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Abstract: A paired-dominating set of a graph G without isolated vertices is a dominating set of
vertices whose induced subgraph has perfect matching. The minimum cardinality of a paired-
dominating set of G is called the paired-domination number γpr(G) of G. The paired-domination
subdivision number sdγpr (G) of G is the minimum number of edges that must be subdivided (each
edge in G can be subdivided at most once) in order to increase the paired-domination number. Here,
we show that, for each tree T 6= P5 of order n ≥ 3 and each edge e 6∈ E(T), sdγpr (T) + sdγpr (T + e) ≤
n + 2.

Keywords: paired-domination number; paired-domination subdivision number

1. Introduction

Let G = (V, E) be a simple connected graph with vertex set V = V(G) and edge set
E(G) = E and let n = |V|. For any vertex u ∈ V(G), the open neighborhood of u is the
set N(u) = NG(u) = {v ∈ V(G)|uv ∈ E(G)}, and the closed neighborhood of u is the set
N[u] = NG[u] = {u} ∪ NG(u). The degree of a vertex u is deg(u) = degG(u) = |NG(u)|. A
vertex of degree one is called a leaf and its neighbor is called a stem. A stem is said to be
strong if it is adjacent to at least two leaves.

Throughout this paper, when an edge e = uv is subdivided, we = wuv denotes the
subdivision vertex for e. For a set F ⊆ E(G), GF denotes the graph obtained from G by
subdividing every edge in F (note that we have we 6= w f for any e, f ∈ F with e 6= f ). The
length of a shortest (u, v)-path in a graph G is the distance between u and v, and is written
dG(u, v) or simply d(u, v) if G is clear from context. The maximum distance among all
pairs of vertices in G is called the diameter of G, written diam(G). A diametral path of G is
a path of G with the length diam(G).

A subset S of V is a dominating set of G if every vertex in V − S is adjacent to a vertex
in S. A paired-dominating set (PD-set) of G is a subset S of V if S is a dominating set and
the subgraph induced by S contains a perfect matching. The minimum cardinality of a
PD-set of G is the paired-domination number γpr(G). If S is a PD-set with a perfect matching
M and uv ∈ M, then u and v are said to be partners (or paired) in S. We call a PD-set of
minimum cardinality a γpr(G)-set. Since the end vertices of any maximal matching in G
form a PD-set, every graph G without isolated vertices has a PD-set. Haynes and Slater [1]
introduced the Paired-domination, which has been studied, for example, in [2–6]. For more
details on paired-domination, we refer the reader to [7].

As good models of many practical problems, graphs sometimes have to be changed
to adapt the changes in reality. Thus, we must pay attention to the change of the graph
parameters under graph modifications, such as the deletion of vertices, deletion or addition
of edges, and subdivision of edges. Velammal [8] was the first to study the domination
subdivision number of a graph G defined to be the minimum number of edges that must be
subdivided (each edge in G is subdivided at most once) to increase the domination number.
Since then, subdivision parameters have been studied by several authors (see [9–15]).
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In this paper, we study the paired-domination subdivision number of trees, which was
introduced by Favaron et al. in [16] and has been further studied in [17–21]. The paired-
domination subdivision number sdγpr (G) of a graph G is the minimum number of edges that
must be subdivided (where each edge in G can be subdivided at most once) in order to
increase the paired-domination number of G.

If G is a connected graph of order at least 3, Favaron et al. [16] asked whether it
is true that for any edge e /∈ E(G), sdγpr (G + e) ≤ sdγpr (G). Egawa et al. [18] gave a
negative answer to this question. However, they proved the question in the affirmative
if the following additional condition is added: γpr(G + e) < γpr(G) for every e /∈ E(G).
Recently, Hao et al. [19] showed that for any graph G without isolated vertices and different
from mK2, and for any edge e 6∈ E(G), sdγpr (G + e) ≤ sdγpr (G) + 2∆(G).

Our aim in this paper is to further study paired-domination subdivision number
and show that for each tree T 6= P5 of order n ≥ 3 and each edge e 6∈ E(T), sdγpr (T) +
sdγpr (T + e) ≤ n + 2.

We close this section by recalling some useful results.

Proposition 1 ([16]). Let G be a connected graph of order n ≥ 3 and let G′ be obtained from G by
subdividing the edge e = uv ∈ E(G). Then, γpr(G′) ≥ γpr(G).

Proposition 2 ([20]). For every connected graph G of order n ≥ 3, sdγpr (G) ≤ n− 1.

Proposition 3 ([18]). For any graph G with no isolated vertex and any uv 6∈ E(G), γpr(G) =
γpr(G + uv) or γpr(G) = γpr(G + uv) + 2.

