
mathematics

Article

Efficient Processing of All Nearest Neighbor Queries in
Dynamic Road Networks

Aavash Bhandari 1 , Aziz Hasanov 2 , Muhammad Attique 3 , Hyung-Ju Cho 4,* and Tae-Sun Chung 1,*

����������
�������

Citation: Bhandari, A.; Hasanov, A.;

Attique, M.; Cho, H.-J.; Chung, T.-S.

Efficient Processing of All Nearest

Neighbor Queries in Dynamic Road

Networks. Mathematics 2021, 9, 1137.

https://doi.org/10.3390/math9101137

Academic Editor: András Benczúr,

Domenico Ursino and Bálint Molnár

Received: 30 March 2021

Accepted: 14 May 2021

Published: 17 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Artificial Intelligence, Ajou University, Suwon-Si 16499, Korea; aavashbhandari@ajou.ac.kr
2 Department of Computer Engineering, Ajou University, Suwon-Si 16499, Korea; aziz.hasanov.kh@gmail.com
3 Department of Software, Sejong University, Seoul 05006, Korea; mattique@gmail.com
4 Department of Software, Kyungpook National University, Sangju-Si 37224, Korea
* Correspondence: hyungju@knu.ac.kr (H.-J.C.); tschung@ajou.ac.kr (T.-S.C.)

Abstract: The increasing trend of GPS-enabled smartphones has led to the tremendous usage of
Location-Based Service applications. In the past few years, a significant amount of studies have been
conducted to process All nearest neighbor (ANN) queries. An ANN query on a road network extracts
and returns all the closest data objects for all query objects. Most of the existing studies on ANN
queries are performed either in Euclidean space or static road networks. Moreover, combining the
nearest neighbor query and join operation is an expensive procedure because it requires computing
the distance between each pair of query objects and data objects. This study considers the problem of
processing the ANN queries on a dynamic road network where the weight, i.e., the traveling distance
and time varies due to various traffic conditions. To address this problem, a shared execution-based
approach called standard clustered loop (SCL) is proposed that allows efficient processing of ANN
queries on a dynamic road network. The key concept behind the shared execution technique is to
exploit the coherence property of road networks by clustering objects that share common paths and
processing the cluster as a single path. In an empirical study, the SCL method achieves significantly
better performance than competitive methods and efficiently reduces the computational cost to
process ANN queries in various problem settings.

Keywords: all nearest neighbor queries; spatial query processing; spatial road networks; shared
execution; graph algorithms

1. Introduction

Over the years, mobile technologies and location-based services (LBSs) have rapidly
become popular, affording its user’s easy access to a variety of LBSs that aim to provide
value-added experiences. On the other hand, GPS-enabled devices, such as smartphones,
wireless sensor networks (WSN), and navigation systems, are responsible for generating a
massive number of spatial query requests. The most common instances of spatial queries [1]
associated with popular LBSs include shortest path queries, range queries [2,3], k-nearest
neighbor (k-NN) queries [4,5], reverse k-NN queries [6], and preference queries [7–9].
To address the growing demand for such services, a significant amount of research has
been conducted over the past few years to monitor and improve the processing of spatial
queries. All these spatial queries extract the data objects based on the distance from the
query point.

The ANN query retrieves all nearest neighbor data objects for every query object with
the least distance between them. It can be said that ANN is a variation of k-NN, where
the k is always equal to one for each query object in the entire query dataset. In this paper,
the exploration of the ANN queries on a dynamic road network is carried out as it serves
as a close approximation to real-world scenarios. Due to the frequent traffic updates, the
weights, i.e., traveling time and distance, change accordingly. ANN queries can be used in
real-life applications such as “Find the nearest gas station for every car-parking lot”, and in

Mathematics 2021, 9, 1137. https://doi.org/10.3390/math9101137 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2536-1713
https://orcid.org/0000-0002-8782-3469
https://orcid.org/0000-0002-7237-180X
https://orcid.org/0000-0001-7458-8888
https://orcid.org/0000-0001-5992-1136
https://www.mdpi.com/article/10.3390/math9101137?type=check_update&version=1
https://doi.org/10.3390/math9101137
https://doi.org/10.3390/math9101137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9101137
https://www.mdpi.com/journal/mathematics

Mathematics 2021, 9, 1137 2 of 21

case of ride-sharing, “Find all the nearest taxi for all the matched customers”. In a ride-
sharing scenario, a car is shared by one or more passengers. Let us assume that the group
of passengers is requesting the nearest vacant taxi cab via their smartphones. The groups
of passengers and taxi cabs are denoted as query objects and data objects, respectively. The
scheduling system assigns the taxi cab that bears the smallest traveling distance to all the
passengers. The consequence demand for real-time reporting in the ride-sharing concept
can be facilitated through the improvement in ANN queries. The aforementioned examples
utilize the snapshot query because the huge number of LBSs involve only snapshot query
processing capabilities [10–15], rather than continuous monitoring.

A naive approach to process ANN queries is to scan the whole dataset by computing
the distance between each query and data object. For large datasets, such a naive solution is
not feasible because of its high computational complexity. Until now, most of the research
on ANN queries has been done in Euclidean and metric space [16–18]. Their approaches
either focus on the indexing scheme to implement the pruning that mitigates the entire
scanning of the dataset or precomputation of the shortest path distance. These approaches
are not suitable in the context of dynamic road networks as materialized structures cannot
dynamically compute the shortest path between each pair of nodes in road networks, and
they are limited to computation of Euclidean distances. For example, let us consider a
scenario with a huge number of query objects requesting for their respective nearest data
object within the same time frame t1. Indexing such a large number of query objects with
regard to their locations and distances to evaluate the set of nearest neighbors (NNs) might
be suitable for a one-time evaluation. Whenever there occurs any location update after a
certain time duration ti+1, the server would be required to rebuild the whole index from the
start, which would result in a huge computational burden. However, using the snapshot
of the query locations at each time frame ti+1 and clustering them would reduce the
redundant network traversal regardless of the movement of the query object. Nevertheless,
if the query object moves away from its current query cluster, then re-clustering would
take relatively less time compared to the indexing, which makes it feasible for dynamic
road environments.

Unfortunately, the indexing method cannot support answering ANN queries in dy-
namic road networks due to the computation overhead. Therefore, this study proposes an
efficient algorithm to find the ANN queries on dynamic road networks by implementing
the shared execution technique. The fundamental idea of the shared-execution technique is
to batch the queries and execute them as a single query in order to achieve efficient load
handling [19,20]. Standard clustered loop (SCL), based on the shared-execution technique,
follows a similar rule, according to which groups of similar objects are clustered together.
The working sets of SCL are constructed in two steps. In the first step, objects belonging
to similar categories are clustered and arranged into a sequence. During the second step,
a maximum of two NN queries are evaluated at the ends of each query object cluster and
the results are assigned to all query objects belonging to that cluster. SCL exhibits low
computational demands as it avoids the evaluation of redundant NN queries by employing
shared-execution processing. SCL does not implement any materialization or precom-
puting scheme to process NN queries. Any existing nearest neighbor algorithm can be
incorporated to process the ANN. The primary contributions of this study can be outlined
as follows:

• The shared-execution based SCL method is proposed for the efficient processing of
ANN queries on dynamic road networks. Moreover, to the extent of our knowledge,
this is the first attempt to evaluate ANN queries on dynamic road networks.

• The proposed SCL method is simple and easy to implement. Only an optimized num-
ber of NN queries are evaluated by implementing clustering and shared-execution.

• Extensive experiments with various settings are performed to measure the superiority
of the proposed scheme for particular scenarios.

Mathematics 2021, 9, 1137 3 of 21

The rest of the paper is organized as follows. Related works have been discussed
in Section 2. An overview of the associated concepts is presented in Section 3. The SCL
algorithm is outlined in Sections 4 and 5. The time complexity of the proposed algorithm
is discussed in Section 5.3. The experiments and evaluation of the proposed method are
exhibited in Section 6 and further discussion in Section 7. Finally, the paper is concluded
with future research direction in Section 8.

