function estimator is rougher [33].
We concluded that a suitable method was required to determine the optimal smoothing
parameters. The smoothing parameter selection in this study was based on the GCV
method, as conducted by [33]; the detailed procedure and optimal properties of this
method have been carried out by [34]. The modified GCV method for combined truncated
spline and Fourier series estimators in the multiresponse nonparametric regression model
is as follows:

GCV(K,λ, T) =
MSE(K,λ, T)

[N−1trace(I−C(K,λ, T))]2
(14)

where

MSE(K,λ, T) = N−1(y− µ̂)T(y− µ̂) = N−1(y−C(K,λ, T)y)T(y−C(K,λ, T)y)

= N−1‖ I−C(K,λ, T)y ‖2 (15)

By substituting Equation (15) into Equation (14), the optimum smoothing parameter
is obtained by taking the minimum of modified GCV for the proposed model, as presented
below

GCV
(
Kopt, λopt, Topt

)
= Min

K,λ,T

{
N−1‖ I−C(K,λ, T)y ‖2

[N−1trace(I−C(K,λ, T))]2

}
where C(K,λ, T) is the regression curve estimation of the proposed model, as in Equation (13).

3.4. Simulation Study

Simulations with 100 replications were carried out to verify and validate the theoretical
result of the proposed model. Using three data sample sizes (n = 20, 50, and 100) and
three different error variances (σ2 = 0.1, 0.5, and 1), random data were generated for
multiresponse nonparametric regression. As shown in Figure 1, each predictor variable
describes different functions, i.e., a polynomial function represents the truncated spline
(xi), while a trigonometry function with a trend represents the Fourier series function (zi).
As a note, Figure 1 only presents a partial scatterplot of the numerical example function
for n = 100 and σ2 = 0.1. The simulation study followed the model in Equation (4), so the
polynomial and trigonometric functions used in this numerical example were obtained
from the following function:

y1i = 15(xi − 1)(1− xi)
2 − 10.5zi − 4 cos(2πzi) + ε1i

y2i = 14(xi − 1)(1− xi)
2 − 7.5zi − 4 cos(2πzi) + ε2i

y3i = 13(xi − 1)(1− xi)
2 − 4.5zi − 4 cos(2πzi) + ε3i

In particular, the predictor variables xi and zi are generated from a Uniform (0,1) distri-
bution, while random errors εhi are generated from a multivariate normal distribution. In
addition, ε1i, ε2i, and ε3i are correlated with corr (ε1i, ε2i) = corr (ε1i, ε3i) = corr (ε2i, ε3i) =
ρ = 0.9. In order for ease of the computational process and based on the results of the
partial scatterplot identification from Figure 1, the simulation study was carried out with
the combination of three knots (K = 1, 2, 3) and three oscillation parameters (T = 1, 2, 3). To
determine the optimal smoothing parameter, the minimum GCV criteria were used.

Table 1 provides a comparison of the statistical results for n = 100 with the error
variances, the number of knots, and oscillation parameters. A complete summary of
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the statistical results for n = 20 and 50 is provided in Appendix G. Table 1 shows that
the smallest GCV (6.098) occurs for variance σ2 = 0.1 with the combination of the three
knots–three oscillation model. This model yields adequate results, with coefficient of
determination (R2) = 93,202 and mean-square-error (MSE) = 5.675. Surprisingly, the same
result is seen for the other sample sizes (n = 20 and 50), where the smallest GCV is obtained
for variance σ2 = 0.1. In addition, a comparison between sample sizes gives the result in
which the smallest GCV is gained from the simulation with the largest sample number
(n = 100). Thus, a smaller variance with a large sample size will produce a minimum GCV,
which implies that the regression curve will be better estimated as well. These findings
are consistent with [23], who developed mixed estimators in nonparametric regression for
cross-sectional data.
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Table 1. Summary of statistical results for n = 100 with error variances, the number of knots, and
oscillation parameters.