Proposition 4 ([18]). For any connected graph G of order at least 3 and uv 6∈ E(G) with
γpr(G + uv) < γpr(G), sdγpr (G + uv) ≤ sdγpr (G).

Proposition 5 ([16]). If G contains either adjacent stems or a strong stem, then sdγpr (G) ≤ 2.

Proposition 6 ([16]). For any connected graph G containing a path v1v2v3v4v5 such that
deg(v2) = deg(v3) = deg(v4) = 2, sdγpr (G) ≤ 4.

Proposition 7 ([16]). For n ≥ 3,

sdγpr (Pn) = sdγpr (Cn) =


1, if n ≡ 0 (mod 4),
4, if n ≡ 1 (mod 4),
3, if n ≡ 2 (mod 4),
2, if n ≡ 3 (mod 4).

Proposition 8 ([18]). If a tree T contains a path v1v2v3v4 in which deg(v1) = 1 and deg(vi) = 2
for i = 2, 3, then sdγpr (T) ≤ 4.

Proposition 9 ([19]). For any isolated-free graph G different from mK2 and any uv 6∈ E(G)
satisfying that u or v is a stem,

sdγpr (G + uv) ≤ sdγpr (G) + 2.

For any positive integer m ≥ 1, let Sm be the healthy spider obtained from the complete
bipartite graph K1,m by subdividing every edge. Therefore V(Sm) = {ui

1, ui
2 | 1 ≤ i ≤

m} ∪ {x} and E(Sm) = {xui
2, ui

2ui
1 | 1 ≤ i ≤ m} (see Figure 1). The vertex x is called

the center of Sm. Let T1,m be the tree obtained from the disjoint union of two copies of
the healthy spider Sm centered at x, y, by joining x and y (see Figure 2). Observe that
n(T1,m) = 4m + 2, γpr(T1,m) = 4m and sdγpr (T1,m) = 2m + 1.
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Figure 1. A healthy spider Sm.
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Figure 2. A tree T1,m with sdγpr (T1,m) = n(T1,m)/2.

Let T2,m be the tree obtained from T1,m by subdividing the edge xy with a subdivision
vertex u and adding a new vertex v and a new edge uv (Figure 3). Observe that n(T2,m) =
4m + 4, γpr(T2,m) = 4m + 2, and sdγpr (T2,m) = 2m + 2.
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Figure 3. A tree T2,m with sdγpr (T2,m) = n(T2,m)/2.

Now let T = {K1,3} ∪ {Sm, T1,m, T2,m | m ≥ 1}.

Proposition 10 ([18]). For any tree T of order n ≥ 3, sdγpr (T) ≥ n/2 if and only if T ∈ T .

Proposition 11 ([20]). For any tree T of order n ≥ 4 different from a healthy spider, sdγpr (T) ≤ n
2 .

Combining Propositions 10 and 11, we have the following corollary.

Corollary 1. Let T be a tree of order n ≥ 4 different from a healthy spider. Then, sdγpr (T) ≤ n
2

with equality if and only if T ∈ {K1,3, T1,m, T2,m | m ≥ 1}.

2. Main Result

Our aim in this section is to prove that, for each tree T 6= P5 with n ≥ 3 vertices and
any edge e 6∈ E(T), sdγpr (T) + sdγpr (T + e) ≤ n + 2. First, we consider trees with diameter
four and five.

Lemma 1. Let T be a tree of order n ≥ 6 with diam(T) = 4 and let e = xy 6∈ E(G). Then,

sdγpr (T) + sdγpr (T + e) ≤ n + 2.

Proof. If T has a strong stem or adjacent stems, then by Propositions 2 and 5 we have
sdγpr (T) + sdγpr (T + e) ≤ n + 1. Suppose next that T has no adjacent stems and no strong
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stem. Then, T is a healthy spider. Let V(T) = {v, vi, ui | 1 ≤ i ≤ t} and let E(T) =
{vvi, viui | 1 ≤ i ≤ t}. Since n ≥ 6, we have t ≥ 3. We consider the four cases.

Case 1. Both x and y are leaves.

Without a loss of generality, assume that x = u1 and y = u2. Observe that γpr(T + e) =
2t− 2. Let T′ be obtained from T + e by subdividing the edges vv1, vv2, v1u1 with the ver-
tices w1, w2, and w3, respectively. We show that γpr(T′) ≥ 2t. Let D be a γpr(T′)-set. If v 6∈
D, then we must have vi, ui ∈ D for each 3 ≤ i ≤ t and |D∩ {v1, v2, u1, u2, w1, w2, w3}| ≥ 4,
which leads to γpr(T′) = |D| ≥ 2t. Assume now that v ∈ D. If v is paired with w1 or w2,
then we must have vi, ui ∈ D for each 3 ≤ i ≤ t and |D ∩ {v, v1, v2, u1, u2, w1, w2, w3}| ≥ 4
implying that γpr(T′) = |D| ≥ 2t. Assume next that v is not paired with w1 or w2. Without
a loss of generality, assume that v is paired with v3. Thus, vi, ui ∈ D for each 4 ≤ i ≤ t and
|D ∩ {v1, v2, u1, u2, w1, w2, w3}| ≥ 4 yielding γpr(T′) = |D| ≥ 2t. Thus, sdγpr (T + e) ≤ 3
and, by Proposition 2, we obtain sdγpr (T) + sdγpr (T + e) ≤ n + 2.