2. Related Works
2.1. Dynamic Road Network

Currently, the processing of spatial queries on road networks has intrigued many
researchers. The known developments can be chronicled as follows. Papadias et al. [21]
introduced Incremental Euclidean Restriction (IER) and Incremental Network Expansion
(INE), both of which apply multi-step kNN capable of retrieving high-dimension similar-
ities. IER is an early kNN technique that inherits its characteristics from the A* search
algorithm [17]. It operates on the assumption that the network distance between two
distinct objects cannot be less than the Euclidean distance between them. INE, on the other
hand, performs spatial search by expanding the search region from a query object. The
first data object discovered during the expansion is identified to be the data object closest
to the initial query object. Samet et al. [22] proposed the SILC framework to mitigate the
storage cost incurred during the decoupling of the objects from a large spatial network.
SILC precomputes the shortest path between all possible pairs of nodes based on a best-
first-search manner and uses quad-trees to store the identified shortest paths. Lee et al. [23]
suggest route overlay and association directory (ROAD), a framework to search the spatial
objects lying on the road network that cleanly separates the road network and objects. It
is a solution-based approach that utilizes some precomputed results and distance ranges,
instead of using precise distances that consume redundant storage. Hence, ROAD aims to
solve the problem of high precomputation and storage overhead by utilizing the search
space pruning to improve the efficiency of the framework. Precomputation is an expensive
operation as the result sets must be stored. To overcome this issue, Zhong et al. [24] pro-
posed an efficient indexing scheme that recursively partitions the road network into equal
sub-networks. The assembly-based method computes the shortest path distance for the
single-pair shortest path (SPSF) query. A few studies exist to process an NN query on a
dynamic road environment [25,26]. In these studies, the authors employed precomputed
grid structures that utilized in-memory data structures. However, this is inappropriate for
large networks. A safe-region technique was proposed to efficiently compute the nearest
neighbor queries for moving query objects [9,27]. Techniques involving safe-region com-
putation cannot be used to process ANN queries on dynamic road networks considering
the difference in problem definition. Heuristic methods were developed to compute the
shortest path in dynamic road networks [28–30]. These methods depend on a lightweight
indexing technique for route planning in dynamic road networks. However, these methods
cannot be applied directly to process ANN queries on dynamic road networks considering
the differences in the motivation of studies.

2.2. All Nearest Neighbor Queries

Clarkson [16] proposed three different algorithms to solve the problem of ANN
computation in Euclidean space. Both the query and data objects were assumed to be of
the same type, i.e., monochromatic data. All the data points were enclosed in small cubic
cells of identical size. Then, the distance bounded by the nearest data cell represented the
nearest neighbor of the query object. Zhang et al. [17] proposed a two-phase hash-based
algorithm that loads pairs of data and query objects and divides them into buckets of equal
size. Identical or overlapping buckets can then be used to identify the nearest neighbor
of each query object. To date, there is only one study of the problem of processing ANN
query in road networks [18]. This study introduced virtual vertex traversal (VIVET), which
uses an index-based algorithm and performs a single traversal from a virtual node to

Mathematics 2021, 9, 1137 4 of 21

all other existing nodes, and their shortest-path distances are stored in an array used for
precomputation. Subsequently, a simple lookup in the array allows finding the nearest
neighbor of any query object. However, the creation of an index is memory-intensive.
No precomputation or indexing scheme can solve the problem of finding the ANN on
dynamic road networks without incurring high computational costs. The proposed scheme
differs from the existing studies in various aspects. First, the proposed method takes into
account the dynamic nature of the road network, which cannot be addressed by using
precomputation. Secondly, the implementation of shared execution enables efficient query
processing. Lastly, based on gained knowledge, this is the first attempt to evaluate ANN
queries on dynamic road networks.

3. Preliminaries

Here, a formal definition of the basic concepts along with their characteristics that
have been used in this paper is mentioned. Firstly, this section establishes fundamentals
for the dynamic road networks Secondly, this provides insight about the classification of
nodes, which is the basis for understanding shared execution. Lastly, the conventional
definition of an ANN query is given.

3.1. Dynamic Road Network

The world is composed of various complex structures, such as biological networks,
communication networks, power-grid networks, and road networks [31,32], that can be
represented and analyzed using a graph where the nodes and edges resemble the entity
and the relationship among them [33]. In this study, the road network is depicted as an
undirected graph G = 〈N, E, W〉, where N, E, W denotes the sets of nodes, edges, and
the weights. In general, each edge has a non-negative weight that represents its distance.
The concept of a dynamic road network simply can be understood as the variation of the
moving objects and distances depending upon the traffic and road condition at any time.

Figure 1 depicts an example of a dynamic road network, in which objects q1 to
q5 represent query objects (denoted by rectangles), and objects d1 to d4 represent data
objects (denoted by triangles). Let us interpret this example in terms of a ride-sharing
service, where data objects represent taxi-cabs and query objects represent passengers. The
ride-sharing service involves sending a taxi-cab to each passenger who is located within
the nearest vicinity from the taxi-cab. Further, the travel time should be updated frequently
by consulting the real-time traffic conditions. For example, the nearest taxi-cab for q5 at
time t1 is d4, as shown in Figure 1a. However, due to huge traffic-congestion in taxi-cab
d4’s locality, it is incapable of reaching q5 faster than d3. In this study, a dynamic graph is
treated as series of snapshots, where each snapshot is static in itself, yet dynamic between
each other.

q4
q1

q3

q5

q2

d1

d2

d3

d4

Traffic-congested area

Data Object

q4 q1

q3

q5

q2

d1

d2

d3

d4

Query Object

(a) (b)

Figure 1. Example of dynamic road network (a) traffic condition at time t1; (b) traffic condition at time t2 where,
Q =

{
q1, q2, q3, q4, q5

}
and D =

{
d1, d2, d3, d4

}
.

Mathematics 2021, 9, 1137 5 of 21

3.2. Classification of Nodes

In this study, nodes are classified into three different categories. Here, the degree
of a node refers to the number of adjacent nodes that it is connected with. If the degree
of a node is equal to one or two, then the node is called terminal or intermediate node,
respectively. If the degree of a node is more than two, it is called an intersection node.

Node Sequence and Segments

A node sequence nlnl+1 . . . nm represents a path between two nodes nl and nm in a
road network, such that nl and nm are either intersection nodes or a terminal nodes, and
nl+1, . . . , nm−1 are intermediate nodes. The node sequence from nl to nm can be called a
node segment. The shortest path distance is a distance between a data object and query
object, whereas the length denotes the distance of the path from that query object to the
data object in the same node sequence. Table 1 summarizes the notations used in this
paper. For simplification of notation, qiqj is used to indicate the query object cluster,
i.e., qiqi+1 . . . qj, where, qiqi+1, . . . , qj are the query objects lying in the same node segment.

Table 1. Notation and their meaning.

Notation Meaning

q Query object q ∈ Q.
d Data object d ∈ D.

nlnl+1 . . . nm
Node sequence N when nl and nm are either intersection nodes or terminal nodes,

nlnm ∈ |N|

qiqi+1 . . . qj
Query sequence Q generated from query objects qi, qi+1, . . . qj in the same node

sequence, qiqj ∈ |Q|
D(qiqj) Set of data objects located in query object cluster (qiqj).

Dq Set of data objects closest to query objects q for every d.
dist(q, d) Shortest path distance between the data object and the query object.
len(q, d) Distance of the segment connecting q and d such that they lie in the same segment.

3.3. All Nearest Neighbor Query

The ANN query in a road network returns all the pairs of every query object with the
corresponding closest data object.

Definition 1. Given two different object sets Q and D, where Q = {q1, q2, . . . , qn} and
D = {d1, d2, . . . , dm}, the ANN query returns the set of pair of objects from Q on D such that D
is the nearest neighbor of Q.

Q on D = {〈q, d〉|∀q ∈ Q, ∀d ∈ Dq}

4. Methods of Clustering Query Objects
4.1. Methodology

An overview of the proposed query processing methodology has been depicted in
Figure 2. Initially, the server captures a snapshot and creates a query processing module,
which includes the query locations and n number of generated query requests at a time
t1 (Step 1 in Figure 2). Following this, the query processing module begins to search
the nearest data object (Step 2 in Figure 2). During the search, the SCL method first
traverses through the network and clusters all nodes that are in the same node segment,
i.e., ‘intermediate nodes’. The node clustering process takes place only once and is used for
the next snapshot (Step 3 in Figure 2). In addition, the query objects located in the same
node cluster will be grouped together to form a cluster of query objects after scanning each
node cluster (Step 4 in Figure 2). Next, the NN query is evaluated at the boundaries of each
query object cluster. For every query object cluster, the generated NN result will be used
for comparing the distance between the inner query objects with boundary query objects

Mathematics 2021, 9, 1137 6 of 21

if the query object cluster size is equal or more than three. This process eliminates the
necessity to perform traversal for inner query objects. The results of the boundary query
objects are assigned to the nearest inner query objects (Step 5 in Figure 2). Finally, the result
set that contains the nearest data object for each query object is returned to corresponding
query users (Step 6 in Figure 2). After ti+1 time, the process is repeated to update the result
set and return fresh query responses.

Nearest neighbor query requests

Results set (nearest data object)

Traversing road
network

Cluster nodes

Locate users’ location
and form their cluster

Cluster query objects

Computing nearest neighbors

SCL Framework

Start searching nearest data
object

Users’ location

Generated ANN query

n queries

3
5

1

2

4

6

i) Evaluate NN-query at
boundaries of q-object clusters.
ii) Compare and assign for inner
query objects.

