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Abstract: The paper addresses the application of Volterra integral equations of the first kind for
modeling dynamic power systems. We study the problem of forecasting the commissioning of
capacities of the electric power system, taking into account various hypotheses about the dynamics of
equipment aging, and the known prehistory. The numerical results of the application of two models
to the problem of the development of a large electric power system using the example of the Unified
Energy System of Russia are presented. Theoretical results were formulated for a two-dimensional
Volterra integral equation of the first kind with variable limits of integration. This class of equations
arises when solving the actual problem of identifying variable characteristics of a nonlinear dynamic
system of the “input-output” type.
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1. Introduction

The main problems of the mathematical modeling of heat and power plants are
associated, as a rule, with the identification [1] and diagnostics of the state [2] of technical
objects. Depending on the types of models used, the following key directions can be chosen.

1. Problems of calculating the statistical modes of power plants and their optimiza-
tion [3]. Mathematical models for solving such problems are traditionally represented
by systems of nonlinear algebraic equations, supplemented by a system of inequalities
that ensure the feasibility of the parameter values. The methods for constructing
such models are based mainly on the linearization of the original formulation of
the problem.

2. Problems of calculating dynamic characteristics and the analysis of transient pro-
cesses. In terms of content, the mathematical tool takes into account the principles of
hierarchical modeling of energy objects. In particular, in heat power engineering, sep-
arate formulations are considered for studying the dynamics of elements [4], sections
of the steam-water path, and heat exchangers in general [5]. Nonlinear differential
equations are the main research tool. At the same time, models of designed [6,7] and
operating devices [8,9] are separated, the equipment state of which changes over time.

3. Estimating the technical condition of heat and power equipment in order to analyze
dynamic stability, prevent emergencies, replace obsolete equipment, and search
for optimal technical parameters [10,11]. Mathematical models aimed at solving
problems of this type are based on a detailed representation of electromechanical [12]
and physicochemical processes [13].

4. The problem of determining the optimal age structure of generating capacities, based
on the analysis of the effectiveness of investment projects [14,15]. The age composition
of the plants’ equipment is determined both by the volume of commissioning of
new equipment and the scale of modernization and decommissioning of generating
equipment. Such problems are often solved using linear programming methods [16].
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The authors followed the following motivation when choosing the mathematical
tools for research in this paper. Each of the problems listed above is described by that
type of model, which is determined by the initial aim of modeling. This is not always
convenient, since, in the course of modeling an object, you sometimes have to use different
types of models. For example, first it is required to solve the problem of identifying the
parameters of an object, and then, the problem of controlling the input or output signals.
Furthermore, it would be nice to be able to model energy objects with different parameters
using the same tool. The question arises about a universal approach that could be applied to
various objects of heat and power engineering, depending on the meaning of the input and
output parameters.

Models based on integral equations are one of these universal tools. The use of
methods of integral equations for the analysis of dynamical systems developed intensively
from the middle of the twentieth century. Then, this direction was supplanted in many
applications by differential equations, being simpler and easier to study. The classical
form of dynamic macroeconomic models [17] is based on the use of ordinary differential
equations systems. This is inconvenient to a certain extent since actual dynamical systems
can be described by non-smooth or even discontinuous functions. Moreover, the classical
forms of presentation of dynamic models are poorly suited for describing the dynamics
of delaying and completely refusing obsolete equipment. The description of dynamic
models using systems of integral equations allows eliminating the indicated disadvantages.
Furthermore, due to the greater compact notation and stability of the integration operation
in comparison with the differentiation operation, integral representations have theoretical
and applied advantages.

The analysis and application of the corresponding results show the relevance of
the development of a mathematical apparatus based on high-speed integral models that
describe well the dynamic properties of the systems studied and make it possible to provide
a compromise between the modeling accuracy and the speed of computing algorithms.
In this paper, we will consider the application of models based on non-classical Volterra
integral equations to the modeling of the electric power system.

The purpose of our study is related to the problem of aging of the generating equip-
ment of the electric power industry in Russia. The power of Russian power plants grew
at the fastest rates during the 1980s. By now, all these capacities have worked out their
resource. The commissioning of capacities has grown significantly only from the beginning
of the 2010s. As a result, the average age of power plant equipment is 30–35 years, with the
share of obsolete equipment being more than 50%.