Case 2. x is a leaf and y is a stem.

Without a loss of generality, assume that x = u1 and y = v2. Then, it is clear that
γpr(T + e) = 2t− 2. Let T′ be obtained from T + e by subdividing the edges v2u2 and e
with the vertices w1 and w2, respectively. As in Case 1, we can see that γpr(T′) ≥ 2t. Hence,
sdγpr (T + e) ≤ 2 and, by Proposition 2, we have sdγpr (T) + sdγpr (T + e) ≤ n + 1.

Case 3. x is a leaf and y = v.

Without a loss of generality, assume that x = u1. Clearly γpr(T + e) = 2t− 2. Let T′

be obtained from T + e by subdividing the edges u1v1 with w1. We show that γpr(T′) ≥ 2t.
Let D be a γpr(T′)-set. To paired-dominate u2, . . . , ut, we must have |D ∩ {v, ui, vi | 2 ≤
i ≤ t}| ≥ 2t− 2 and to paired-dominate u1 we must have |D ∩ {u1, v1, w1}| ≥ 1. Since |D|
is even, we obtain γpr(T′) ≥ 2t. Hence, sdγpr (T + e) = 1 and, by Proposition 2, we have
sdγpr (T) + sdγpr (T + e) ≤ n.

Case 4. Both x and y are stems.

In this case, T′ has adjacent stems, and we deduce from Propositions 2 and 5 that
sdγpr (T) + sdγpr (T + e) ≤ n + 1.

Lemma 2. Let T be a tree of order n with diam(T) = 5 and let e = xy 6∈ E(G). Then,

sdγpr (T) + sdγpr (T + e) ≤ n + 2.

Proof. As in the proof of Lemma 1, we may assume that T has no strong stem and no
adjacent stems. Let u1w1v1v2x1y1 be a diametral path in T. By the assumption, the
components of T− v1v2 are P3 or a healthy spider. It is easy to see that γpr(T) = n− 2. Let
T1 and T2 be the components of T− v1v2 containing v1 and v2, respectively. If T = P6, then
we deduce from Propositions 2 and 7 that sdγpr (T) + sdγpr (T + e) ≤ n + 2. Assume that
T 6= P6. Suppose that deg(v2) ≥ 3. If deg(v1) = 2, then it is easy to see that subdividing the
edges u1w1, w1v1, v1v2 increases the paired-domination number of T and so sdγpr (T) ≤ 3
and the result follows by Proposition 2. Hence, we assume that deg(v1) ≥ 3. Let V(T1) =
{v1, wi, ui | 1 ≤ i ≤ t}, E(T1) = {v1wi, wiui | 1 ≤ i ≤ t}, V(T2) = {v2, xi, yi | 1 ≤ i ≤ s}
and let E(T2) = {v2xi, xiyi | 1 ≤ i ≤ s}. We consider the four cases.

Case 1. Both x and y are leaves.

If x and y are the leaves of T1 (resp., T2), then, clearly, γpr(T + xy) < γpr(T) and by
Propositions 4 and 11, we have sdγpr (T) + sdγpr (T + e) ≤ n. If x is a leaf of T1 and y is
a leaf of T2, then, we deduce from Propositions 6 and 11 that sdγpr (T) + sdγpr (T + e) ≤
n/2 + 4 < n + 2.

Case 2. x is a leaf and y is a stem.
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Assume first that x, y are the vertices of T1. We may assume that x = u1 and y = w2.
Then, the set D = {v1, w2} ∪ {wi, ui | 3 ≤ i ≤ t} ∪ {xj, yj | 1 ≤ j ≤ s} is a paired-
dominating set of T + e of size n− 4 and so γpr(T + e) < n− 2 = γpr(T). If x and y are the
vertices of T2, then similarly we have γpr(T + e) < γpr(T). Assume second that x ∈ V(T1)
and y ∈ V(T2). Without a loss of generality, we can suppose that x = u1 and y = x1. Then,
the set {v1, v2, x1, w2} ∪ {wi, ui | 3 ≤ i ≤ t} ∪ {xj, yj | 2 ≤ j ≤ s} is a paired-dominating
set of T + e with cardinality n − 4, and thus γpr(T + e) < n − 2 = γpr(T). Applying
Propositions 4 and 11 we obtain sdγpr (T) + sdγpr (T + e) ≤ n.