Figure 2. Workflow diagram of the proposed query processing methodology.

4.2. Clustering Algorithm

Clustering is a process that involves the grouping of the data points belonging to the
same category. There are two distinct types of clustering used: node and query object
clustering. Figure 3a represents node clusters (denoted by different lines) in a road network.
After clustering, the following node sequences are formed: n1n2n3, n1n4n3 and n1n3.

Query object qn ∈ Q
Data object dm ∈ D

q5

q1 q6

q4 q3

q2

d1

d2 d3

d4

7

1

2

1
2 2

3

2

6 2

1

1 6

3

2

n2

n1

n3

n4
q5

q1 q6

q4 q3

q2

d1

d2 d3

d4

7

1

2

1
2 2

3

2

6 2

1

1 6

3

2

n2

n1

n3

n4

Node n ∈ N
Edge e ∈ E

(a) (b)

Figure 3. Initial Road network, and road network after clustering query objects, query object clusters
are denoted by the bold lines (a) Nodes Clustering; (b) Query Objects Clustering.

Mathematics 2021, 9, 1137 7 of 21

Figure 3b represents the clustering process of query objects in the same node sequence.
There are six query objects q1 to q6 and four data objects d1 to d4. Given two objects set
of Q = {q1, q2, q3, q4, q5, q6} and D = {d1, d2, d3, d4} where q1, q5 and q4 query objects in
node sequence n1n2n3 are clustered together into q1q5q4, the query objects q3 and q2 in
the node sequence n1n4n3 are clustered into q2q3 and a single query object q6 in n1n3 is
clustered into q6. The bold lines represent the query object clusters. The set of query objects
Q = {q1, q2, q3, q4, q5, q6} is now converted into Q = {q1q5q4, q2q3, q6}, where Q indicates
the set of query object clusters.

Algorithm 1 outlines the process for clustering the query objects into query object
clusters. The clustering process incorporates two steps. Generation of the node sequence
is followed by generation of the query object clusters. Line 6 checks whether the node is
an intersection node or a terminal node. If the node is either type, paths from the node to
its adjacent nodes are explored until an intermediate node is found. A node sequence is
added to the N. From Lines 15–18, the algorithm looks for the query objects in each node
sequence. Then, the discovered objects are grouped together and a query object cluster is
formed and added to Q as in Line 17. Line 19 returns the final set of query object clusters.

Algorithm 1: Cluster_Query_Objects (Q, N, E)
1 Input: Q: set of query objects, N: set of nodes, E: set of edges
2 Output: Q: set of query object clusters
3 N ← ∅, Q← ∅ ; /* N and Q are initially null */
4 Step 1: N is originated from N and E
5 foreach node nl ∈ N do
6 if nl ∈ N intersection node || nl ∈ N terminal node then
7 foreach edge nlnl+1 . . . nm ∈ E adjacent of n1 do
8 n1nl+1 . . . nm ← find_query_sequence(nl , nl+1, N)

9 N ← N ∪ {nlnl+1 . . . nm}
10 end
11 else
12 end
13 end
14 Step 2: N is originated from Q and N
15 foreach node sequence n1nl+1 . . . nm ← N do
16 qiqi+1 . . . qj ← find_query_objects_in_node_sequence{nlnl+1nm}
17 Q← Q ∪

{
qiqi+1 . . . qj

}
18 end
19 return Q

5. SCL Design
5.1. Overview of SCL

Cho [34] suggests that evaluating NN queries at the two ends of the query object
cluster is adequate to retrieve the nearest data object for every query object. According to
Lemma 1, after evaluating at most two NN queries for qi and qj, located at the boundaries of
the query object cluster qiqi+1 . . . qj, evaluating the NN for other query objects located inside
qiqi+1 . . . qj is irrelevant. It is because the data objects can be retrieved just by comparing
the distance from inner query objects qi+1 . . . qj−1 to the qi and qj and assigning answer
data object of the closest boundary query object. This process eliminates the necessity to
perform traversal for inner query objects.

Lemma 1. For every query object q ∈ qiqj, there exists Dq, which is a subset of Dqi ∪ Dqj ∪
D
(
qiqj
)
, where Dqi (Dqj) refers to the set of data objects nearest to the query objects qi

(
qj
)
,

and D
(
qiqj
)

refers to the set of data objects lying in the query object cluster qiqj.

Proof of Lemma 1. The correctness of Lemma 1 is proved by contradiction. Let us assume
that Dq ⊆ Dqi ∪Dqj ∪D

(
qiqj
)

is false and rather it holds Dq * Dqi ∪Dqj ∪D
(
qiqj
)
, such that

there is a data object d ∈ Dq and d /∈ Dqi ∪Dqj ∪D
(
qiqj
)
. It is noticeable that d /∈ Dqi , hence

Mathematics 2021, 9, 1137 8 of 21

d is farther from qi than its nearest data object dqi , i.e., dist(qi, dqi) < dist(qi, d). On the other
hand, d /∈ Dqj , hence d is farther from qj than its nearest data object dqj , i.e., dist

(
qj, dqj

)
<

dist
(
qj, d

)
. Nevertheless, d does not belong to D

(
qiqj
)
, i.e., d /∈ D

(
qiqj
)
. Hence, the shortest

path connecting q to d must travel through either qi or qj. The distance between q to d is
calculated by dist(q, d) = min

{
len(q, qi) + dist(qi, d), len(q, qi) + dist

(
qj, d

)}
. Based on the

aforementioned cases: dist(q, d) > min
{

len(q, qi) + dist(qi, dqi), len
(
q, qj

)
+ dist

(
qj, dqj

)}
,

which contradicts the assumption that there is a data object d that belongs to Dq, i.e., d ∈ Dq

such that Dq * Dqi ∪ Dqj ∪ D
(
qiqj
)
.

It is required to find the distance from the query object q ∈ qiqj to the nearest data
object d. In Figure 4, XYcoordinates represent the distance and length from the query
points to the data objects. X coordinate refers to the len

(
qi, qj

)
, whereas the Y coordinate

refers to the distance from query point to data object dist(q, d). When there exists a path
from q→ qi → d, then, dist(q, d) = len(q, qi) + dist(qi, d) is used to compute the distance.
Likewise, if there exists a path from q → qj → d, then dist(q, d) = len

(
q, qj

)
+ dist

(
qj, d

)
is used. Lastly, if the data object d exists inside of the qiqj then dist(q, d) is evaluated as
dist(q, d) = len(q, d). Finally, from the array holding the computed distance, only the
minimum distance is extracted as given below. Here, len and dist represent length and
distance, respectively.

dist(q, d) =
{

min
{

len(q, qi) + dist(qi, d), len
(
q, qj

)
+ dist

(
qj, d

)}
, i f d /∈ qiqj

min
{

len(q, qi) + dist(qi, d), len
(
q, qj

)
+ dist

(
qj, d

)
, len(q, d)

}
, otherwise

}
(1)

len(qi , qj) + dist(qj , d)

qi qj

d

len(q , qj) + dist(qj , d)

dist(qj , d)

len(qi , qj) + dist(qi , d)

qi qj

d

len(q , qi) + dist(qi , d)

dist(qi , d)

len(qj , d)

qi qjqd

len(qi , d) len(q , d)

(a)

(c)

(b)

qq

Figure 4. Conditions to compute the distance from q to d: (a) If d ∈ Dqi , then dist(qi, d) = len(q, qi) + dist(qi, d); (b) If d ∈ Dqj ,

then dist
(

qj, d
)
= len

(
q, qj

)
+ dist

(
qj, d

)
; (c) If d ∈

(
qiqj

)
, then dist(q, d) = len(q, d).

Table 2 shows the conditions to compute the distance from the q to d. A data object
can belong either to Dqi , Dqj , or D

(
qiqj
)
. Retrieving the closest data object from Dqi (Dqj)

is more significant than retrieving the set of data objects from D
(
qiqj
)
. The process of

identifying the nearest-neighbor pairs is described in Algorithm 2. The shared execution
process can be implemented to improve the execution time. Firstly, Ω, i.e., the set of object
pairs, is initially assigned to be null. The algorithm comprises two steps. In the first step,
the adjacent query objects are clustered together and query object clusters are formed and
Q is transformed to Q. The latter step involves the evaluation of the nearest neighbor query
at the query object cluster qiqj to retrieve the nearest data object d.

Mathematics 2021, 9, 1137 9 of 21

Table 2. Evaluation of dist(q, d) for q ∈ qiqj and d ∈ Dqi ∪ Dqj ∪ D
(

qiqj

)
.