The well-known models of the development of electric power systems (EPS) [18,19]
do not describe aging processes; the analysis of the efficiency of equipment replacement is
performed outside the framework of these models based on a general methodology for
analyzing the effectiveness of investment projects [20].

Many works concerning the influence of equipment aging on the reliability of equip-
ment operation at power facilities are known. In works [21–23], probabilistic methods are
used to make decisions in the operation of obsolete equipment. The paper [24] proposes a
method for applying ontologies to control the operation of aging equipment using online
sensors to control mechanisms. All known mathematical models related to forecasting the
development of the electric power industry are based on the use of linear programming
and probabilistic methods.

The proposed dynamic model uses a fundamentally different mathematical apparatus
based on non-classical Volterra integral equations. The main interest is the ability of the
integral developmental model to describe the following factors:

• The dynamics of the commissioning of production facilities on the prehistory;
• The impact of scientific and technological progress;
• The mechanism of elements’ aging in dynamics due to the selection of several age

groups;
• Decommissioning and replacement of obsolete equipment;
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• The given dynamics of the available capacity in the future.

The developed model is used to analyze the long-term forecast of the commissioning
of generating capacities with various strategies for dismantling obsolete capacities. Such
an analysis is necessary for a qualitative analysis of the planning for the replacement of
obsolete equipment within the framework of a large electric power system. A more detailed
description of the generation structure was not used in our study. It should be noted that
the model is universal and can be applied to analyze the development of a wide range of
dynamical systems.

This paper is organized as follows. Section 2 consists of general information about the
Volterra equation of the first kind with prehistory and the models based on it, including a
relevant literature review. The application of the developed theory to problems in power
engineering and the comparison of new results with those obtained earlier are considered
in Section 3. Section 4 studies the specificity of two-dimensional integral equations of
Volterra of the first kind with prehistory. The conclusion summarizes the main results and
gives a perspective on future workings.

2. Integral Models Based on Volterra Equations of the First Kind

In 1977, V.M. Glushkov introduced a new class of integral models of developing
systems [25]. The main distinguishing specialty of such models is the Volterra operators
with variable lower limits of integration, reflecting the dynamics of replacing obsolete
system elements with new ones. These models are based on the Volterra integral equation
of the first kind

t∫
a(t)

K(t, s)x(s)ds = y(t), t ∈ [0, T], (1)

where x(t) is the number of new elements created in a time unit at time t; K(t, s) is the
labor productivity in the system; a(t) is the time boundary of removing obsolete elements;
and y(t) is production of the external product at time t.

According to the terminology of [26], we will call such equations nonclassical to
emphasize their difference from the standard Volterra equations of the first kind, for which
only the upper limit of integration is variable. The specificity of (1) is largely determined
by the values of the lower limits at the time of the origin of the system a(0). The theory
and numerical methods for solving Equation (1) for different initial conditions a(0) < 0
and a(0) = 0 have significant differences and were studied in detail in [26]. For the case of
a(0) < 0, it is necessary to specify the solution in prehistory x(t) = x0(t), t ∈ [a(0), 0). It
is this case that is characteristic of the integral models introduced by V.M. Glushkov and
further developed in his works and the works of his followers [25,27–29]. For the existence,
uniqueness, and continuity of the solution for (1) in t ∈ [0, T], the conditions:

K′t(t, s) ∈ C∆, ∆ = {t, s|a(t) ≤ s ≤ t, t ∈ [0, T]};

K(t, t) 6= 0, t ∈ [0, T];

a′(t) ≥ 0, t ∈ [0, T];

t− a(t) > 0, t ∈ [0, T];

y′(t) ∈ C[0,T];

x(t) = x0(t), t ∈ [a(0), 0)

must be satisfied, and the following two coordination conditions met:

y(0) =
0∫

a(0)

K(0, s)x0(s)ds;
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y′(0) = K(0, 0)x0(0)− a′(0)K(0, a(0))x0(a(0)) +
0∫

a(0)

K′t(0, s)x0(s)ds.

The corresponding theorem and its proof are given in [26] (p. 60).
Since (1) has a solution in an analytical form only in special cases, numerical methods

are used to solve it. Note that the application of the quadrature methods developed for
the classical Volterra integral equations in solving (1) in case a(0) < 0 leads to a loss of
the order of convergence in the grid step. This is due to the appearance of an error in
the approximation of the integral by quadrature in prehistory. Monograph [26] proposes
modifications of quadrature methods to avoid this drawback.