Variance Number of
Oscillations

Number of
Knots

Generalized
Cross-Validation (GCV) R2 Mean Square

Error (MSE)

0.1 1 1 7.050 91.866 6.817
2 6.996 92.100 6.719
3 6.525 92.991 5.853

2 1 6.413 92.964 5.875
2 6.391 93.072 5.784
3 6.386 93.167 5.704

3 1 7.017 91.876 6.785
2 6.435 93.066 5.789
3 6.098 * 93.202 5.675

0.5 1 1 6.915 92.454 6.686
2 6.759 92.716 6.492
3 6.634 93.023 6.328

2 1 8.183 91.121 7.913
2 6.720 92.757 6.454
3 6.383 93.671 5.640

3 1 6.145 93.645 5.663
2 6.260 93.660 5.650
3 6.381 93.673 5.638

1.0 1 1 6.408 94.856 5.905
2 6.479 94.906 5.847
3 6.582 94.933 5.816

2 1 6.358 94.895 5.860
2 6.417 94.955 5.791
3 6.490 95.004 5.734

3 1 6.358 94.895 5.860
2 6.417 94.955 5.791
3 6.490 95.004 5.734

* The smallest value of GCV.
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3.5. Data Application

This section attempts to provide the application of the proposed model to a real dataset.
The proposed model was applied to four indicators of HDI data in 38 regencies/cities across
East Java Province, Indonesia, in 2018. To measure human development in some regions,
the UNDP developed the HDI in 1990. In the 1990 Human Development Report, three basic
dimensions of human development were defined in the HDI: income (economy), health,
and education [35]. From these dimensions, four indicators of HDI data were derived:
life expectancy rate, expected years of schooling, mean years of schooling, and adjusted
per capita expenditure [35]. In this study, these four indicators are the response variables,
y1, y2, y3, and y4, respectively.

The issue of the HDI has received considerable critical attention in every province/regency
in Indonesia as it is one of the determining components of the general allocation fund
(DAU) [36]. As one of the largest provinces in Indonesia, East Java Province contributes
significantly to Indonesia’s HDI. East Java Province’s HDI in 2018 was 70.77 [37], slightly
lower than the national achievement. In addition, it was the lowest among the five other
provinces of Java island in the last three years. Therefore, further studies on East Java
Province’s HDI are to be potentially discussed.

To determine whether the correlation matrix has an identity matrix (homogeneity
of variances), we used Bartlett’s test of sphericity with statistical significance α = 0.05.
The results showed a statistical value of χ2 = 121.993 with p-value = 0.00, which means
that the decision was to reject the null hypothesis as p-value < α. According to this result,
we can infer that there is a significant correlation among the response variables; hence,
multiresponse nonparametric regression analysis can be used.

Several studies have highlighted the potential factors associated with Indonesia’s
HDI, such as the percentage of people living in poverty [25,38], the unemployment
rate [25,38,39], population density [25,38], and the per capita gross regional domestic
product (GRDP) [25,39,40]. Based on these, the predictor variables used in this study were
population density and the percentage of people living in poverty. In addition, the relation-
ship between the response variable and each predictor variable was identified by a partial
scatterplot, as shown in Figure 2. The partial scatter plot between the four indicators of
the HDI and population density (x) showed changes at a particular subinterval that is fit
for the truncated spline function. Meanwhile, the partial scatterplot between the response
variable and the percentage of people living in poverty (z) followed a pattern that repeated
at a certain interval, with a particular trend; thus, this variable was approached by the
Fourier series function.
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As shown in Table 2, some scenarios using a combined estimator (Model 1) and uncom-
bined estimators (Model 2 and Model 3) were performed to compare the effectiveness of the
proposed model. By using the modified GCV formula in Section 3.3, we selected the best
model according to the minimum GCV as the criterion. In this study, a comparison of these
three models revealed that the proposed model (Model 1) had the smallest GCV compared
to the other uncombined estimator models for multiresponse nonparametric regression.
In summary, these results indicate that the proposed model is better recommended for
modeling the 2018 HDI data of East Java Province.

Table 2. Summary of statistical results for the case study.

Model 1 Combined Truncated Spline and Fourier Series Estimator for Multiresponse
Nonparametric Regression

Number of Oscillations Number of Knots GCV MSE

1 1 1.43056 1.16177
2 1.45686 1.14882
3 1.41989 1.07056

2 1 1.43464 1.11886
2 1.46877 1.07960
3 1.43883 1.07192

3 1 2.10749 1.91785
2 1.44040 1.13633
3 1.39189 * 1.08377

Model 2 Truncated Spline Estimator for Multiresponse Nonparametric Regression

Number of Knots GCV MSE

1 1.478036 1.114668
2 1.522833 1.013464
3 1.586664 1.055945

Model 3 Fourier Series Estimator for Multiresponse Nonparametric Regression

Number of Oscillations GCV MSE

1 1.524463 1.149681
2 1.536081 1.089298
3 1.578724 1.05066

* The smallest value of GCV.