Case 3. x is a leaf and y ∈ {v1, v2}.

Without loss of generality, we may assume that x = u1. If y = v1, then the set
{v1, w2} ∪ {wi, ui | 3 ≤ i ≤ t} ∪ {xj, yj | 1 ≤ j ≤ s} is a paired-dominating set of T + e
of size n− 4 and so γpr(T + e) < n− 2 = γpr(T). If y = v2, then the set {v1, v2, w2, x1} ∪
{wi, ui | 3 ≤ i ≤ t} ∪ {xj, yj | 2 ≤ j ≤ s} is a paired-dominating set of T + e of size
n − 4, and thus γpr(T + e) < n − 2 = γpr(T). Using Propositions 4 and 11, we obtain
sdγpr (T) + sdγpr (T + e) ≤ n.

Case 4. Both x and y are stems.

In this case, T′ + xy has adjacent stems, and we deduce from Propositions 2 and 5 that
sdγpr (T) + sdγpr (T + e) ≤ n + 1.

Theorem 1. Let T be a tree different from P5 of order n ≥ 3 and let e = xy 6∈ E(G). Then,

sdγpr (T) + sdγpr (T + e) ≤ n + 2.

Proof. If T has a strong stem or adjacent stems, then, by Propositions 2 and 5, we have
sdγpr (T) + sdγpr (T + e) ≤ n + 1. Hence, we assume that T has no strong stem and no
adjacent stems. It follows that diam(T) ≥ 4. According to Lemmas 1 and 2, we may
assume that diam(T) ≥ 6. If x or y is a stem, then by Propositions 9 and 11, we have
sdγpr (T) + sdγpr (T + e) ≤ n + 2. Hence, we assume that neither x nor y is a stem. If
x (resp., y) is a leaf with support vertex x′ (resp., y′) of degree 2, respectively, then for
x′′ ∈ N(x′) − {x}, x′′x′xyy′ is a path in T with deg(x′) = deg(x) = deg(y) = 2, and
therefore by Propositions 6 and 11, we have sdγpr (T) + sdγpr (T + e) ≤ n/2 + 4 < n + 2.
Thus, we may assume that, if both x and y are leaves, then the stem of x or y is of at least
degree 3.

Let v1v2 . . . vk be a diametral path such that deg(v3) is minimized. By assumption, the
trees T1 and T2 (the components of T − {v3v4, vk−2vk−3} containing v3 and vk−2, respec-
tively) are P3 or a healthy spider. Let N(v3) = {v4} ∪ {u1 = v2, u2, . . . , ut} and let u′i be the
leaf adjacent to ui for each i. Root T is at v4. We consider three cases.

Case 1. x, y 6∈ V(T1).

We distinguish the following subcases.
Subcase 1.1. v4 is a stem.
By our assumption, T has no strong stem. Let w be a unique leaf adjacent to v4. First,

let w 6∈ {x, y}. Let T′ be obtained from T + e by subdividing the edges v3ui and uiu′i
with vertices xi and yi, respectively for each i and the edges v3v4 and v4w with vertices
r and s, respectively. We show that γpr(T′) > γpr(T + e). Let P be a γpr(T′)-set. To
paired-dominate u′i, we may assume that ui, yi ∈ P for each i. On the other hand, to
paired-dominate w and v3, we must have |P ∩ {v3, v4, w, r, s, x1, x2, . . . , xt}| ≥ 4.

If v4 6∈ P or v4 ∈ P and v4 is paired with r or s, then the set

(P− {v3, v4, w, r, s, x1, x2, . . . , xt, y1, y2, . . . , yt}) ∪ {v3, v4, u′1, u′2, . . . , u′t}

is a PD-set of T + e with cardinality of less than P. Assume that v4 ∈ P and v4 is paired
with a vertex not in {r, s}. Then, we have |P ∩ {w, r, s, v3, x1, x2, . . . , xt}| ≥ 4, and clearly
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the set (P− {v3, w, r, s, x1, x2, . . . , xt, y1, y2, . . . , yt}) ∪ {u′1, u′2, . . . , u′t} is a PD-set of T + e
with cardinality of less than P. Since the number of subdivided edges is at most n/2, we
deduce from Proposition 11 that sdγpr (T) + sdγpr (T + e) ≤ n.

