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Abstract: In this paper, we analyze the C∞ smooth curve of constant width using the characteristic
equation of a time delay system. We prove that a closed convex curve must be a circle if it is still
a smooth curve of constant width after taking any number of derivatives. Finally, the simulation
results are presented for analyzing the influence of derivative orders on a smooth non-circular curve
of constant width.
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1. Introduction

The curves of constant width are a type of interesting curve that can be used to design
precise mechanical structures [1]. Since Euler first proposed the concept of the curve
of constant width, researches of the non-circular curve of constant width have attracted
extensive attention [1–4]. In 1876, an engineer named Reuleaux constructed a curve of
constant width that was based on an equilateral triangle, which is now known as the
Reuleaux triangle. In 1997, Rabinowitz [5] investigated the non-circular curve of constant
width and found its parametric equation, so as to plot the curve with a graphing calculator.
In 2010, Paciotti [6] studied the curves of constant width and the shadows that they cast, and
then used the shadows to distinguish different curves. In 2011, Xu et al. [7] used an isosceles
trapezoid to construct another curve of constant width. This basic construction process
can be generalized to construct curves of constant width that are based on special 2n-sided
polygons with N groups parallel to the opposite sides. In 2015, Yang [8] constructed a
non-circular curve of constant width using the opposite top sector, and the obtained curve
of constant width included the results by Reuleaux and [7]. Additionally, Mozgawa [9]
provided a generalization of the theorem characterizing ovals of constant width proved
by Mellish [10]. Moreover, Resnikoff [11] investigated the curves and surfaces of constant
width by means of Fourier series, with some additional results regarding general ovals.
However, the main drawback of these methods is that the constructed curves of constant
width are piecewise smooth. To address this issue, on the basis of the piecewise smooth
curve, a C1 curve of constant width with better smoothness can be constructed using the
outer parallel lines [12]. In order to obtain a smoother curve of constant width, a class of
C∞ smooth non-circular curves of constant width is constructed using the tangent polar
coordinates of the plane curve based on the Minkowski support function [13]. However, in
terms of these constructions, the first derivative of the parametric equation yields a curve
with a self-intersection point, instead of a C∞ smooth curve.

Being motivated by the above analysis, it is natural to propose the following problem:
whether there exists a C∞ smooth non-circular curve of constant width, such that its
parametric equation after taking any number of derivatives still represents a smooth curve
of constant width. In this paper, we aim to prove that there is no C∞ smooth non-circular
curve of constant width in theory, so that the parametric equation after taking any number
of derivatives is still a smooth curve of constant width. Moreover, the simulation results
are proposed to further illustrate this hypothesis.

Mathematics 2021, 9, 1131. https://doi.org/10.3390/math9101131 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://www.mdpi.com/2227-7390/9/10/1131?type=check_update&version=1
https://doi.org/10.3390/math9101131
https://doi.org/10.3390/math9101131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9101131
https://www.mdpi.com/journal/mathematics


Mathematics 2021, 9, 1131 2 of 7

The remainder of this paper is structured as follows. In Section 2, the related pre-
liminaries and a hypothesis are presented. Section 3 provides the proof of the proposed
hypothesis. Simulation results are reported and discussed in Section 4. Finally, some
conclusions are given in Section 5.

2. Preliminaries and a Hypothesis

Let Γ be a smooth closed curve in the plane R2, and define an arbitrary point in the
region that is bounded by the curve Γ as the origin point of the plane R2. A positive
oriented coordinate system is established as XOY. θ represents the angle between the
positive direction of the OX axis and the perpendicular line that corresponds to the tangent
line of Γ. Moreover, P(θ) denotes the distance from the origin O to the tangent line of Γ,
which is called the support function of the curve Γ.

Setting (x, y) as a point on Γ, it follows from the support function P(θ) that

xcosθ + ysinθ − P(θ) = 0. (1)

Differentiating both sides of (1) with respect to θ gives

− xsinθ + ycosθ − Ṗ(θ) = 0. (2)

When combining (1) with (2), the parametric equation of Γ can be formulated by{
x = P(θ)cosθ − Ṗ(θ)sinθ,
y = P(θ)sinθ + Ṗ(θ)cosθ,

θ ∈ [0, 2π). (3)

If Γ is a smooth closed convex curve, then its support function should satisfy the
following necessary and sufficient conditions.