Another important result from Table 2 is the comparison of the number of knots
and oscillation combinations from the proposed model. Similar to the simulation studies,
we used a combination of three knot and oscillation parameters each. According to the
minimum GCV as the criterion, the leading model was a three knots–three oscillations
model with a GCV equal to 1.39189 and MSE = 1.08377. In addition, this model yields
a coefficient of determination (R2) of 99.84%. Due to the satisfactory result of R2, it can
be said that the proposed model is able to describe the variance of the response variable
through the predictor variables exceptionally well. Another interesting result was the
number of knot and oscillation combinations of the best model in the simulation study, in
line with those of data application.

Appendix H presents the results of parameter estimation from the best model obtained
from the minimum GCV in Table 2. As such, we obtained a three knots–three oscillations
model. Based on the parameter estimation results for each response variable for the 2018
HDI data of East Java Province, Indonesia, the multiresponse nonparametric regression
model with a combined truncated spline and Fourier series estimator can be written as

ŷ1 = −0.932 + 0.869x1i − 3057.409 (x1i − 3.718)+ + 6107.433 (x1i − 3.933)+ − 3050.878 (x1i − 4.148)+ − 0.677 z1i+
1/2(1355.724)− 935.001 cos z1i + 423.443 cos 2z1i − 92.348 cos 3z1i.

= 676.929 + 0.869x1i − 3057.409 (x1i − 3.718)+ + 6107.433 (x1i − 3.933)+ − 3050.878 (x1i − 4.148)+ − 0.677 z1i−
935.001 cos z1i + 423.443 cos 2z1i − 92.348 cos 3z1i.
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ŷ2 = −0.747 + 0.393x1i − 619.153 (x1i − 3.718)+ + 1235.608 (x1i − 3.933)+ − 616.769 (x1i − 4.148)+ − 0.180 z1i+
1/2(274.146)− 189.489 cos z1i + 85.224 cos 2z1i − 18.760 cos 3z1i.

= 136.326 + 0.393x1i − 619.153 (x1i − 3.718)+ + 1235.608 (x1i − 3.933)+ − 616.769 (x1i − 4.148)+ − 0.180 z1i−
189.489 cos z1i + 85.224 cos 2z1i − 18.760 cos 3z1i.

ŷ3 = −0.102 + 0.865x1i − 510.292 (x1i − 3.718)+ + 1015.208 (x1i − 3.933)+ − 505.678 (x1i − 4.148)+ − 0.411 z1i+
1/2(224.955)− 156.440 cos z1i + 69.027 cos 2z1i − 15.588 cos 3z1i.

= 112.375 + 0.865x1i − 510.292 (x1i − 3.718)+ + 1015.208 (x1i − 3.933)+ − 505.678 (x1i − 4.148)+ − 0.411 z1i−
156.440 cos z1i + 69.027 cos 2z1i − 15.588 cos 3z1i.

ŷ4 = −0.482 + 0.969x1i − 684.712 (x1i − 3.718)+ + 1363.397 (x1i − 3.933)+ − 679.163 (x1i − 4.148)+ − 0.456 z1i+
1/2(302.146)− 209.894 cos z1i + 92.927 cos 2z1i − 20.891 cos 3z1i.

= 150.591 + 0.969x1i − 684.712 (x1i − 3.718)+ + 1363.397 (x1i − 3.933)+ − 679.163 (x1i − 4.148)+ − 0.456 z1i−
209.894 cos z1i + 92.927 cos 2z1i − 20.891 cos 3z1i.

Figure 3 presents a comparison between the response variable and the fitted values
using the proposed model. From the graph, we can see that all fitted values resemble the
pattern of the real data; although some do not, there are only a few deviations. Thus, the
proposed model can produce a prediction model.
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4. Discussion and Conclusions

This study presents the major findings from regression curve estimation with a com-
bined truncated spline and Fourier series estimator for an additive model in multiresponse
nonparametric regression using PWLS and WLS optimization, as shown below:

f̂(K,λ,T)(x, z) = J
[
JT
(

I− 2HT
)

WJ + JTHTWHJ
]−1[

JT
(

HT − I
)

W(H− I)
]
y,

ĝ(K,λ,T)(x, z) = Z
([

ZTWZ + ND(λ
)]−1

ZTW
(

I− JK−1L
)

y
)

,

µ̂(K,λ,T)(x, z) =
[
JK−1L + H

(
I− JK−1L

)]
y

Furthermore, the result of error variance–covariance matrix estimation is as follows:



Mathematics 2021, 9, 1141 13 of 22

Ŵ =


σ̂11 σ̂12 · · · σ̂1r
σ̂12 σ̂22 · · · σ̂2r

...
...

. . .
...