Condition dist(q,d)

d ∈ Dqi ∩ Dqj ∩ D
(

qiqj

)
dist(q, d) = min

{
len(q, qi) + dist(qi, d), len

(
q, qj

)
+ dist

(
qj, d

)
, len(q, d)

}
d ∈ Dqi ∩ Dqj − D

(
qiqj

)
dist(q, d) = min

{
len(q, qi) + dist(qi, d), len

(
q, qj

)
+ dist

(
qj, d

)}
d ∈ Dqi ∩ D

(
qiqj

)
− Dqj dist(q, d) = min{len(q, qi) + dist(qi, d), len(q, d)}

d ∈ Dqj ∩ D
(

qiqj

)
− Dqi dist(q, d) = min

{
len
(

q, qj

)
+ dist

(
qj, d

)
, len(q, d)

}
d ∈ Dqi −

(
Dqj ∪ D

(
qiqj

))
dist(q, d) = len(q, qi) + dist(qi, d)

d ∈ Dqj −
(

Dqi ∪ D
(

qiqj

))
dist(q, d) = len

(
q, qj

)
+ dist

(
qj, d

)
d ∈ D

(
qiqj

)
− (Dqi ∪ Dqj) dist(q, d) = len(q, d)

Algorithm 2: SCL_Algorithm (Q, D)

1 Input: Q: set of query objects, D: set of data objects
2 Output: Q on D: set of pairs (q, d) ∈ Q× D
3 Ω← ∅ ; /* Q initially null */
4 Step 1: Adjacent query objects are clustered to form a segment
5 Q← Cluster_Query_Objects(q, n, e) ; /* from algorithm-1 */
6 Step 2: Nearest Neighbor query is performed for each query object cluster qiqj ∈ Q
7 foreach query object cluster qiqj ∈ Q do
8 if qiqj = 1 then
9 Dqi ← NN_Query(qi)

10 Ω(qi)← {〈qi, d〉| d ∈ Dqi}
11 return Ω(qi)
12 end
13 else if qiqj = 2 then
14 Dqi ← NN_Query(qi)

15 Ω(qi)← {〈qi, d〉| d ∈ Dqi}
16 Dqj ← NN_Query

(
qj

)
17 Ω

(
qj

)
←
{
〈qj, d〉| d ∈ Dqj

}
18 return Ω(qi) ∪Ω

(
qj

)
19 end
20 else
21 Dqi ← NN_Query(qi)

22 Ω(qi)← {〈qi, d〉| d ∈ Dqi}
23 Dqj ← NN_Query

(
qj

)
24 Ω

(
qj

)
←
{
〈qj, d〉| d ∈ Dqj

}
25 foreach query object q ∈

{
qi+1 . . . qj−1

}
do

26 Dq ←NN_Search
(

q, Dqi ∪ Dqj ∪ D
(

qiqj

))
27 Ω(q)← {〈q, d〉| d ∈ Dq}
28 return Ω(qi) ∪Ω(qi+1) ∪ . . . Ω

(
qj

)
29 end
30 end
31 end

The algorithm involves three different cases considering the number of query objects
located in query object clusters. Case-I:

∣∣qiqj
∣∣ = 1; Case-II:

∣∣qiqj
∣∣ = 2; and Case-III:∣∣qiqj

∣∣ > 3. In Case-I, the NN query NN_Query(qi) is evaluated at qi, as in this case,
the query object cluster qiqj consists solely of qi. Following this, the NN query result
is added to the partial join result Ω(qi) in Lines 8–12. If it is Case-II, NN_Query(qi)
and NN_Query

(
qj
)

are evaluated at qi and qj, respectively. Then, the partial join result

Mathematics 2021, 9, 1137 10 of 21

Ω(qi) and Ω
(
qj
)

are obtained, and the union is performed for the obtained partial sets,
i.e., Ω(qi) ∪Ω

(
qj
)

in Lines 13–19.
Finally, for Case-III, two NN queries are evaluated, and the search for the nearest

data objects is performed at qi and qj. For each query object q ∈
{

qi+1 . . . qj−1
}

, the set
of nearest neighbors of q is extracted in Lines 12–24. According to Lemma 1, a partial
join result Ω

(
qiqj
)

can be extracted from Dqi ∪ Dqi ∪ D
(
qiqj
)

by applying the shared
execution method. Finally, the join result set is obtained and the union of partial join results
Ω(qi) ∪Ω(qi+1) ∪ . . . Ω

(
qj
)

is returned in Lines 25–29 after processing the entire query
object cluster.

To bypass evaluating the redundant NN queries, a simple heuristic has been adopted,
where no NN query is computed at query points close to the terminal nodes. For instance,
as depicted in Figure 5, the graph consists of an intersection node n2 with a query cluster
qiqj adjacent to it that ends with a terminal node n1. In this example, the NN query at qi is
unnecessary because it holds that Dq ⊆ Dqj ∪ D

(
n2qj

)
, and it is sufficient to evaluate NN

query at
{

qj
}

.

Figure 5. Heuristic Dq ⊆ Dqj ∪ D
(

n2qj

)
for each query segment q ∈ qiqj.

5.2. Evaluation of SCL

In this section, a brief discussion about the SCL algorithm has been carried out using
Figure 3. Considering that, Q = {q1, q2, q3, q4, q5, q6} and D = {d1, d2, d3, d4} are the given
sets of query and data objects, respectively. Query objects from Q have been clustered
into query object clusters (q1q5q4), (q3q2), and q6, all of which belong to Q, as depicted in
Figure 3b.

While processing q1q5q4 containing q1, q5, and q4, the two NN queries are evaluated
at q1 and q4 and the corresponding nearest data objects are retrieved. After evaluating
the NN queries at two ends of the query object cluster, Dq1 = {d1}, Dq4 = {d3}, and
D(q1q5q4) = ∅ are obtained. The simple partial join result sets can be generated based on
this information as Ω(q1) = {〈q1, d1〉} and Ω(q4) = {〈q4, d3〉}. Instead of evaluating the
NN query corresponding to q5, as it is an inner query object in the query object cluster
q1q5q4. Rather, simply applying Lemma 1 is enough to retrieve the NN for q5 based on
the relation Dq1 ∪ Dq4 ∪ D(q1q5q4) = {d1, d3}. For this purpose, it is necessary to com-
pute the distance between q5 and the candidate data object d ∈ {d1, d3}. It is evident
that d1 ∈ Dq1 ∪ Dq4 − D(q1q5q4) and so, based on Table 3, the distance between q5 and
d1 is given by dist(q5, d1) = len(q5, q1) + dist(q1, d1) = 3, as depicted in Figure 6a. Simi-
larly, d3 ∈ Dq1 ∪ Dq4 − D(q1q5q4) and so, based on Table 3, the distance from q5 to d3 is
dist(q5, d3) = min{len(q5, q1) + dist(q1, d3), len(q5, q4) + dist(q4, d3)} = min{9, 15}, as
shown in Figure 6b.

Table 3. Computation of nearest neighbor Q on D using the SCL method.

qiqj qi qj Dqi Dqj D
(
qiqj

) {
qi+1. . . qj−1

}
Dqi ∪ Dqi ∪ D

(
qiqj

)
q1q5q4 q1 q4 {d1} {d2} D(q1q5q4) = ∅ {q5} {d1, d2}
q2q3 q2 q3 {d4} {d4} D(q2q3) = d4 ∅ irrelevant
q6 q6 q6 {d3} {d3} D(q6) = ∅ ∅ irrelevant

Mathematics 2021, 9, 1137 11 of 21

q1 q5 q4

d1

10

71

2

3

q1 q5 q4

d3

16

71

8
9

15
16

8d3

(a) (b)

Figure 6. Computing distance from q5 to d ∈ {d1, d3}.

Next, the evaluation of the NN queries at query object cluster q2q3 is performed. As the
query object cluster consists of only two query objects, the NN queries corresponding to
both query objects need to be evaluated. On retrieving the set of the nearest data objects,
the respective partial join result set is generated for each query object. From Table 3, it is
observed that Dq2 = {d4} and Dq3 = {d4}, then the partial join result set for q2 and q3 will
be Ω(q2) = {〈q2, d4〉} and Ω(q3) = {〈q3, d4〉}, respectively.

On successful processing, the NN queries from q2q3, which leads to the final query
point q6. In this case, a single NN query is generated at q6 and the partial join set for q6 is per-
formed as Ω(q6) = {〈q6, d3〉}. Finally, the union of all query object clusters is computed to be
Ω(q1q5q4) ∪Ω(q2q3) ∪Ω(q6) = {〈q1, d1〉, 〈q4, d3〉, 〈q5, d1〉, 〈q2, d4〉, 〈q3, d4〉, 〈q6, d3〉} where
Ω(q1q5q4) = Ω(q1) ∪Ω(q5) ∪Ω(q4), and Ω(q2q3) = Ω(q2) ∪Ω(q3), respectively.