Now, let w ∈ {x, y}. Let N(v4) = {z1 = v3, z2 = v5, z3 = w, z4, . . . , z`}. Note that
each component of (T + e)− {v4zi | 1 ≤ j ≤ `} has at least two vertices. Let T′ be obtained
from T + e by subdividing v3ui and uiu′i with vertices xi and yi, respectively for each i, the
edge v4zj with vertex z′j for each j, and the edge e with vertex q. By our assumptions, it
is not difficult to verify that the number of subdivided edges is at most n/2 + 2. We next
show that γpr(T′) > γpr(T + e). Let P be a γpr(T′)-set, and let F be the set of all edges in
{e, v4zj | 2 ≤ j ≤ `} whose subdivision vertices are in P. To paired-dominate u′i, we may
assume that ui, yi ∈ P for each i.

On the other hand, to paired-dominate v3, we must have |P∩{v3, v4, z′1, x1, x2, . . . , xt}|
≥ 2. If v4 6∈ P or v4 ∈ P and v4 is not paired with z′1, then |P ∩ {z′1, v3, x1, x2, . . . , xt}| ≥ 2
and the set (P − {v3, z′1, x1, x2, . . . , xt, y1, y2, . . . , yt}) ∪ {u′1, u′2, . . . , u′t} is a PD-set of G1
obtained from T + e by subdividing all edges in F with cardinality of less than P. If
v4 ∈ P and v4 is paired with z′1, then the set (P − {v4, z′1, x1, x2, . . . , xt, y1, y2, . . . , yt}) ∪
{v3, u′2, u′3, . . . , u′t} is a PD-set of G2 obtained from T + e by subdividing the edges in F with
cardinality of less than P. By Proposition 1, we have γpr(T′) > γpr(Gi) ≥ γpr(T + e) for
each i ∈ {1, 2}. Therefore, in either case, we have sdγpr (T + e) ≤ n/2 + 2. It follows from
Proposition 11 that sdγpr (T) + sdγpr (T + e) ≤ n + 2.

Subcase 1.2. v4 is not a stem and there is a path v4w2w1 in T such that deg(w1) = 1
and deg(w2) = 2.

If e is incident to w2, then it follows from Propositions 9 and 11 that sdγpr (T) +
sdγpr (T + e) ≤ n + 2. Hence, we assume that w2 6∈ {x, y}. First, let w1 6∈ {x, y}. Let T′

be obtained from T + e by subdividing the edges v3ui and uiu′i with the vertices xi and yi,
respectively, for each i and the edges v3v4 and v4w2 with the vertices r and s, respectively.
By our assumptions, it is not difficult to verify that the number of subdivided edges is at
most n/2. As above, we can see that γpr(T′) > γpr(T + e), and thus sdγpr (T + e) ≤ n/2.
We deduce from Proposition 11 that sdγpr (T) + sdγpr (T + e) ≤ n.

Now, let w1 ∈ {x, y}. We distinguish the following situations.

(1.2.1) v4 /∈ {x, y}.
Let N(v4) = {z1 = v3, z2 = v5, z3 = w2, z4, . . . , z`}. Note that each component of
(T + e)− {v4zi | 1 ≤ j ≤ `} has order at least two. Let T′ be obtained from T + e by
subdividing the edges v3ui and uiu′i with the vertices xi and yi, respectively, for each
i, the edge v4zj with vertex z′j for each j, and the edges w2w1 and e with the vertices q1

and q2, respectively. By our assumptions, it is not difficult to verify that the number
of subdivided edges is at most (n + 3)/2. We show that γpr(T′) > γpr(T + e). Let
P be a γpr(T′)-set, and let F be the set of all edges in {w1w2, e, v4zj | 2 ≤ j ≤ `}
whose subdivision vertices are in P. To paired-dominate u′i, we may assume that
ui, yi ∈ P for each i. On the other hand, to paired-dominate v3, we must have
|P ∩ {v4, z′1, v3, x1, x2, . . . , xt}| ≥ 2.

If v4 6∈ P or v4 ∈ P and v4 is not paired with z′1, then |P ∩ {v3, z′1, x1, x2, . . . , xt}| ≥ 2,
and the set (P− {v3, z′1, x1, x2, . . . , xt, y1, y2, . . . , yt}) ∪ {u′1, u′2, . . . , u′t} is a PD-set of
G3 obtained from T + e by subdividing the edges F with cardinality of less than P. If
v4 ∈ P and v4 is paired with z′1, then the set (P−{v4, z′1, x1, x2, . . . , xt, y1, y2, . . . , yt})∪
{v3, u′2, u′3, . . . , u′t} is a PD-set of G4 obtained from T + e by subdividing the edges
in F with cardinality of less than P. By Proposition 1, we have γpr(T′) > γpr(Gi) ≥
γpr(T + e) for each i ∈ {3, 4}. Therefore, in either case, we have sdγpr (T + e) ≤
(n + 3)/2. It follows from Proposition 11 that sdγpr (T) + sdγpr (T + e) < n + 2.