σ̂1r σ̂2r · · · σ̂rr

⊗ I

From the simulation study, the minimum GCV obtained a satisfactory outcome
through a large sample with small variance. In addition, data application to a real dataset
of the 2018 HDI in East Java revealed that the proposed model had a better result than the
uncombined model. An adequate coefficient of determination (R2) from the best model
indicates that the proposed model can explain the data variation remarkably well. Inter-
estingly, the number of knots and oscillations of the best model in this simulation study
and data application is consistent; that is a combination of three knots–three oscillations.
In summary, these findings have significant implications for the understanding of regres-
sion curve estimation when using combined estimators for multiresponse nonparametric
regression. Although the focus of the research was on combined truncated spline and
Fourier series estimators, the procedure in this study can be applied to other combinations
of estimators for multiresponse nonparametric regression.

The scope of this study was limited in terms of curve estimation and estimation of the
variance–covariance matrix; thus, the major limitation was the absence of hypothesis testing
and confidence intervals testing. Considering its necessity for good statistical practice,
there is a commitment to perform such a goodness-of-fit test (model checking). Therefore,
further research will be conducted to achieve hypothesis testing and confidence intervals
testing. Another possible area is that a further simulation study could be performed using
another function, such as an exponential or logarithmic function, to validate the capability
of the proposed model. An additional variation of ρ in a simulation study could be used to
gain more insights into the performance evaluation of the proposed model.
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Appendix A

Lemma 1 can be proven by the completed R( ghk(zk1), ghk(zk2), . . . , ghk(zkn)) as the
GoF of PWLS optimization in Equation (7), as shown below:

R( ghk(zk1), ghk(zk2), . . . , ghk(zkn)) = N−1
r
∑

h=1

n
∑

i=1
whi

(
yhi −

p
∑

j=1
fhj
(
xji
)
−

q
∑

k=1
ghk(zki)

)2

. (A1)

If vhi = yhi −∑
p
j=1 fhj(xji

)
, then Equation (A1) can be written as

R( ghk(zk1), ghk(zk2), . . . , ghk(zkn)) = N−1
r

∑
h=1

n

∑
i=1

whi

(
vhi −

q

∑
k=1

ghk(zki)

)2

, (A2)

where ghk(zki) is the Fourier series function, as shown in Equation (6). Furthermore,
the function ghk(zki) with one predictor variable, symbolized as k, can be written in the
following matrix form:

gh =


ghk(zk1)
ghk(zk2)

...
ghk(zkn)

 =


bhkzk1 +

1
2 a0hk + a1hk cos 1zk1 + a2hk cos 2zk1 + · · ·+ aThk cos Tzk1

bhkzk2 +
1
2 a0hk + a1hk cos 1zk2 + a2hk cos 2zk2 + · · ·+ aThk cos Tzk2

...
bhkzkn +

1
2 a0hk + a1hk cos 1zkn + a2hk cos 2zkn + · · ·+ aThk cos Tzkn



=


zk1 1/2 cos 1zk1 cos 2zk1 · · · cos 1zk1
zk2 1/2 cos 1zk2 cos 2zk2 · · · cos Tzk2
...

...
...

...
. . .

...
zkn 1/2 cos 1zkn cos 2zkn · · · cos Tzkn





bhk
a0hk
a1hk
a2hk

...
aThk


= Zkahk (A3)

Similarly, for k = 1, 2, . . . , q predictors, the Fourier series function for the multiresponse
nonparametric regression presented in Equation (A3) can be written as

gh = Z1ah1 + Z2ah2 + · · ·+ Zqahq

=
q

∑
k=1

Zkahk = Zhah,

such that

g =


gT

1
gT

2
...

gT
r

 =


Z1a1
Z2a2

...
Zrar

 =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · Zr




a1
a2
...

ar

 = Za (A4)

Thus, the GoF in Equation (7), where ghk(zki) is the Fourier series function, can be
expressed as

R( ghk(zk1), ghk(zk2), . . . , ghk(zkn)) = N−1
r

∑
h=1

n

∑
i=1

whi

(
vhi −

q

∑
k=1

ghk(zki)

)2

= N−1
r

∑
h=1

n

∑
i=1

whi

(
vhi −

q

∑
k=1

(
bhkzki +

1
2

a0hk +
T

∑
t=1

athk cos tzki

))2

. (A5)
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As a result, the GoF component in Equation (A5) can be drawn in the following matrix form:

R(g1, . . . , gr) = N−1W(v− Za)2

= N−1(v− Za)TW(v− Za).