5.3. Complexity Analysis

The complexity of finding the ANN queries using the proposed SCL method is covered
as follows. The number of data objects are denoted as |D|, the number of query objects as
|Q|, and the node cluster as N. The number of nodes and edges are denoted as |N| and
|E|, respectively.

The clustering process takes O(|N|+ |E|) +O(N) = O(|N|+ |E|+ N). Initially, the
road network is traversed from the terminal or intersection node until it reaches another
intersection node. For the road network traversal, the SCL algorithm adopts a breadth-first
search traversal with the worst-case time complexity of O(|N| + |E|). Once the node
clustering is completed, the algorithm linearly scans through the node clusters to find
query objects located in those node clusters. The scanning takes the linear search of
O(N) time.

The query time complexity of the SCL algorithm depends upon the number of query
object clusters, i.e., |Q|. At most, two NN queries are applied for each query object cluster
that makes 2× |Q|. To find the shortest path from the end of each query object cluster to
the nearest data object, Dijkstra’s algorithm was implemented, which has a worst-case time
complexity of O(|N|+ |E|log|N|). Therefore, the time complexity of the SCL algorithm is
expressed as: O

(
|Q| × (|N|+ |E|log|N|)

)
.

6. Experimental Evaluation

This section introduces an experimental approach to the algorithm analysis. Further,
it is subdivided into a description of the experimental environment and the presentation of
the results followed by the discussions.

Mathematics 2021, 9, 1137 12 of 21

6.1. Experimental Setup

Real road datasets from California, San-Joaquin, and Oldenburg, available in [35],
were used to verify the performance of the proposed algorithm. The California dataset
comprised 21,048 nodes and 21,693 edges, the San-Joaquin dataset comprised 18,263 nodes
and 23,784 edges, and the Oldenburg dataset comprised 6105 nodes and 7035 edges. Further
details about the datasets have been presented in Table 4.

Table 4. Real-world roadmaps indicating attributes like nodes and edges. Node clusters and
intermediate nodes are used later in the discussion section.

Code Name Nodes Edges Node Clusters Intermediate Nodes

CAL California 21,048 21,693 2010 19,683
SANJ San Joaquin 18,623 23,784 19,929 3868

OLDEN Oldenburg 6105 7035 3797 3232

The proposed SCL algorithm was employed in this study to find the NN queries on
the disclosed datasets. In this paper, the query and data objects were assumed to move
continuously in dynamic road networks, where the weights of the road segment (transit
times and distances) were frequently updated and the distance between two objects was
taken to be the length of the shortest path connecting them. ANN queries were taken to
be snapshot-based rather than continuous queries. This required the system to store the
current locations of the query and data objects. Thus, the movement of the query and data
objects was not of much significance to the proposed method, as the frequent updates of
network distance simply paralyzed the precomputed structures.

In each experiment, the size of data and query objects were changed. When the size of
data objects was increased, then the size of the query object was kept static and vice-versa.
The setup parameters used for this experiment are shown in Table 5. The bold values
represent the default selected values throughout the experiments. Initially, 10 centroid
datasets were generated that followed a Gaussian distribution, and the mean was set
to the centroid, whereas the standard deviation was set to 2% of the side-length. The
distribution of the query and data objects were taken to follow the centroid distribution,
unless stated otherwise.

Table 5. Experimental parameters.

Parameter Values

Number of data objects 2, 3, 5, 7, 10
(
×104).

Number of query objects 2, 3, 5, 7, 10
(
×104).

Distribution of query objects (C)entroid, (U)niform
Distribution of data objects (C)entroid, (U)niform

Real-world roadmaps CAL, SANJ, OLDEN

For the implementation and evaluation of the proposed scheme, the VIVET [18] and
INE [21] algorithms were employed to compute the nearest data object for all n given query
objects. The VIVET algorithm uses a lookup array table. Initially, it computes the distance
from the virtual node and passes through every data object until it reaches the nearest node.
Once it finds the nearest node, the distance table is updated, and a new distance is recorded
in the lookup array table, whereas the INE algorithm starts the traversal from each query
object and terminates the search once it finds the nearest data object. The three algorithms
were implemented using Java language and run on a desktop PC running Linux 64-bit
OS with 16 GB RAM and a 32-cores Intel processor at 2.10 GHz. The experiments were
repeated five times, and the obtained average values were recorded.

Mathematics 2021, 9, 1137 13 of 21

6.2. Experimental Results

Figures 7–9 depict the comparison of the query processing time for CAL, SANJ, and
OLDEN datasets for the INE, SCL, and VIVET algorithms, respectively. The size of the
query object was set to be 50 K as default and the data object varied from 20 to 100 K
and vice-versa when the size of the query object varied. Finally, the figures show the
various data distribution combinations (i.e., (C, C), (C, U), (U, C,), (U, U)) for the query
and data objects.

Number of data objects

Q
u

e
ry

p
ro

ce
ss

in
g

ti
m

e
(s

e
c)

20000 30000 50000 70000 100000
0

500

1000

1500

2000

INE
SCL

VIVET

(a)

Number of query objects

Q
u

e
ry

p
ro

ce
ss

in
g

ti
m

e
(s

e
c)

20000 30000 50000 70000 100000
0

500

1000

1500

2000

2500

INE
SCL

VIVET

(b)

Q
u

e
ry

p
ro

ce
ss

in
g

ti
m

e
(s

e
c)

(C,C) (C,U) (U,C) (U,U)
0

500

1000

1500

INE
SCL

Data distribution combinations

VIVET

(c)
Figure 7. Comparison of INE, SCL, and VIVET for CAL: (a) varying D; (b) varying Q; (c) varying the distribution of objects.

Number of data objects

Q
u

e
ry

p
ro

ce
ss

in
g

ti
m

e
(s

e
c)

20000 30000 50000 70000 100000
0

2000

4000

6000

INE
SCL
VIVET

(a)

Number of query objects

Q
u

e
ry

p
ro

ce
ss

in
g

ti
m

e
(s

e
c)

20000 30000 50000 70000 100000
0

2000

4000

6000
INE
SCL
VIVET

(b)

Q
u

e
ry

p
ro

ce
ss

in
g

ti
m

e
(s

e
c)

(C,C) (C,U) (U,C) (U,U)
0

1000

2000

3000

4000

INE
SCL

Data distribution combinations

VIVET

(c)
Figure 8. Comparison of INE, SCL, and VIVET for SANJ: (a) varying D; (b) varying Q; (c) varying the distribution of objects.

Number of data objects

Q
u

e
ry

p
ro

ce
ss

in
g

ti
m

e
(s

e
c)

20000 30000 50000 70000 100000
0

500

1000

1500

INE
SCL

VIVET

(a)

Number of query objects

Q
u

e
ry

P
ro

ce
ss

in
g

ti
m

e
(s

e
c)

20000 30000 50000 70000 100000
0

500

1000

1500

INE
SCL
VIVET

(b)

Q
u

e
ry

p
ro

ce
ss

in
g

ti
m

e
(s

e
c)

(C,C) (C,U) (U,C) (U,U)
0

500

1000

1500

INE
SCL

Data distribution combinations

VIVET

(c)
Figure 9. Comparison of INE, SCL, and VIVET for OLDEN: (a) varying D; (b) varying Q; (c) varying the distribution
of objects.

Figure 7a illustrates the effect of the data object size growth on query processing. The
query processing time tends to grow with the number of data objects. However, the growth
of the data object size has less impact on the efficiency of SCL and INE algorithms. In fact,
the SCL exhibits six times better performance than the VIVET algorithm due to the reason
that the query processing of the SCL algorithm is not affected by the change in the size of

Mathematics 2021, 9, 1137 14 of 21

the data object. For VIVET, when the data object size increased, the algorithm had to spend
65% of the computation time traversing from the virtual node, passing through every data
object to find the nearest node and keeping the index table up to date.

Figure 7b illustrates the effect of the query object size growth on query processing.
The query processing time for all three algorithms increases with an increasing number
of query objects. Clearly, the SCL algorithm is two and four times faster than INE and
VIVET, respectively. Moreover, when the |Q| = 100 K, the SCL required approximately
25 K NN queries evaluations. It is also observed from the figure that INE was faster than
the VIVET—since the query objects followed a centroid distribution—so that INE quickly
came up with an NN result with less network traversal. As expected, VIVET performed
much worse than SCL and INE because it required checking all data objects if they affect
the lookup table. Note that each data object and query object are treated as nodes in VIVET,
which alters the actual node count after augmenting the original graph G.

Figure 7c depicts the effect on query processing while both the query and data objects
followed the various data distribution combinations. It is clear that under various distribu-
tion settings, SCL outperformed both INE and VIVET algorithms. When the query objects
and data objects are uniformly distributed the INE and SCL show similar performance.
Nonetheless, the VIVET severely gets affected while the query and data objects are uni-
formly distributed since all the objects are sparely scattered such that all objects are widely
far from each other.