The application of the apparatus of integral models of the Glushkov type for modeling
EPS development began in the middle of the 1980s [30,31]. At the same time, the following
notations were used to describe the EPS: x(t) for t ∈ [0, T] is the required total (for EPS)
commissioning of electric capacities (MW); the kernel K(t, s) is an efficiency coefficient of
x(t) at the moment t (describes the process of physical aging of the equipment); t− a(t) is
the lifetime (year) of the oldest electric capacities in the EPS at the moment t; x0(t) is the
known commissioning of electric capacities (MW) in prehistory [a(0), 0). The right-hand
side of Equation (1) y(t) determines the total available capacity of the EPS (MW) at moment
t, taking into account the decommissioning of the capacities after their lifetime.

In following works [32–36], mathematical models of the development of generating
capacities of EPS were considered with different degrees of aggregation by power plant
types. There are estimated models (analysis of the consequences of a given strategy
for renewing capacities), optimization ones (optimization of the capacities lifetime), and
models that describe the processes of extending the lifetime of generating equipment
(modernization). The model of EPS development based on integro-algebraic equations
with variable limits of integration is presented in [37].

In [38,39], in connection with the study of the Volterra equation of the first kind with a
discontinuous kernel, the integral equation

n

∑
i=1

ai−1(t)∫
ai(t)

Ki(t, s)x(s)ds = y(t), t ∈ [0, T], (2)

was considered, where ai(0) = 0, i = 0, n; a0(t) ≡ t, an(t) ≡ 0. This equation can be
considered a generalization of Equation (1) ((2) turns into (1) for n = 1).

In work [40], A.S. Apartsyn proposed Equation (2) to be taken as the basis for con-
structing an integral model for the development of EPS, taking into account the aging
of its elements. Such models make it possible to describe in detail the technical and eco-
nomic parameters of the generating equipment of EPS power plants, taking into account
its age structure. For this, all generating equipment is divided into certain age groups with
different technical and economic parameters of the equipment functioning, reflecting the
aging processes.

Equation (2) was studied in [41,42]. In [42], sufficient Hadamard correctness conditions
of the problem (2) on the pair

(
C[0,t], C◦(1)

[0,t]

)
are given. Here, by C◦(1)

[0,t] we mean a space of
functions y(t) continuously differentiable on [0, T] with the condition y(0) = 0.

Three types of models describing different assumptions about the mechanisms of
system elements aging were proposed in [40]. This paper discusses examples of applying
two of them to modeling long-term strategies for the development of a large EPS.

2.1. Model 1

In the model of the first type [40], it is assumed that the functions of transition from
one age group to another have the form ai(t) = t − Ti, i = 0, n, T0 = 0; the efficiency
coefficient is a constant value within one age group, i.e., Ki(t, s) ≡ βi, at which 1 ≡ β1 ≥
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β2 ≥ . . . ≥ βn ≥ 0. Moreover, βn ≡ 0 means the decommissioning of capacities whose age
exceeds the age limit Tn−1.

Four age groups are identified in the EPS development model: young (new) capacities,
middle-aged and older capacities with deteriorated technical and economic parameters
due to aging, and even older capacities decommissioned, for which β4 ≡ 0.

According to (2), for such age groups, we have the following equation:

t∫
t−T1

x(s)ds + β2

t−T1∫
t−T2

x(s)ds + β3

t−T2∫
t−T3

x(s)ds = y(t), t ∈ [t0, T], (3)

where t0 is the moment of the beginning of the forecast, which may not coincide with the
beginning of the system origin. A theorem was proven on the existence and uniqueness
of a solution for (3) in the class of piecewise continuous functions, and an algorithm was
given for determining the discontinuity points of a solution on any finite segment [40].

Mathematical models of the development of generating capacities of EPS based on the
model (3) at t0 > T3 were considered with different degrees of aggregation by power plant
types. The problem of choosing the optimal integrated strategy for the decommissioning of
obsolete generating equipment using optimization models was investigated. In addition,
the influence of economic indices on the solution of the optimal control problem was
studied [43–45].

2.2. Model 2

The difference of this type of model compared to the previous one is that continuous
functions within the limits of integration ai(t) satisfy the conditions t ≡ a0(t) > a1(t) >
· · · > an(t) ≡ 0 ∀t > 0; ai(0) = 0, i = 1, n, a′i(t) ≥ 0, a′n(0) < · · · < a′1(0) < 1.