Appendix B

The penalty component of the PWLS optimization in Equation (7) is as follows:

q

∑
k=1

λk

π∫
0

2
π
( gk

′′ (zk))
2dzk, (A6)

where ghk(zki) is presented in Equation (6). To prove Lemma 2, let us begin with solving
the second derivative in Equation (A6), as follows:

π∫
0

2
π
( gk

′′ (zk))
2dzk =

π∫
0

2
π

(
d

dzk

[
d

dzk

(
bhkzki +

1
2

a0hk +
T

∑
t=1

athk cos tzki

)])2

dzk

=
2
π

π∫
0

(
T

∑
t=1

t2 athk cos tzki

)2

dzk

=
2
π

π∫
0

{
T

∑
t=1

(
t2 athk cos tzki

)2
+ 2

T

∑
t<u

(
t2 athk cos tzki

)(
u2 athk cos uzki

)}
dzk

=
2
π

T

∑
t=1

π∫
0

(
t4 a2

thk cos2 tzki

)
dzk +

4
π

π∫
0

T

∑
t<u

(
(tu)2 athk cos tzkiauhk cos uzki

)
dzk

=
T

∑
t=1

t4 a2
thk. (A7)

After obtaining the result in Equation (A7), the solution to the penalty component in
Equation (A6) can be written as

P
(
λ1, λ2, . . . , λq

)
=

q

∑
k=1

λk

π∫
0

2
π
( gk

′′ (zk))
2dzk

=
q

∑
k=1

(
λk

T

∑
t=1

t4a2
thk

)
= aTD(λ)a .

Appendix C

According to the result of the GoF in Lemma 1 and the penalty in Lemma 2, the PWLS
optimization in Equation (7) can be written as

Min
gk∈C[0,π]

N−1
r

∑
h=1

n

∑
i=1

whi

(
yhi −

p

∑
j=1

fhj
(

xji
)
−

q

∑
k=1

ghk(zki)

)2

+
q

∑
k=1

λk

π∫
0

2
π

(
g′′k (zk)

)2dzk


= Min

a∈R(2+T)qhx1

{
N−1(v− Za)TW(v− Za) + aTD(λ)a

}
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If F(a) = N−1(v− Za)TW(v− Za) + aTD(λ)a, then

F(a) = N−1vTWv− 2N−1aTZTWv + N−1aTZTWZa + aTD(λ)a,

such that
Min

a∈R(2+T)qhx1

{
N−1(v− Za)TW(v− Za) + aTD(λ)a

}
= Min

a∈R(2+T)qhx1

{
N−1vTWv− 2N−1aTZTWv + N−1aTZTWZa + aTD(λ)a

}
. (A8)

To solve the optimization in Equation (A8), the estimator â can be obtained by deriving
the partial Equation (A8) against a and equating the result with 0, as follows:

∂F(a)
∂a

=
∂
[
N−1vTWv− 2N−1aTZTWv + N−1aTZTWZa + aTD(λ)a

]
∂a

â =
[

ZTWZ + ND(λ
)]−1

ZTWv. (A9)

The subsequent step is to substitute â in Equation (A9) into Equation (A4), such that
the estimator of the truncated spline function can be written as

ĝ(K,λ,T)(x, z) = Zâ (A10)

=

(
Z
[

ZTWZ + ND(λ
)]−1

ZTW
)

v

= Hv. (A11)

Appendix D

The solution in Theorem 1 still contains an f component, where f is a truncated linear
spline function, as described in Equation (5). Hence, to complete the PWLS optimization in
Equation (7), it is necessary to estimate the regression curve of fhj(xji

)
. First, the multire-

sponse nonparametric regression curve of the truncated spline component in Equation (5),
which involves only one predictor, is written in the following matrix form:

fh =


fhj(xj1)
fhj(xj2)

...
fhj(xjn)

 =



αhjxj1 +
u
∑

s=1
βhjs(xj1 − Khjs)+

αhjxj2 +
u
∑

s=1
βhjs(xj2 − Khjs)+

...

αhjxjn +
u
∑

s=1
βhjs(xjn − Khjs)+



=


xj1
xj2
...

xjn

αhj +


(xj1 − Khj1)+ (xj1 − Khj2)+ · · · (xj1 − Khju)+
(xj2 − Khj1)+ (xj2 − Khj2)+ · · · (xj2 − Khju)+

...
...

. . .
...