Figure 8a depicts a comparison of INE, SCL, and VIVET query processing time with
respect to the data object size. For the 20 and 30 K data object size, SCL and VIVET show
distinctly similar query processing times. On increasing the data object size to 100 K, it was
observed that the processing time of SCL declined due to the reason that clustering query
object reduces the number of NN query computations and is not heavily affected by the
number of data objects. At the same time, the query processing time for VIVET shows
a slight increment since VIVET depends upon the size of the data objects. The excessive
intersection among the edges occurred, causing the INE to expand the traversal to reach
the nearest data object. However, with an increased number of data objects up to 70 K,
a significant plummeting of query processing time is observed for INE.

Figure 8b compares INE, SCL, and VIVET performance with respect to the number of
the query objects. It is evident that the number of NN queries required to be evaluated was
drastically reduced by the proposed SCL algorithm compared to others. The SCL shows up
to six times faster performance than INE since the SCL algorithm only required evaluating
approximately 30 K NN queries when |Q| = 100 K. When |Q| was increased, INE required
more iterations to compute the NN queries, and thus its processing time increased more
rapidly than other methods.

Figure 8c shows that the SCL algorithm performed well on all tested combinations
distributions except (U, C) owing to the same reason as in the case of the CAL dataset.
The result shows that the performance of the INE algorithm degenerated significantly
because the INE had to traverse a long-distance path before it accessed the NN data object.
However, all methods show a similar performance when the query object followed the
centroid distribution, that is, (C, U).

Figure 9a illustrates the impacts of data object size on INE, SCL, and VIVET perfor-
mance. The result shows that the data object size has a less significant impact on SCL. This
experiment result demonstrates a similar trend as in Figure 7a. On average, VIVET incurred
90% of the computation cost during the rebuilding process of the precomputation table.

Figure 9b shows the effect of query object increment on INE, SCL, and VIVET.
When the size of |Q| increased, the shared execution drastically reduced redundant
NN query computations. In particular, the processing time required by the SCL algo-
rithm was observed to be 67% and 90% less than that required by the INE and VIVET
algorithms, respectively.

Mathematics 2021, 9, 1137 15 of 21

Figure 9c depicts the query processing time when the query and data objects followed
various distributions. The SCL method outperformed the INE and VIVET algorithms for
every distribution combination. However, as expected, VIVET performed much worse
than the other two algorithms as it consumed almost 80% of the computation time on
keeping the index table up to date.

7. Discussion

From the above experimental results, it can be inferred that there was a huge difference
in query processing time when the size of query objects was fixed or changed. The proposed
algorithm aims to reduce the cost of query computation while there is a huge number of
query objects. The SCL algorithm was implemented in a central server that was responsible
for handling a huge number of queries. Since the SCL algorithm utilized the shared-
execution technique, it became dominant over INE [21] and the VIVET [18] algorithms.
Moreover, extending this work to a distributed environment [30,36,37] is likely to reduce
the computation cost much more significantly, which leads to a future research direction.

The goal of this study emphasized the processing of ANN queries in a dynamic road
environment. For that, the beginning step requires clustering the whole map dataset and
storing it in the server. Following, the previously clustered information is later used to
re-cluster the query objects belonging to each cluster at a time t1. It is known that the
ANN query is a snapshot-based query, which requires the server to take the snapshot
after ti+1 time and re-cluster in order to evaluate further ANN queries. Figures 10 and 11
show the performance improvement of the SCL algorithm over the INE and the VIVET
algorithms in terms of query processing time on three different datasets—California (CAL),
San Joaquin (SANJ), and Oldenburg (OLDEN)—while the size of query objects increase
with two different distributions, i.e.,(C, U) and (U, U). As is evident in the aforementioned
results, the SCL algorithm performs best when involving a large number of query objects.
In addition, ANN queries are designed to cater to spatial query processing in the presence
of a large number of query objects.

Num ber of query objects

P
e

rf
o

rm
a

n
c

e
Im

p
ro

ve
m

e
n

t
(%

)

20000 30000 50000 70000 100000
0

20

40

60

80

100

CAL- SCL vs. INE CAL-SCL vs. VIVET
SANJ-SCL vs. INE SANJ-SCL vs. VIVET
OLDEN-SCL vs. INE OLDEN-SCL vs. VIVET

Figure 10. Performance improvement by increasing the query object size following 〈C, U〉 distribution.

Mathematics 2021, 9, 1137 16 of 21

Num ber of query objects

P
e

rf
o

rm
a

n
c

e
Im

p
ro

ve
m

e
n

t
(%

)

20000 30000 50000 70000 100000
0

20

40

60

80

100

CAL- SCL vs. INE CAL-SCL vs. VIVET

SANJ-SCL vs. INE SANJ-SCL vs. VIVET

OLDEN-SCL vs. INE OLDEN-SCL vs. VIVET

Figure 11. Performance improvement by increasing the query object size following〈U, U〉 distribution.

Figure 10 illustrates the initial performance of the proposed algorithm on all three
datasets with respect to the INE, which starts from 40–60% and then drops almost to 7–22%.
However, when increasing the size of the query objects, the performance is progressively
regained up to 60% again. However, with the VIVET, the performance of the SCL starts
from 42–82%, and then slightly drops in performance down to 50%. In the case when the
size of query objects is less than data objects, the performance difference is significant, and
as the query object size tends to grow, the performance gap increases.

From Figure 11, it can be interpreted that the initial performance of the SCL versus
the INE on all three datasets starts from 7–14% and achieves a significant performance
growth approximately up to 50% when the query object size is at 50K. As the size keeps
on increasing, the performance again jumps down to almost 30%. The performance of
the SCL with respect to the INE improves with the increment in the query object size.
When the query objects were densely scattered, the shared execution process alleviated
the processing time but when the query objects were widely scattered following a uniform
distribution, the query processing time was aggravated for both INE and SCL algorithms.

In addition, it can be inferred that the query processing time for the VIVET shows a
linear growth due to the fact that the query processing time depends upon the number of
data objects. It is due to the reason that the VIVET algorithm was designed to process the
ANN queries in a static road network and whenever the location update occurs, the ANN
has to rebuild the index from the start. On the other hand, due to the shared execution
processing, the number of NN queries evaluated by the SCL method decreased with an
increase in the size of data objects. When the data objects are uniformly distributed, the
time required for each data object to locate its nearest node is longer, which is the reason
why the SCL performance improved with respect to the VIVET. VIVET performed worse
as the size of query objects kept on increasing. This demonstrates that the SCL algorithm
optimized the shared execution processing more effectively for large datasets.

As from Table 4, the ratios of intermediate nodes to the total number of nodes for all
datasets were found to be ≈0.94, ≈0.21, and ≈0.53, respectively. This shows that when that
ratio of intermediate nodes to the total number of nodes is close to 1.0, the performance
of the SCL algorithm increases moderately. Another parameter to take into consideration
could be a relation of the number of node clusters to the number of total nodes. The
CAL dataset has many intermediate nodes that contribute to forming a few node clusters.
However, for the SANJ dataset, the number of node clusters is greater than that of its
total number of nodes. This also can be a contributing factor for a slight improvement
of performance over the increase of query objects. To sum up, the SCL algorithm is up

Mathematics 2021, 9, 1137 17 of 21

to six times faster than INE and VIVET, particularly when the query objects exhibit a
centroid distribution. Secondly, the INE algorithm often outperforms VIVET clearly when
the number of data objects is larger than 50,000. The performance study implies that the
shared execution technique reduces the number of NN queries evaluation to process large
query requests efficiently.

Limitations of VIVET in the Dynamic Road Network

Figures 12 and 13 depict the precomputation and query lookup stages of the VIVET
algorithm. In order to restrict overlapping network traversal and duplication of the
computation, VIVET traverses the network starting from a virtual node n∗ that connects
to all data objects. For each node ni, there is always one data object di on the shortest
path from its virtual node such that di is the nearest neighbor of the node ni. Then the
results are stored in a precomputation table that holds the N number of nodes. The VIVET
algorithm assumes that data objects and query objects are located at the graph nodes. Once
the precomputation is completed, the ANN query can answer the results by locating the
node on which every query object qi lies and then return the nearest data object di for that
query object qi.

n1

n2

n3

n4

n5

n6

n7

n8

v9

n10

n11

n12

n13

q1

q2

d1
d2

12

4

1

3

1 7

3

4

2

5 32

1

4 2
4

6

n* (virtual vertex)

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

NN d1 d1 d1 d1 d1 d1 d2 d2 d2 d2 d2 d2 d2

Dist 1 2 5 0 2 6 6 9 0 5 8 10 9

Figure 12. An example of VIVET at t1, the green box indicates the query results.

n1

n2

n3

n4

n5

n6

n7

n8

v9

n10

n11

n12

n13

q1

d1
d2

12

2

1

3

1 3

1

2

1

6 32

1

4 2
4

6

n* (virtual vertex)

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

NN d1 d1 d1 d1 d1 d1 d1 d1 d2 d2 d1 d1 d1

Dist 1 2 3 0 2 4 3 4 0 6 7 6 4

q2

Figure 13. An example of VIVET at ti+1 with updated distances, the green box indicates the
query results.