Lemma 1 ([14]). The function P(θ) of period 2π is the support function of a smooth closed convex
curve, if and only if

P(θ) + P̈(θ) > 0, θ ∈ [0, 2π). (4)

Now, we would like to consider an interesting curve: a smooth curve of constant
width. First, we present the definition of the width of a simple closed convex curve.

Definition 1. The width function of a closed convex curve Γ is defined as

D(θ) = P(θ) + P(θ + π). (5)

If D(θ) = d is a constant, then Γ is called a curve of constant width.

The C∞ smooth curve of constant width is the research objective of this paper. The
so-called C∞ smooth curve means that each component of its parametric equation is in-
finitely differentiable, namely, P(θ) is infinitely differentiable. At present, many researchers
have proposed several methods to construct curves of constant width. However, these
constructed curves of constant width either have corners, such as the Reuleaux polygon,
or have better smoothness derived from outer parallel lines, but the derivative of which
is not smooth again. In addition, there are also some curves of constant width that can
be infinitely differentiated, whereas, after several derivatives the resulting equations no
longer represent curves of constant width.

Accordingly, it is natural to propose the following hypothesis.

Hypothesis 1. For a C∞ smooth curve Γ of constant width, if its parametric equation is still a
smooth curve of constant width after any number of derivatives, then the curve Γ must be a circle.
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3. The Proof of the Hypothesis

Assume that the width of the C∞ smooth curve Γ is d, namely,

P(θ) + P(θ + π) = d, (6)

which is equivalent to
P(θ) + P(θ − π) = d. (7)

After differentiating both sides of (7) with respect to θ, one has

Ṗ(θ) + Ṗ(θ − π) = 0, (8)

which stands for a neutral delay differential equation.
Setting P(θ) = C̃eλθ , and then substituting it into (8) gives the following characteris-

tic equation
λeλθ + λeλ(θ−π) = 0, (9)

which yields
1 + e−λπ = 0 or λ = 0. (10)

When λ = 0, we obtain P(θ) = C̃ = d
2 . In this case, Γ is a circle of radius d

2 . When
λ 6= 0, it is obvious that λ cannot be a real number. Accordingly, when setting λ = α + ωi
and substituting it into (10), one has

e−πα[cos(ωπ)− isin(ωπ)] = −1. (11)

It follows from (11) that {
e−παcos(ωπ) = −1,
e−παsin(ωπ) = 0,

(12)

which implies {
sin(ωπ) = 0,
cos(ωπ) = −1, e−πα = 1.

(13)

Furthermore, we obtain

α = 0, ω = 2k + 1, k ∈ Z. (14)

Therefore, the general solution of (8) is expressed as

P(θ) = C1cos(ωθ) + C2sin(ωθ) + C3. (15)

When substituting (15) into (6), one has

C3 =
d
2

. (16)

It follows from (15) and (16) that

P(θ) = Csin(ωθ + ϕ) +
d
2

, (17)
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where C =
√

C2
1 + C2

2 with constants C1, C2 being decided by the initial condition, ϕ is an

angle, and its value can be derived from sin ϕ = C1√
C2

1+C2
2

or cos ϕ = C2√
C2

1+C2
2
. By using

Lemma 1, we see that the smooth curve Γ is a closed convex curve, if and only if

d
2
− C(ω2 − 1) > 0. (18)

For simplicity, we assume that the support function is

P(θ) = Csin(ωθ) +
d
2

. (19)

Substituting (19) into (3) gives{
x = [ d

2 + Csin(ωθ)]cosθ − Cωcos(ωθ)sinθ,
y = [ d

2 + Csin(ωθ)]sinθ + Cωcos(ωθ)cosθ.
(20)

Equation (20) can be rewritten as{
x = d

2 cosθ + C
2 [sin[(ω + 1)θ] + sin[(ω− 1)θ]]− Cω

2 [sin[(ω + 1)θ]− sin[(ω− 1)θ]],
y = d

2 sinθ + C
2 [cos[(ω− 1)θ]− cos[(ω + 1)θ]] + Cω

2 [cos[(ω + 1)θ] + cos[(ω− 1)θ]].
(21)