(xjn − Khj1)+ (xjn − Khj2)+ · · · (xjn − Khju)+




βhj1
βhj2

...
βhju


= xjiαhj + Sjiβhj (A12)

Consequently, fh with the j = 1, 2, . . . , p predictor can be written as follows:

fh = x1iα1h + S1iβ1h + x2iα2h + S2iβ2h + · · ·+ xpiαph + Spiβph

= Xiαh + Siβh, (A13)



Mathematics 2021, 9, 1141 17 of 22

According to Equation (A13), the truncated spline function for multiresponse non-
parametric regression can be expressed in matrix form, as follows:

f =


fT

1
fT

2
...

fT
r

 =


X1α1
X2α2

...
Xrαr

+


S1β1
S2β2

...
Srβr

 =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xr




α1
α2
...

αr

+


S1 0 · · · 0
0 S2 · · · 0
...

...
. . .

...
0 0 · · · Sr




β1
β2
...

βr



=


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xr

∣∣∣∣∣∣∣∣∣
S1 0 · · · 0
0 S2 · · · 0
...

...
. . .

...
0 0 · · · Sr





α1
α2
...
αr

β1
β2
...
βr


= [X|S]

[
α

β

]
= Jγ. (A14)

To solve the regression curve estimation of the truncated spline and Fourier series
estimators for multiresponse nonparametric regression with PWLS optimization, substitute
Equations (A11) and (A14) into Equation (4), as follows:

y = f + g + ε; g = Hv

ε = y− f−Hv; v = y− f

= y− f−H(y− f); f = Jγ

= (I−H)(y− Jγ). (A15)

The subsequent step is to solve Equation (A15) with WLS optimization. Therefore, the
estimator can be obtained by completing the following WLS:

εTε = [(I−H)(y− Jγ)]TW[(I−H)(y− Jγ)]

Appendix E

The second stage of the proposed method is performed using WLS optimization,
as follows:

Min
γ∈R(1+u)nr

{
[(I−H)(y− Jγ)]TW[(I−H)(y− Jγ)]

}
If T(γ) = [y−Hy− Jγ+ HJγ]TW[y−Hy− Jγ+ HJγ], then we perform the multi-

plication in parentheses to obtain,

T(γ) = yTWy + yTHTWHy + γTJTWJγ+ γTJTHTWHJγ− 2yTHTWy− 2γTJTWy
+2γTJTHTWy + 2γTJTWHy− 2γTJTHTWHy− 2γTJTHTWJγ.

WLS optimization can be obtained by partial derivation of T(γ) against γ. When the
expression is equal to 0, the result is Equation (A16):

∂T(γ)
∂γ = ∂

∂γ (y
TWy + yTHTWHy + γTJTWJγ+ γTJTHTWHJγ− 2yTHTWy

−2γTJTWy + 2γTJTHTWy + 2γTJTWHy− 2γTJTHTWHy− 2γTJTHTWJγ) = 0,

γ̂ =
[
JT
(

I− 2HT
)

WJ + JTHTWHJ
]−1[

JT
(

HT − I
)

W(H− I)
]
y. (A16)
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Substituting Equation (A16) into Equation (A14) yields
f̂(K,λ,T)(x, z) = Jγ̂ (A17)

= J
[
JT
(

I− 2HT
)

WJ + JTHTWHJ
]−1[

JT
(

HT − I
)

W(H− I)
]
y

= JK−1Ly. (A18)

Appendix F

Assume random error ε in Equation (2) is normally distributed with mean 0 and error
variance–covariance matrix W such that it can be written as ε ∼ N(0, W). Thus, matrix W
is outlined as follows

W = Var(ε) = E
[
(ε− E(ε))(ε− E(ε))T

]
= E

[
(ε11, ε12, . . . , ε1n, ε21, ε22, . . . , ε2n, . . . , εr1, εr2, . . . , εrn)

T(ε11, ε12, . . . , ε1n, ε21, ε22, . . . , ε2n, . . . , εr1, εr2, . . . , εrn)
]

= E



ε2
11 ε11ε12 · · · ε11ε1n ε11ε21 ε11ε22 · · · ε11ε2n · · · ε11εr1 ε11εr2 · · · ε11εrn

ε12ε11 ε2
12 · · · ε12ε1n ε12ε21 ε12ε22 · · · ε12ε2n · · · ε12εr1 ε12εr2 · · · ε12εrn

...
...

. . .
...

...
...

. . .
...

...
...

...
. . .