Mathematics 2021, 9, 1137 18 of 21

The VIVET algorithm has been specifically designed to support the ANN query pro-
cessing in a static road network. A precomputation table that holds the data object and
the nearest node to each data object can be used to find the nearest query object. How-
ever, in a dynamic road network environment, the weight of an edge can be changed fre-
quently, which invalidates the precomputed distance between query and data objects. Thus,
in order to generate a valid query result, the precomputation table must be updated when-
ever there is a change in the network that significantly increases the computation overhead.

Figure 12 shows a precomputation table at time t1. The NN results for two query
objects q1 and q2 are shown in the green box. After traversing to all the vertices starting
from the virtual node n∗ and passing through the connected data objects d1 and d2, the
precomputation table is filled with the nearest neighbors of the nodes. The precomputation
table is also known as NN array. The shortest path connecting from n∗ to q1 and q2
passes through {n∗ → n4 → n1} and {n∗ → n9 → n10 → n11} with the respective distance
as one and eight. The green box shows the nearest neighbor for the query objects q1
and q2 lying on the nodes n1 and n11 as d1 and d2. Now let us consider, at time ti+1
the weight of edges (n2, n3), (n4, n7), (n7, n13), (n13, n12), (n12, n11), (n9, n10) change due to
certain traffic conditions. Then, the shortest path distance that connects n∗ to n11 changes
to {n∗ → n7 → n13 → n12 → n11} with a distance of seven. When there occurs a change
in network distance, the VIVET nullifies the NN array table; afterward, the traversal is
initialized that recomputes the NN pairs, and finally, the NN array table is updated, which
has been shown in Figure 13 and it also changes the NN result for q2, which becomes d1.
Whenever there exists a huge number of road network updates that require fresh results,
indexing techniques are less efficient as it poses computation overhead.

Table 6 shows the time and space complexities of the INE, SCL, and VIVET algorithms.
The INE and SCL are almost identical when it comes to the ANN query lookup because both
of the algorithms start traversing the road network from the query point and expanding
the adjacent edges until it reaches its nearest neighbor data point. Thus, the input size
for the INE and SCL are |Q|, and |Q|, respectively. However, SCL reduces the number
of query points by clustering them hence reducing the NN query evaluations. On the
other hand, the ANN query lookup using VIVET is linear to the size of the query objects,
i.e., |Q|. As mentioned earlier, INE and SCL do not use any precomputation technique;
hence, maintaining an index is always O(1). On the other hand, VIVET purely adopts the
light indexing scheme, and precomputed results are stored in an NN array lookup table;
therefore, VIVET takes O((|E|+ |N|+ |D|)× log|N|) during the precomputation phase.
Therefore, the run-time complexity of VIVET is O((|E|+ |N|+ |D|)× log|N|) + |Q|. The
total run-time taken by INE and SCL depends upon the size of the query points, but for
VIVET, the data object size affects the run-time. In contrast, the SCL algorithm significantly
reduces the number of query points by clustering them; hence, the size of |Q| will be
relatively small than the size of |D|. To conclude, the VIVET inherently shows a worse
performance in dynamic road networks than in static road networks because it has to
perform precomputation whenever there is an update in the network distance.

Table 6. Comparison of time and space complexities of INE, SCL, and VIVET

INE SCL VIVET

(1) Query Cost |Q| × O(|E|+ |N| × log|N|) |Q| × O(|E|+ |N| × log|N|) O(|Q|)
(2) Precomputation Cost O(1) O(1) O((|E|+ |N|+ |D|)× log|N|)
Run-time Complexity (1 + 2) |Q| × O(|E|+ |N| × log|N|) |Q| × O(|E|+ |N| × log|N|) O((|E|+ |N|+ |D|)× log|N|) + |Q|
Space Complexity O(|Q|) O

(
|Q|
)

O(|N|)

8. Conclusions

Following, the analysis of the space complexities of the algorithms is carried out.
The space complexity of the INE algorithm is O(|Q|) due to the reason that NN queries
are evaluated from all existing query objects. The SCL takes O

(
|Q|
)

because the existing

Mathematics 2021, 9, 1137 19 of 21

number of query objects are first scanned, then clustered to form a query cluster and for
every query cluster |Q|, the memory consumption is 2×|Q| since, at most, two NN queries
are required for a query segment. The VIVET algorithm initially creates an augmented
graph G∗ from an original graph G. During the augmentation process, all the query objects
and data objects are transformed into nodes, such that data objects and query objects are
on the nodes. Storing the additional number of nodes during the execution would take
the space of O(|N|). Consequently, the memory consumption of the SCL is comparatively
smaller than those of precomputed methods.

This study investigated efficient methods to process ANN queries in dynamic road
networks. Specifically, ANN queries involve processing a huge number of query requests,
which imposes a high computational burden. Therefore, this paper proposed an efficient
framework to process ANN queries in a dynamic road network that reduces the compu-
tation cost. To enhance the efficiency and effectiveness of the proposed algorithm, the
shared execution technique is adopted that initially creates a cluster of nodes, followed by
clustering of query objects in order to bypass redundant NN evaluations.

To evaluate the performance of the proposed algorithm, a simulation experiment was
conducted that used real-world road network maps. Various data distribution combinations
were used to evaluate the performance of the proposed framework. With the experimental
demonstrations, it was verified that the proposed algorithm outperforms the VIVET and
INE algorithms. Further, the evidence from the results proved that the SCL algorithm
performs best to evaluate queries in cases involving a large number of query objects in a
road segment. Motivated by the limitations of this work, as mentioned in the discussion
section, extending this approach to the problem of distributed query processing in dynamic
road environments can be further studied. This could facilitate minimizing the wireless
communication and the server computation costs, both of which are heavily dependent
on the amount of the location-update stream generated by moving objects. Additionally,
the prospect of being able to integrate the shared execution approach with Markov’s chain
state model can support AI-based recommendation systems, which serve as a spur for
future research.

Author Contributions: Conceptualization, A.B. and H.-J.C.; formal analysis, A.H.; funding acqui-
sition, T.-S.C.; methodology, A.B. and A.H.; software, A.B. and A.H.; supervision, M.A., H.-J.C.
and T.-S.C.; validation, M.A. and T.-S.C.; visualization, A.B.; writing—original draft, A.B. and A.H.;
writing—review and editing, M.A., H.-J.C. and T.-S.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education NRF-2020R1I1A3052713
and was partially supported by the Ajou university research fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, J.; Zhu, M.; Papadias, D.; Tao, Y.; Lee, D.L. Location-based spatial queries. In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data, San Diego, CA, USA, 10–12 June 2003; p. 443. [CrossRef]
2. Jung, H.; Song, M.; Youn, H.Y.; Kim, U.M. Evaluation of content-matched range monitoring queries over moving objects in

mobile computing environments. Sensors 2015, 15, 24143–24177. [CrossRef] [PubMed]
3. Wan, S.; Zhao, Y.; Wang, T.; Gu, Z.; Abbasi, Q.H.; Choo, K.K.R. Multi-dimensional data indexing and range query processing via

Voronoi diagram for internet of things. Future Gener. Comput. Syst. 2019, 91, 382–391. [CrossRef]
4. Mouratidis, K.; Yiu, M. Continuous nearest neighbor monitoring in road networks. In Proceedings of the 32nd International

Conference on Very Large Data Bases, Seoul, Korea, 12–15 September 2006; pp. 43–54.
5. Cho, H.J.; Kwon, S.J.; Chung, T.S. A safe exit algorithm for continuous nearest neighbor monitoring in road networks. Mob. Inf. Syst.

2013, 9, 37–53. [CrossRef]

http://doi.org/10.1145/872811.872812
http://dx.doi.org/10.3390/s150924143
http://www.ncbi.nlm.nih.gov/pubmed/26393613
http://dx.doi.org/10.1016/j.future.2018.08.007
http://dx.doi.org/10.1155/2013/426294

Mathematics 2021, 9, 1137 20 of 21

6. Attique, M.; Cho, H.J.; Jin, R.; Chung, T.S. Efficient processing of continuous reverse k nearest neighbor on moving objects in
road networks. ISPRS Int. J. Geo-Inf. 2016, 5, 247. [CrossRef]

7. Attique, M.; Qamar, R.; Cho, H.J.; Chung, T.S. A new approach to process top-k spatial preference queries in a directed road
network. In Proceedings of the Third ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems,
Dallas, TX, USA, 4–7 November 2014; pp. 34–42.