Thus, the process of dividing its elements into groups with different efficiency indices
begins from the moment when the system emerges.

Let, in the model of EPS development, ai(t) = αit, i = 0, n, αi is a constant value,
1 ≡ α0 > α1 > . . . > αn ≡ 0, efficiency coefficients Ki(t, s) will still be constant, so (2) has
the form

t∫
α1t

x(s)ds +
n

∑
i=2

βi

αi−1t∫
αit

x(s)ds = y(t), t ∈ [0, T]. (4)

It was shown that Equation (4) is well-posed in the sense of Hadamard on the pair(
C[0,t], C◦(1)

[0,t]

)
under the following condition [40]:

n

∑
i=2
|βi−1 − βi|αi−1 < 1

Thus, both models describe the functioning of a system consisting of n age groups. In
the model of the first type, it is assumed that from the beginning of the system origin until
the moment T1, all elements function with maximum efficiency β1 and belong to the same
age group, the rest of the groups are empty. At the moment T1, the next age group appears
with efficiency β2 and so on up to Tn−1. Elements older than Tn−1 are retired.

In the model of the second type, at the moment of the system origin, all groups appear
at the same time. At the moment t, those elements whose age has exceeded the value αit
move from group i to group i + 1. The retirement of capacities occurs when the capacity
moves to group n, the efficiency of which is equal to 0.

The next section is devoted to using the developed theory for applications in power
engineering.
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3. Applying Integral Models for Modeling Long-Term Strategy of Electric Power Systems

The purpose of this section is to use two approaches to describing the aging of elements
in a developing EPS model to study the adequacy of the model to actual processes and to
develop various strategies for commissioning EPS equipment.

3.1. Problem of Determining Long-Term Strategies Based on Model 1

The problem of determining the long-term development strategies of the EPS of
Russia based on the development model (3) was considered in [40]. This is the problem
of determining the dynamics of commissioning of capacities x(t), which provide a given
growth rate of available capacity y(t). It was assumed that the beginning of modeling
coincides with the moment of the system emergence. For the EPS of Russia, 1950 was taken
as zero (the moment of the system emergence). It is one of the post-war years with a sharp
increase in the commissioning of capacities. The parameters T1 = 30, T2 = 50, T3 = 60, and
T = 100 (corresponding to 2050) were taken to describe age boundaries, β1 = 1, β2 = 0.97,
and β3 = 0.9. In this model, all capacities belong to the same age group in the interval
[0, T1]. The second age group is formed at the moment T1. The third and the fourth age
groups are formed at the moments T2 and T3, correspondingly.

Let us give an example of using model (3) with the use of actual data on the commis-
sioning of capacities in prehistory. The value t0 = 2016 is taken for the beginning of the
forecasting period. The dynamics of commissioning capacity is known in prehistory (from
1950 to 2015) [46]: x(t) = x0(t), t ∈ [1950, 2015]. The growth of the right-hand side y(t)
is 1% per year from the level of 2015. Using (3), the dynamics of commissioning of new
capacities are determined, starting from 2016 and up to 2050 inclusive. The integrals in (3)
were approximated using the right rectangles method with a step h = 1 (year). Figure 1
shows the solution to the forecasting problem. The dynamics of commissioning capacities
in prehistory is marked in blue, the forecasted values of commissioning capacities in green.
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If we consider the vector case when the equipment of power plants is divided into
several types (for example, fossil fuel-fired plants—TPPs, nuclear-fueled plants—NPPs,
and hydroelectric power plants—HPPs), then the mathematical model of EPS development
is a system of equations:

3

∑
i=1

βi1

t∫
t−Ti1(t)

xi(s)ds + βi2

t−Ti1(t)∫
t−Ti2(t)

xi(s)ds + βi3

t−Ti2(t)∫
t−Ti3(t)

xi(s)ds

 = y(t), t ∈ [t0, T]. (5)
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t∫
t−T13(t)

x1(s)ds = γ1(t)

 t∫
t−T13(t)

x1(s)ds +
t∫

t−T23(t)

x2(s)ds +
t∫

t−T33(t)

x3(s)ds

, (6)

t∫
t−T33(t)

x3(s)ds = γ3(t)

 t∫
t−T13(t)

x1(s)ds +
t∫

t−T23(t)

x2(s)ds +
t∫

t−T33(t)

x3(s)ds

, (7)

xi(t) = x0
i (t), t ∈ [0, t0), (8)

xi(t) ≥ 0, t ∈ [t0, T]. (9)