In what follows, we would like to discuss the curves Γ described by (21) in different
values of ω. From (14), we see that ω = 2k + 1, k ∈ Z. Therefore, we will analyze the two
cases of ω = 1 and ω > 1, respectively. When ω = 1, (21) becomes{

x = d
2 cosθ,

y = d
2 sinθ + C,

(22)

which implies that the curve Γ is a circle.
When ω > 1, taking the n-th derivative of (21) with respect to θ gives

x(n) = d
2 cos(θ + 1

2 nπ) + C
2

[
sin[(ω + 1)θ + 1

2 nπ](ω + 1)n + sin[(ω− 1)θ + 1
2 nπ](ω− 1)n

]
−Cω

2

[
sin[(ω + 1)θ + 1

2 nπ](ω + 1)n − sin[(ω− 1)θ + 1
2 nπ](ω− 1)n

]
,

y(n) = d
2 sin(θ + 1

2 nπ) + C
2

[
cos[(ω− 1)θ + 1

2 nπ](ω− 1)n − cos[(ω + 1)θ + 1
2 nπ](ω + 1)n

]
+Cω

2

[
cos[(ω + 1)θ + 1

2 nπ](ω + 1)n + cos[(ω− 1)θ + 1
2 nπ](ω− 1)n

]
.

(23)

From (23), we see that, when n is large enough, the term containing (ω + 1)n plays a
predominant role in the parametric equation. In this case, (23) can be approximated to the
following equation{

x(n) = C
2 (1−ω)(ω + 1)nsin[(ω + 1)θ + 1

2 nπ],
y(n) = C

2 (ω− 1)(ω + 1)ncos[(ω + 1)θ + 1
2 nπ],

θ ∈ [0, 2π). (24)

System (24) comprises a circle of radius |C2 (1 − ω)(ω + 1)n|, and this circle goes
around (ω + 1) times when θ ∈ [0, 2π). As a result, when n is large enough, the trajectory
of system (24) is no longer a simple closed curve.

From the above analysis, we see that Γ is still a C∞ smooth curve of constant width
after taking any times of derivatives, if and only if ω = 1. This proves the hypothesis.

Remark 1. Although different non-circular smooth curves of constant width have been constructed
in the literature, the obtained curves after taking any number of derivatives have not been further
studied. From the proof procedure shown above, it can be seen that a non-circular curve of constant
width is no longer a simple closed curve after taking enough derivatives, although it can be taking
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any number of derivatives. However, even though it does not represent a simple closed curve
after taking many times of derivatives, the resulting curve, after taking enough derivatives, can be
approximated to a circle that has turned (ω + 1) times.

4. Simulation Results

In this section, we will present some simulation results to illustrate the main result of
this paper.

First, for the support function (19), we set C = 1, d = 100, ω = 3, 5, 7, 9. When
ω = 3, 5, 7, Γ in (20) represents a smooth curve of constant width, respectively, as can be
seen in Figure 1a. However, for ω = 9, since (18) is not satisfied, Γ in (20) is not a simple
closed convex curve according to Lemma 1, as depicted in Figure 1b.

To further illustrate the proposed result, we set C = 1, d = 2000, ω = 3 in (19)
and take different derivative orders of (21). When the derivative order is less than 2, the
curve after the corresponding derivative is still a curve of constant width, as shown in
Figure 2a, as well as the blue line in Figure 2b. When the derivative order is equal to 3,
the curve is no longer convex, as depicted in the purple line in Figure 2b. Moreover, if
the derivative order is increasing, the obtained curve is able to intersect itself, and it is
no longer a simple closed curve, as shown in Figure 3a. When the derivative order is
continuously increased, the resulting curve is approximated to (24). Namely, the curve is
a circle of radius |C2 (1− ω)(ω + 1)n| that has turned four times, as shown in Figure 3b.
In addition, when the derivative order is large enough, the four circles will overlap into
one circle.
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(a) d = 100, c = 1, ω = 3, ω = 5 and ω = 7
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Figure 1. Trajectory curves of (20) with different ω.
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Figure 2. Trajectory curves with different number of derivatives (d = 2000, c = 1, ω = 3).
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(a) The fourth and fifth derivative curves
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Figure 3. Trajectory curves with different number of derivatives (d = 2000, c = 1, ω = 3).

5. Conclusions

This paper innovatively introduces the characteristic equation of a time delay system
to analyze the C∞ smooth curve of constant width. We can construct a Cr smooth non-
circular curve of constant width on the basis of the above analysis. We also prove that there
is no C∞ smooth non-circular curve of constant width, which is still a curve of constant
width after taking any number of derivatives.
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