...
ε1nε11 ε21ε12 · · · ε2

1n ε1nε21 ε1nε22 · · · ε1nε2n · · · ε1nεr1 ε1nεr2 · · · ε1nεrn
ε21ε11 ε21ε12 · · · ε21ε1n ε2

21 ε21ε22 · · · ε21ε2n · · · ε21εr1 ε21εr2 · · · ε21εrn
ε22ε11 ε22ε12 · · · ε22ε1n ε22ε21 ε2

22 · · · ε22ε2n · · · ε22εr1 ε22εr2 · · · ε22εrn
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

ε2nε11 ε2nε12 · · · ε2nε1n ε2nε21 ε2nε22 · · · ε2
2n · · · ε2nεr1 ε2nεr2 · · · ε2nεrn

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
εr1ε11 εr1ε12 · · · εr1ε1n εr1ε21 εr1ε22 · · · εr1ε2n · · · ε2

r1 εr1εr2 · · · εr1εrn
εr2ε11 εr2ε12 · · · εr2ε1n εr2ε21 εr2ε22 · · · εr2ε2n · · · εr2εr1 ε2

r2 · · · εr2εrn
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

εrnε11 εrnε12 · · · εrnε1n εrnε21 εrnε22 · · · εrnε2n · · · εrnεr1 εrnεr2 · · · ε2
rn



. (A19)

The correlation between response variables, define as corr(εhiε`i), is assumed to be
constant as ρ for all response variables and succeeded by the other assumptions, as follows:

E(εhiεhi′) =

{
σhh, i f i = i′

0, i f i 6= i′
where h = 1, 2, · · · , r

E(εhiε`i′) =

{
σh`, i f i = i′

0, i f i 6= i′
with σh` = ρ

√
σhhσ``

According to the above assumption, Equation (A19) can be written as

W =


σ11 σ12 · · · σ1r
σ12 σ22 · · · σ2r

...
...

. . .
...

σ1r σ2r · · · σrr

⊗ I

= Σ⊗ I (A20)

The estimation of matrix W is obtained by the maximum likelihood estimation (MLE)
method, as in Equation (A20). Furthermore, substitute Equation (A10) and Equation (A17)
into µ(x, z); then, the likelihood presented in Equation (A22) is as follows:

L(W|µ, y ) = (2π)−rn/2|W|−n/2 exp
[
−1

2 ∑n
i=1

(
(y− µ(x, z))TW−1(y− µ(x, z))

)]
(A21)
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= (2π)−rn/2|W|−n/2 exp
[
−1

2 ∑n
i=1

(
(y− (Jγ+ Za))TW−1(y− (Jγ+ Za))

)]
. (A22)

By taking the natural logarithm from the likelihood function and substituting W, as in
Equation (A20), the result is as follows:

ln L(Σ) = − rn
2

ln(2π)− n
2

ln|Σ⊗ I| − 1
2 ∑n

i=1

[
(y− (Jγ+ Za))T (Σ⊗ I)−1(y− (Jγ+ Za))

]
(A23)

Point (y− (Jγ+ Za)) into the form of vec(C)

(y− (Jγ+ Za))T(Σ⊗ I)−1(y− (Jγ+ Za)) = (vec(C))T(Σ⊗ I)−1(vec(C)) = tr
(

Σ−1CTC
)

such that Equation (A23) can be written as

ln L(Σ|γ, a, y ) = − rn
2

ln(2π)− n
2

ln|Σ| − 1
2

tr
(

Σ−1CTC
)

(A24)

The maximum value of the likelihood function is obtained by partially deriving
Equation (A24) against σh` and equating the result with 0, as follows:

∂

∂σh`
ln L

(
Σ̂
∣∣γ, a, y

)
= −n

2

(
∂

∂σh`
ln
∣∣Σ̂∣∣)− 1

2
∂

∂σh`
tr
(

Σ̂
−1CTC

)
= 0

such that
Σ̂ =

1
n

(
CTC

)

=


[y1−(Jγ+Za)]T [y1−(Jγ+Za)]

n
[y1−(Jγ+Za)]T [y2−(Jγ+Za)]

n · · · [y1−(Jγ+Za)]T [yr−(Jγ+Za)]
n

[y1−(Jγ+Za)]T [y2−(Jγ+Za)]
n

[y2−(Jγ+Za)]T [y2−(Jγ+Za)]
n · · · [y2−(Jγ+Za)]T [yr−(Jγ+Za)]

n
...

...
. . .