Here, the index “1” for the commissioning capacities corresponds to TPP, “2”—NPP,
“3”—HPP; βij is the efficiency coefficient for equipment of age group j on a power plant of
type i; y(t) is the total available capacity of the electric power system forecasted by experts;
Tij(t) is the upper boundary of the age group j for a power plant of type i, i, j = 1, 3,
0 < Ti1(t) < Ti2(t) < Ti3(t); Ti3(t) is the lifetime of the equipment of type i (the age of the
oldest equipment of type i still in use at the moment t); x0

i (t) are the known commissioning
of electric capacities of type i in prehistory; γ1(t) and γ3(t) are the proportions of TPP and
HPP capacities, correspondingly, in the total composition of generating equipment.

The numerical scheme constructed using the quadrature of the right rectangles to
approximate the integrals in (5)–(9) involves solving a system of linear algebraic equations
at each time step. Moreover, it is important that the nonnegativity condition for the
commissioning capacities (9) be satisfied. If negative values are obtained, we replace them
with zeros (we do not input anything this year), that is, in fact, in (5) we have inequality
instead of equality. Figure 2 shows the solution of the forecasting problem for the vector
case. The forecasted values of commissioning capacities (from 2016 to 2050) are shown
by narrow bars. As you can see, the annual total value of the commissioning capacities
coincides with the scalar case, which confirms the correct operation of the model.
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and the forecasting period (2016–2050) in the vector case.

The problem of optimizing the lifetime of TPP and NPP equipment was considered
in [44] on the basis of the model (5)–(9). The problem is to find such dynamics of the
commissioning of capacities, which would deliver a minimum of total costs for the com-
missioning of new and operation of generating capacities for a given demand for electricity.
A detailed description of the numerical solution of the optimization problem and the
calculation results for actual data for the Unified Energy System of Russia are given in [44].
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3.2. Problem of Determining Long-Term Strategies Based on Model 2

The problem of identifying the parameters αi, βi in model (4) is an independent
complex problem. Therefore, in this work, we will focus on the case of two age groups:

t∫
α1t

x(s)ds + β

α1t∫
α2t

x(s)ds = y(t), t ∈ [t0, T].

Using the known data of commissioning of capacities x(t) and available capacity y(t)
in prehistory from 1950 to 2015, the parameters α1 = 0.35, α2 = 0.08, and β = 0.94 were
selected in an expert way. The beginning of the forecasting period is also t0 = 2016.

In this model, at the time of the system origin, three groups of capacities are formed at
once. The efficiency coefficients in the groups are 1, 0.94, and 0, correspondingly. Setting
the growth of the right-hand side y(t) 1% per year in [2016, 2050] and taking into account
the dynamics of commissioning capacities from 1950 to 2015 [46] (marked in Figure 3
in blue), using the numerical method, we obtain the dynamics of commissioning of
new capacities in the forecasting period from 2016 to 2050 inclusive (marked in Figure 3
in green).
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As for the numerical solution of (4), it should be noted that using quadrature meth-
ods developed for the numerical solution of the classical Volterra equations, concerning
Equation (4) can lead to the fact that just at the first grid node an equation with n unknowns
can arise, where n is the number age groups in the model. The reason for this is the pos-
sible discrepancy between the values of the integration limits ai

(
tj
)

and the nodes of the
uniform grid tj = jh, j = 1, N, Nh = T. A modification of the left rectangles method was
proposed [47], based on the transformation of the original equation to an equivalent one,
in which only the upper limits of integration are variables. The constructed numerical
scheme has the first order of convergence, as in the classical case. Figure 3 shows the results
obtained by the modified method of left rectangles with a step h = 1, which provide a
given growth rate of the available capacity y(t).

Further setting various hypotheses about the growth rates of y(t) for the forecasting
period, it is possible to obtain the corresponding options for the commissioning of capacities
that provide a given growth dynamics of the available capacity.