(1.2.2) v4 ∈ {x, y}.
Then, e = v4w1. Let N(v4) = {z1 = v3, z2 = v5, z3 = w2, z4, . . . , z`}, and let T′ be
obtained from T + e by subdividing the edges v3ui and uiu′i with the vertices xi and
yi, respectively, for each i, the edge v4zj with vertex z′j for each j, and the edges w2w1
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and e. By our assumptions, it is not difficult to verify that the number of subdivided
edges is at most n/2 + 2. Using an argument similar to that described in (1.2.1), we
can see that sdγpr (T) + sdγpr (T + e) ≤ n + 2.

Subcase 1.3. All children of v4 except v5 have depth 3.
Considering the above cases and subcases and the choice of diametral path, we may

assume that each component of (T + e)− v4 has at least three vertices. Let N(v4) = {z1 =
v3, z2 = v5, z3, . . . , z`}, and let T′ be obtained from T + e by subdividing the edges v3ui and
uiu′i with the vertices xi and yi, respectively, for each i and the edges v4zj with vertex z′j
for each j. By our assumptions, it is not difficult to verify that the number of subdivided
edges is at most n/2 + 1. We show that γpr(T′) > γpr(T + e). Let P be a γpr(T′)-set.
To paired-dominate u′i, we may assume that ui, yi ∈ P for each i. On the other hand, to
paired-dominate v3, we must have |P ∩ {v3, v4, z′1, x1, . . . , xt}| ≥ 2.

Let F be the set of subdivided edges incident to v4 whose subdivision vertices be-
long to P. If v4 6∈ P or v4 ∈ P and its partner is in {z′2, . . . , z′s}, then we have |P ∩
{v3, z′1, x1, . . . , xt}| ≥ 2, and the set (P− ({v3, z′1}∪ {xi, yi | 1 ≤ i ≤ t})∪{v3, u1}∪ {ui, u′i |
2 ≤ i ≤ t} is a PD-set of G5 obtained from T + e by subdividing the edges of F with cardi-
nality of less than P.

If v4 ∈ P, and its partner is z′1, then the set (P − ({v4, z′1} ∪ {yi | 1 ≤ i ≤ t}) ∪
{v3, u1} ∪ {ui, u′i | 2 ≤ i ≤ t} is a PD-set of G6 obtained from T + e by subdividing the
edges of F with cardinality of less than P. By Proposition 1, we have γpr(T′) > γpr(Gi) ≥
γpr(T + e) for each i ∈ {5, 6}. Therefore, in either case, we have sdγpr (T + e) ≤ n/2 + 1. It
follows from Proposition 11 that sdγpr (T) + sdγpr (T + e) ≤ n + 1.

Case 2. x, y ∈ V(T1).

By our earlier assumptions, T has no strong stem, neither x nor y is a stem, and if
both x and y are leaves, then the stem of x or y is of at least degree 3. Therefore, we may
assume without a loss of generality that x = v3 and y = v1. Let T′ be obtained from
T + e by subdividing the edges v3v2, v2v1, and e by the subdivision vertices x1, x2, and x3,
respectively. We show that γpr(T′) > γpr(T + e). Let P be a γpr(T′)-set. If v3 6∈ P, then we
must have |P ∩ {x1, x2, x3, v1, v2}| ≥ 4, and clearly (P− {x1, x2, x3, v1, v2}) ∪ {v1, v2} is a
PD-set of T + e with cardinality of less than P.

If v3 ∈ P and its partner is not x1 or x3, then |P ∩ {x1, x2, x3, v1, v2}| ≥ 2, and hence
P− {x1, x2, x3, v1, v2} is a PD-set of T + e with cardinality of less than P. If v3 ∈ P and its
partner is x1 or x3, then |P ∩ {x1, x2, x3, v1, v2}| ≥ 3, and hence (P− {x1, x2, x3, v1, v2}) ∪
{v2} is a PD-set of T + e with cardinality of less than P. Therefore, we have sdγpr (T + e) ≤ 3.
It follows from Proposition 11 that sdγpr (T) + sdγpr (T + e) ≤ n/2 + 3 < n + 2.

Case 3. One of x and y belongs to V(T1), and the other does not belong to V(T1).

Assume, without a loss of generality, that x ∈ V(T1) and y /∈ V(T1). By our earlier
assumption, x is not a stem. We distinguish two subcases.

Subcase 3.1. x is a leaf of T1.
Assume without a loss of generality that x = v1. If degT(v3) = 2 or y is a leaf,

then it follows from Proposition 6 that sdγpr (T + e) ≤ 4, and the result follows from
Proposition 11. Let degT(v3) ≥ 3, and y is not a leaf. By our earlier assumption, y is not
a stem, and hence each component of (T + e)− y has at least two vertices. Note that the
component of (T + e)− y containing v3 has at least five vertices and, thus, degT+e(y) <
n/2− 1. Let T′ be obtained from T + e by subdividing the edges v3v2, v2v1, and v1y by the
subdivision vertices x1, x2, and x3, respectively, and all edges incident to y in T. We show
that γpr(T′) > γpr(T + e). Let P be a γpr(T′)-set, F′ be the set of subdivided edges incident
to y whose subdivision vertices are in P and let T1 be obtained from T + e by subdividing
the edges in F′.