8. Attique, M.; Cho, H.J.; Jin, R.; Chung, T.S. Top-k spatial preference queries in directed road networks. ISPRS Int. J. Geo-Inf.
2016, 5, 170. [CrossRef]

9. Attique, M.; Cho, H.J.; Chung, T.S. Efficient Processing of Moving Top-Spatial Keyword Queries in Directed and Dynamic Road
Networks. In Wireless Communications and Mobile Computing; John Wiley and Sons: West Sussex, UK, 2018; Volume 2018.

10. Wang, H.; Zimmermann, R. Snapshot location-based query processing on moving objects in road networks. In Proceedings
of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Irvine, CA, USA,
5–7 November 2008; pp. 403–406. [CrossRef]

11. Wang, H.; Zimmermann, R. A novel dual-index design to efficiently support snapshot location-based query processing in mobile
environments. IEEE Trans. Mob. Comput. 2010, 9, 1280–1292. [CrossRef]

12. Cheema, M.A.; Zhang, W.; Lin, X.; Zhang, Y. Efficiently processing snapshot and continuous reverse k nearest neighbors queries.
VLDB J. 2012, 21, 703–728. [CrossRef]

13. Priya, M.; Kalpana, R. Distributed processing of location based spatial query through vantage point transformation. Future Comput.
Inform. J. 2018, 3, 296–303. [CrossRef]

14. Dong, T.; Yuan, L.; Shang, Y.; Ye, Y.; Zhang, L. Direction-aware continuous moving k-nearest-neighbor query in road networks.
ISPRS Int. J. Geo-Inf. 2019, 8, 379. [CrossRef]

15. Zhang, M.; Li, L.; Hua, W.; Zhou, X. Typical Snapshots Selection for Shortest Path Query in Dynamic Road Networks. In Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12008, pp. 105–120. [CrossRef]

16. Clarkson, K.L. Fast algorithms for the all nearest neighbors problem. In Proceedings of the 24th Annual Symposium on
Foundations of Computer Science (SFCS 1983), Tucson, AZ, USA, 7–9 November 1983; pp. 226–232. [CrossRef]

17. Zhang, J.; Mamoulis, N.; Papadias, D.; Tao, Y. All-nearest-neighbors queries in spatial databases. In Proceedings of the 16th
International Conference on Scientific and Statistical Database Management, Chania, Greece, 25–27 June 2004; pp. 297–306.
[CrossRef]

18. Xu, Y.; Qi, J.; Borovica-Gajic, R.; Kulik, L. Finding all nearest neighbors with a single graph traversal. In Proceedings of the
International Conference on Database Systems for Advanced Applications, Gold Coast, Australia, 21–24 May 2018; Volume 10827,
pp. 221–238. [CrossRef]

19. Amin, A.M.; Ali, M.E.; Hashem, T. Shared Execution of Path Queries on Road Networks. arXiv 2012, arXiv:1210.6746.
20. Mahmud, H.; Amin, A.M.; Ali, M.E. A Group Based Approach for Path Queries in Road Networks. In International Symposium on

Spatial and Temporal Databases; Springer: Berlin/Heidelberg, Germany, 2013.
21. Papadias, D.; Zhang, J.; Mamoulis, N.; Tao, Y. Query Processing in Spatial Network Databases Dimitris. In Proceedings of the

2003 VLDB Conference, Morgan Kaufmann, Berlin, Germany, 9–12 September 2003; Volume 29.
22. Samet, H.; Sankaranarayanan, J.; Alborzi, H. Scalable network distance browsing in spatial databases. In Proceedings of the

2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 10–12 June 2008; pp. 43–54.
[CrossRef]

23. Lee, K.C.; Lee, W.C.; Zheng, B.; Tian, Y. ROAD: A new spatial object search framework for road networks. IEEE Trans. Knowl. Data Eng.
2012, 24, 547–560. [CrossRef]

24. Zhong, R.; Li, G.; Tan, K.L.; Zhou, L.; Gong, Z. G-Tree: An Efficient and Scalable Index for Spatial Search on Road Networks.
IEEE Trans. Knowl. Data Eng. 2015, 27, 2175–2189. [CrossRef]

25. Huang, X.; Jensen, C.S.; Lu, H.; Šaltenis, S. S-GRID: A versatile approach to efficient query processing in spatial networks.
In International Symposium on Spatial and Temporal Databases; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4605, pp. 93–111.
[CrossRef]

26. Jensen, C.S.; Kolář, J.; Pedersen, T.B.; Timko, I. Nearest neighbor queries in road networks. In Proceedings of the 11th ACM
International Symposium on Advances in Geographic Information Systems, New Orleans, LA, USA, 7–8 November 2003; pp. 1–8.
[CrossRef]

27. Cho, H.J.; Chae, J. A safe exit algorithm for moving k nearest neighbor queries in directed and dynamic spatial networks.
J. Inf. Sci. Eng. 2016, 32, 969–993.

28. Nannicini, G.; Baptiste, P.; Barbier, G.; Krob, D.; Liberti, L. Fast paths in large-scale dynamic road networks. Comput. Optim. Appl.
2010, 45, 143–158. [CrossRef]

29. Xu, J.; Gao, Y.; Liu, C.; Zhao, L.; Ding, Z. Efficient route search on hierarchical dynamic road networks. Distrib. Parallel Databases
2015, 33, 227–252. [CrossRef]

30. Zhang, D.; Yang, D.; Wang, Y.; Tan, K.L.; Cao, J.; Shen, H.T. Distributed shortest path query processing on dynamic road networks.
VLDB J. 2017, 26, 399–419. [CrossRef]

31. Huang, X.; Chen, D.; Wang, D.; Ren, T. MINE: Identifying Top-k Vital Nodes in Complex Networks via Maximum Influential
Neighbors Expansion. Mathematics 2020, 8, 1449. [CrossRef]

32. Oehlers, M.; Fabian, B. Graph Metrics for Network Robustness—A Survey. Mathematics 2021, 9, 895. [CrossRef]

http://dx.doi.org/10.3390/ijgi5120247
http://dx.doi.org/10.3390/ijgi5100170
http://dx.doi.org/10.1145/1463434.1463495
http://dx.doi.org/10.1109/TMC.2010.63
http://dx.doi.org/10.1007/s00778-012-0265-y
http://dx.doi.org/10.1016/j.fcij.2018.09.002
http://dx.doi.org/10.3390/ijgi8090379
http://dx.doi.org/10.1007/978-3-030-39469-1_9
http://dx.doi.org/10.1109/sfcs.1983.16
http://dx.doi.org/10.1109/ssdm.2004.1311221
http://dx.doi.org/10.1007/978-3-319-91452-7_15
http://dx.doi.org/10.1145/1376616.1376623
http://dx.doi.org/10.1109/TKDE.2010.243
http://dx.doi.org/10.1109/TKDE.2015.2399306
http://dx.doi.org/10.1007/978-3-540-73540-3_6
http://dx.doi.org/10.1145/956676.956677
http://dx.doi.org/10.1007/s10589-008-9172-y
http://dx.doi.org/10.1007/s10619-014-7146-x
http://dx.doi.org/10.1007/s00778-017-0457-6
http://dx.doi.org/10.3390/math8091449
http://dx.doi.org/10.3390/math9080895

Mathematics 2021, 9, 1137 21 of 21

33. Gibbons, A. Algorithmic Graph Theory; Cambridge University Press: Cambridge, UK, 1985.
34. Cho, H.J. Efficient Shared Execution Processing of k-Nearest Neighbor Joins in Road Networks. Mob. Inf. Syst. 2018, 2018.

[CrossRef]
35. Real Datasets for Spatial Databases. Available online: https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm (accessed on

15 May 2021).
36. Wang, H.; Zimmermann, R. Processing of continuous location-based range queries on moving objects in road networks.

IEEE Trans. Knowl. Data Eng. 2011, 23, 1065–1078. [CrossRef]
37. Jung, H.R.; Kim, U.M. The SSP-Tree: A method for distributed processing of range monitoring queries in road networks.

ISPRS Int. J. Geo-Inf. 2017, 6, 322. [CrossRef]

http://dx.doi.org/10.1155/2018/1243289
https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://dx.doi.org/10.1109/TKDE.2010.171
http://dx.doi.org/10.3390/ijgi6110322

	Introduction
	Related Works
	Dynamic Road Network
	All Nearest Neighbor Queries

	Preliminaries
	Dynamic Road Network
	Classification of Nodes
	All Nearest Neighbor Query

	Methods of Clustering Query Objects
	Methodology
	Clustering Algorithm

	SCL Design
	Overview of SCL
	Evaluation of SCL
	Complexity Analysis

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Discussion
	Conclusions
	References