Comparison of the results of applying model 1 and model 2 (Figures 1 and 3) shows
the obvious influence of the behavior of the dynamics of commissioning of capacities in
prehistory on the behavior of the solution in the forecasting period. In the first case, we
have a solution with noticeable jumps, and model 2 gives a smoother solution, which is
more consistent with the description of the evolutionary process.
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Thus, the constructed models take into account the inertia of the EPS development in
different ways and can be used as suitable methods for modeling the processes of replacing
obsolete equipment in a production system. However, the decision on the preference of the
model must be made by electric power specialists.

In further studies, it is assumed that model 2 will be used for more complex cases
(when the number of age groups is more than 2 and the plants are divided by fuel type).

4. On Two-Dimensional Volterra Equations of the First Kind with Prehistory

Further development of the work is associated with applying multidimensional
Volterra integral equations of the first kind with prehistory. To illustrate the complex-
ity of such a transition, let us consider the specifics of two-dimensional Volterra integral
equations of the first kind with prehistory.

Unlike the one-dimensional Volterra equation of the first kind (1), for which the theory
and numerical methods are quite well developed, a developed theory of multidimensional
equations with prehistory, apparently, does not yet exist. Fundamental results related to
n-dimensional equations with variable upper and lower limits of integration

sp = t−
p

∑
i=0

ωi, (10)

where ω0 = 0, t, ωp ∈ πp =

{
t, ω0, . . . , ωp : 0 ≤

p
∑

j=0
ωj ≤ t ≤ T, ωj ≥ 0

}
, p = 0, n− 1,

are presented in the monograph [26]. In it, the main focus is placed on the situation when
the integrand ϕ does not explicitly depend on the time t. The adaptation of the results
presented in [26] to equations in which ϕ varies with time, so that

sp+1 =
p+1

∑
i=0

ωi,

t, ωp+1 ∈ πp+1 =

{
t, ω0, . . . , ωp+1 : 0 ≤

p+1

∑
j=0

ωj ≤ t ≤ T, ωj ≥ 0

}
, p = 0, n− 1,

takes place instead of (10), is given in [48].
To represent the difficulties arising in the transition from (10), where n ≥ 2, to an

equation with limits of integration sp, sp − h, such that

t, ωp ∈ π̂p =

{
t, ω1, . . . , ωp : h ≤ t ≤ T,

p

∑
j=1

ωj ≤ t− h, ωj ≥ 0

}
, h > 0, p = 1, n− 1, (11)

we recall the known facts for limits of the form (10) in the most important case for applica-
tions n = 2. Consider the situation when the integrand is non-symmetric for the variables
λ1, λ2 [26] (p. 151):

s0∫
0

dλ1

s0∫
s1

ϕ(λ1, λ2)dλ2 = f1(s0, s1),

s0∫
s1

dλ1

s0∫
0

ϕ(λ1, λ2)dλ2 = f2(s0, s1),
(12)

s0 = t, s1 = t − ω1; t, ω1 ∈ π2; s0, s1 ∈ Π(1)
2 = {M(p, q) : 0 ≤ s1 ≤ q ≤ p ≤ s0 ≤ T},

where M(p, q) is a point of the plane with Cartesian coordinates (p, q).
Let it take place

( fi)
′′
s0s1
∈ C

Π(1)
2

, i = 1, 2; (13)

fi(s, s) = 0, f1(s, 0) = f2(s, 0)(= f (s, 0)), s ∈ [0, T]; (14)
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1
2
( f1(s0, s1) + f2(s0, s1)) =

1
2
( f1(s1, s0) + f2(s1, s0)) + f (s0, 0)− f (s1, 0); (15)

( f1)
′′
s0s1

∣∣∣
s0=s1=s

= ( f2)
′′
s0s1

∣∣∣
s0=s1=s

. (16)

Then Equations (13)–(16) are necessary and sufficient conditions for the existence of a
solution for Equation (12)

ϕ(s0, s1) = −( f1)
′′
s0s1

, ϕ(s1, s0) = −( f2)
′′
s0s1

in the class CΠ2 , Π2 = {M(p, q) : 0 ≤ s1 ≤ p, q ≤ s0 ≤ T}. Moreover, the satisfaction of the
condition

[
( f1)

′
s1
+ ( f2)

′
s1

]∣∣∣
s0=s1=s

= − ( f1)
′
s0

∣∣∣ s0 = s
s1 = 0

= − ( f2)
′
s0

∣∣∣ s0 = s
s1 = 0

 (17)

in addition to (13)–(16) ensures the uniqueness of the solution for (12) in the class CΠ2 . Let us
focus on an important fact. The integral operators in (12) contain integration domains lying
in both Π(1)

2 and Π(2)
2 = {M(p, q) : 0 ≤ s1 ≤ p ≤ q ≤ s0 ≤ T}, since Π2 = Π(1)

2 ∪Π(2)
2 .