First, we assume that y ∈ P and y is paired with x3. Then, clearly |P∩{x1, x2, v1, v2} ≥
2. We may assume that v3 ∈ P, otherwise u2, u′2 ∈ P, and hence we may consider
(P− {u′2}) ∪ {v3} as a γpr(T′)-set. If v3 is paired with a vertex other than x1, then P−
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{x1, x2, v2, v1} is a PD-set of T1 with cardinality of less than P. If v3 is paired with x1, then
|P∩ {v2, v1, x2}| ≥ 2 and (P−{x1, x2, v1, v2})∪ {v2} is also a PD-set of T1 with cardinality
of less than P.

Second, assume that y ∈ P and y is paired with a subdivision vertex other than x3.
Then, |P ∩ {x1, x2, v1, v2, x3}| ≥ 2. As above, we may assume that v3 ∈ P. If v3 is paired
with a vertex other than x1, then P− {x1, x2, v1, v2, x3} is a PD-set of T1 with cardinality of
less than P. If v3 is paired with x1, then u2, u′2 ∈ P and hence P− {u′2, x1, x2, v1, v2, x3} is a
PD-set of T2 obtained from T by subdividing the edges in F′ − {e}, with cardinality of less
than P.

Finally, we assume that y 6∈ P. Then, y must be dominated by a subdivision vertex.
As above, we may assume that v3 ∈ P. We consider the following.

(3.1.1) x3 ∈ P.
Then, x3 and v1 are partners and to paired-dominate v2, we must have |P∩{x1, x2, v2, v3}| ≥
2. If v3 is paired with x1, then u2, u′2 ∈ P, and hence (P− {u′2, x1, x2, x3, v1, v2}) ∪
{v1, v2} is a PD-set of T1 with cardinality of less than P. If v3 is paired with a vertex
other than x1, then |P∩{x1, x2, v2}| ≥ 2, and hence (P−{x1, x2, x3, v1, v2})∪{v1, v2}
is a PD-set of T2 with cardinality of less than P.

(3.1.2) x3 6∈ P.
Then, we must have v1, x2 ∈ P. Let wyz ∈ P be a subdivision vertex that dominates
y, and let T3 be obtained from T + e by subdividing the edges F′ \ {yz}. If v3 is
paired with x1, then u2, u′2 ∈ P, and hence (P− {u′2, x1, x2, x3, v1, v2, wyz}) ∪ {y} is a
PD-set of T2 with cardinality of less than P. If v3 is paired with a vertex other than x1,
then (P− {x1, x2, x3, v1, v2, wyz}) ∪ {y} is also a PD-set of T3 with cardinality of less
than P.

In all cases, it follows from Proposition 1 that γpr(T′) > γpr(Ti) ≥ γpr(T + e) for each
i ∈ {1, 2, 3}. Therefore, we have sdγpr (T + e) ≤ degT+e(y) + 2 < n/2 + 1. It follows from
Proposition 11 that sdγpr (T) + sdγpr (T + e) < n + 1.

Subcase 3.2. x = v3.
By assumption, y is not a support vertex. We consider the following situations.

(3.2.1) deg(y) = 1.
Let w1 be the stem of y and w2 be the parent of w1. Let T′ be obtained from T + e
by subdividing the edges v3v4, v3y, yw1, and w1w2 with the vertices y1, y2, y3, y4,
respectively, and the edge v3ui with vertex xi for each i. Let F be the set of all
subdivided edges. Note that by the choice of the diametral path v1v2 · · · vk, it is not
difficult to check that |F| ≤ n/2 + 2. We show that γpr(T′) > γpr(T + e). Let P be a
γpr(T′)-set. To paired-dominate v1, we must have |P ∩ {x1, v1, v2}| ≥ 2.

If v3 ∈ P and v3 is the partner of x1, then (P− {x1, v1, v2}) ∪ {v2} is a PD-set of T3
obtained from T + e by subdividing the edges in F \ {v2v3} with cardinality of less
than P. If v3 ∈ P and v3 is the partner of wv3z ( 6= x1), then (P− {x1, v1, v2, wv3z}) ∪
{v2} is a PD-set of T4 obtained from T + e by subdividing the edge in F \ {v3v2, v3z}
with cardinality of less than P.