...
[y1−(Jγ+Za)]T [yr−(Jγ+Za)]

n
[y2−(Jγ+Za)]T [yr−(Jγ+Za)]

n · · · [yr−(Jγ+Za)]T [yr−(Jγ+Za)]
n

 (A25)

The subsequent step is to estimate γ and a using the ordinary least square (OLS)
method, with the result as follows:

∂Q
∂γ

=
∂
[
yTy− 2γTJTy− 2aTZTy + 2aTZTJγ+ γTJTJγ+ aTZTZa

]
∂γ

γ̂`s =

(([
I−

(
JTJ
)−1

JTZ
(

ZTZ
)−1

ZTJ
]−1(

JTJ
)−1

JT

)
−
((

JTJ
)−1

JTZ
(

ZTZ
)−1

ZT
))

y = Fy (A26)

∂Q
∂a

=
∂
[
yTy− 2γTJTy− 2aTZTy + 2aTZTJγ+ γTJTJγ+ aTZTZa

]
∂a

â`s =

(([
I−

(
ZTZ

)−1
ZTJ

(
JTJ
)−1

JTZ
]−1(

ZTZ
)−1

ZT

)
−
((

ZTZ
)−1

ZTJ
(

JTJ
)−1

JT
))

y = Gy (A27)

Substituting the result of γ̂`s and â`s above into Equation (A25), error variance–
covariance matrix W in Equation (A20) can be written as follows:

Ŵ = Σ̂⊗ I,

where

σ̂11 =
[y1−(JF+ZG)y1]

T [y1−(JF+ZG)y1]
n , σ̂22 =

[y2−(JF+ZG)y2]
T [y2−(JF+ZG)y2]
n , σ̂rr =

[yr−(JF+ZG)yr ]
T [yr−(JF+ZG)yr ]
n ,

σ̂12 =
[y1−(JF+ZG)y1]

T [y2−(JF+ZG)y2]
n , σ̂1r =

[y1−(JF+ZG)y1]
T [yr−(JF+ZG)yr ]
n , σ̂2r =

[y2−(JF+ZG)y2]
T [yr−(JF+ZG)yr ]
n
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Appendix G

Table A1. Summary of statistical results for n = 20 and 50 with error variances, the number of knots, and oscillation
parameters.

Variance Number of Oscillations Number of Knots
n = 20 n = 50

GCV R2 MSE GCV R2 MSE

0.1 1 1 7.023 88.665 4.527 7.207 90.170 6.735
2 6.859 89.866 4.080 6.848 90.607 6.312
3 6.470 91.672 3.336 6.685 * 91.172 6.075

2 1 6.777 87.649 5.036 7.074 91.133 5.960
2 6.386 * 88.288 4.712 6.972 91.609 5.638
3 6.388 89.881 4.085 7.165 91.835 5.489

3 1 6.535 86.398 5.294 7.074 91.133 5.959
2 6.601 88.112 5.151 6.972 91.610 5.638
3 6.617 87.929 4.970 7.166 91.833 5.489

0.5 1 1 9.185 93.280 5.667 9.217 90.952 7.783
2 10.010 93.303 5.655 7.141 93.293 5.769
3 10.139 93.824 5.219 7.265 93.384 5.692

2 1 7.970 92.470 6.455 9.215 90.933 7.797
2 8.193 92.538 6.393 7.133 93.284 5.775
3 8.012 92.896 6.018 7.293 93.436 5.645

3 1 10.772 92.210 6.599 9.215 90.930 7.799
2 9.263 93.328 5.655 7.132 93.283 5.776
3 8.396 92.557 6.306 7.293 93.433 5.647

1.0 1 1 9.256 92.935 5.719 7.559 94.734 7.064
2 10.136 93.218 5.491 7.319 94.972 6.746
3 10.241 93.751 5.058 6.890 95.332 6.262

2 1 8.019 91.988 6.495 7.585 95.227 6.401
2 7.838 92.518 6.116 7.461 95.508 6.024
3 7.330 93.445 5.506 7.380 95.753 5.698

3 1 10.593 91.666 6.763 7.490 94.862 6.903
2 7.668 92.629 5.983 7.175 95.155 6.521
3 8.697 93.833 5.013 6.968 95.351 6.245

* The smallest value of GCV.

Appendix H

Table A2. Results of parameter estimation of the best model.

Response Variable Parameter Estimation Response Variable Parameter Estimation

y1 α01 −0.932 y3 α03 −0.102
α11 0.869 α31 0.865
β111 −3057.409 β311 −510.292
β112 6107.433 β312 1015.208
β113 −3050.878 β313 −505.678
b11 −0.677 b31 −0.411
a011 1355.724 a031 224.955
a111 −935.001 a311 −156.440
a112 423.443 a312 69.027
a113 −92.348 a313 −15.588

y2 α02 −0.747 y4 α04 −0.482
α21 0.393 α41 0.969
β211 −619.153 β411 −684.712
β212 1235.608 β412 1363.397
β213 −616.769 β413 −679.163
b21 −0.180 b41 −0.456
a021 274.146 a041 302.146
a211 −189.489 a411 −209.894
a212 85.224 a412 92.927
a213 −18.760 a413 −20.891
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