In the following, we may assume that v3 6∈ P. To paired-dominate v1, we may assume
that x1, v2 ∈ P, and, to paired-dominate y2, we must have y ∈ P. First, we assume
that y and y2 are partners. If y3 ∈ P, then (P− {y2, y, x1}) ∪ {v3} is a PD-set of T5
obtained from T + e by subdividing the edges in F \ {v3y, v2v3} with cardinality of
less than P.

If y3 6∈ P, then (P− {y2, y, x1}) ∪ {v3} is a PD-set of T6 obtained from T + e by sub-
dividing the edges in F \ {v3y, v2v3, yw1} with cardinality of less than P. Second, we
assume that y and y3 are partners. If y4 6∈ P, then w2 ∈ P and (P−{y, y3, x1})∪ {v3},
is a PD-set of T7 obtained from T + e by subdividing the edges in F \ {yw1, v3y, v3v2}
with cardinality of less than P. If y4 ∈ P, then (P− {y, y3, x1}) ∪ {v3} is also a PD-set
of T7 with cardinality of less than P.
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In all cases, it follows from Proposition 1 that γpr(T′) > γpr(Ti) ≥ γpr(T + e) for
each i ∈ {3, 4, . . . , 7}. Therefore, we have sdγpr (T + e) ≤ |F| ≤ n/2 + 2. It follows
from Proposition 11 that sdγpr (T) + sdγpr (T + e) ≤ n + 2.

(3.2.2) There is a path yy1y2 in T satisfying that deg(y2) = 1 and deg(y1) = 2.
Let T′ be obtained from T + e by subdividing the edge v3ui with vertex xi for each
i, the edges v3v4, e, and yy1 with the vertices z1, z2, and z3, respectively, and the
other edges incident to y. Let F be the set of all subdivided edges. We note that
|F| ≤ n/2 + 2. Let P be a γpr(T′)-set. To paired-dominate v1 and y2, we must have
|P ∩ {x1, v1, v2}| ≥ 2 and |P ∩ {y1, y2, z3}| ≥ 2. To dominate z2, we must have y ∈ P
or v3 ∈ P.

First, assume that y ∈ P. If y is paired with z3, then y1, y2 ∈ P and P − {y2, z3}
is a PD-set of T8 obtained from T + e by subdividing the edges F − {yy1} with
cardinality of less than P. If y is paired with z2, then (P − {y1, y2, z2, z3}) ∪ {y1}
is a PD-set of T9 obtained from T + e by subdividing the edges F − {yy1, e} with
cardinality of less than P. If y is partner with a subdivision vertex wyz /∈ {z2, z3}, then
(P− {y1, y2, z3, wyz}) ∪ {y1} is a PD-set of T10 obtained from T + e by subdividing
the edges F− {yz, yy1} with cardinality of less than P.

Second, assume that v3 ∈ P. If v3 is paired with a subdivision vertex wv3z 6= x1, then
(P− {v1, v2, x1, wv3z}) ∪ {v2} is a PD-set of T11 obtained from T + e by subdividing
the edges F− {v3z, v3v2} with cardinality of less than P. If v3 is paired with x1, then
(P− {x1, v1, v2}}) ∪ {v2} is a PD-set of T12 obtained from T + e by subdividing the
edges F− {v3v2} with cardinality of less than P.

In all cases, it follows from Proposition 1 that γpr(T′) > γpr(Ti) ≥ γpr(T + e) for
each i ∈ {8, 9, . . . , 12}. Therefore, we have sdγpr (T + e) ≤ |F| ≤ n/2 + 2. It follows
from Proposition 11 that sdγpr (T) + sdγpr (T + e) ≤ n + 2.

(3.2.3) There is no path yy1y2 in T with deg(y2) = 1 and deg(y1) = 2.
Let w1w2 · · ·wm be the shortest (w1, wm)-path in T such that w1 is a leaf of T and
wm = y. By our assumption, T has no strong stem. Thus, we have m ≥ 4. Let T′1 be
the component of T− {w3w4} containing w1. Note that x, y /∈ V(T′1). Now, using the
argument applied in Case 1, we can see that sdγpr (T) + sdγpr (T + e) ≤ n + 2.

This completes the proof.

3. Conclusions

The main objective of this paper was to study the paired-domination subdivision
number sdγpr (G) of a graph G defined to be the minimum number of edges that must be
subdivided (where each edge in G can be subdivided at most once) in order to increase the
paired-domination number of G. We focused on trees and proved that, for any tree T 6= P5
of order n ≥ 3 and any edge e 6∈ E(T), sdγpr (T) + sdγpr (T + e) ≤ n + 2. As a consequence
of this study, we pose the following conjecture.

Conjecture 1. Let G be a connected graph of order n ≥ 6. Then, sdγpr (G) + sdγpr (G + e) ≤
n + 2.
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