The purpose of this section is to obtain conditions of the type (13)–(16), (17) that ensure
the existence and uniqueness of the solution ϕ of the pair equation

t∫
t−h

dλ1

t−ν∫
t−ν−h

ϕ(λ1, λ2)dλ2 = g1(t, ν),

t−ν∫
t−ν−h

dλ1

t∫
t−h

ϕ(λ1, λ2)dλ2 = g2(t, ν),
(18)

h ≤ t ≤ T, ν ≤ t− h, in the class C[h,T] with known

ϕ(λ1, λ) = ϕ(0)(λ1, λ), ϕ(λ, λ2) = ϕ(0)(λ, λ2), (19)

λ1, λ2 ∈ [0, h), λ ∈ [0, T]. (20)

In (18), we denote ω1 from (11) by ν for simplicity. The fundamental point concerns
the determination of the desired solution ϕ at the initial point t0 of the segment [h, T]. To
prevent overdetermination of problem (18) and (19), prehistory (20) does not include the
boundary t0 = h. Moreover, if in case (12) the continuity of ϕ follows from (13)–(16), then,
as applied to (18)–(20), additional coordination conditions are required.

As shown in [49], the solution to the problem (18)–(20) is defined by the formulas

ϕ(t, t− ν) ≡
N+1
∑

i=1
ϕ(i)(t, t− ν) =

=
N+1
∑

i=1
D2g1

∣∣∣∣
N∈∆i

+
N+1
∑

i=1

(
ϕ(i−1)(t, t− ν− h) + ϕ(i−1)(t− h, t− ν)− ϕ(i−1)(t− h, t− ν− h)

)
,

(21)

ϕ(t− ν, t) ≡
N+1
∑

i=1
ϕ(i)(t− ν, t) =

=
N+1
∑

i=1
D2g2

∣∣∣∣
N∈∆i

+
N+1
∑

i=1

(
ϕ(i−1)(t− ν− h, t) + ϕ(i−1)(t− ν, t− h)− ϕ(i−1)(t− ν− h, t− h)

)
,

(22)
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where
D2gj(t, ν) = −

((
gj
)′′

tν +
(

gj
)′′

ν2

)
, j = 1, 2,

N = T
h , ∆k = {t, ν : ν + h ≤ t, kh ≤ t ≤ (k + 1)h}, k = 1, N,

∆N+1 = {t, ν : ν + h ≤ t, Nh ≤ t ≤ T}.
(23)

In (21) and (22), N(t, ν) denotes a point on the plane with Cartesian coordinates (t, ν);

ϕ(i−1)(M) and ϕ(i−1)
(

¯
M
)

is a solution to Equation (18) for M(p, q), t − ν ≤ q ≤ p ≤

t, and
¯
M(p, q), t − ν ≤ p ≤ q ≤ t, from the subdomains Ωi−1(N(t, ν)), in which the

coordinates N(t, ν) correspond to ∆k, k = 0, N, with the corresponding index i− 1, while
∆0 is prehistory:

∆0 = {t, ν : D1 ∪ D2, ν ≥ 0}, D1 = {t, ν : ν ≤ t, 0 ≤ t < h, h > 0},

D2 = {t, ν : t− h < ν ≤ t, h ≤ t ≤ T, h > 0}.

An illustration of the location of the ∆k for k = 0, 1, 2, . . . , N + 1 is shown in Figure 4.
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The method for obtaining (21) and (22) is described in detail in [49] and is based on the
classical method of steps [50], which has proven itself in solving one-dimensional Volterra
equations of the first kind with prehistory [26]. For convenience, we rewrite (18) in operator
form, using the change of variables (11): s0 = t, s1 = t− ν, so that, taking into account

V1,2 ϕ ≡
s0∫

s0−h
dλ1

s1∫
s1−h

ϕ(λ1, λ2)dλ2,

V2,1 ϕ ≡
s1∫

s1−h

dλ1

s0∫
s0−h

ϕ(λ1, λ2)dλ2,

instead of (18), setting gi(s0, s0 − s1) = yi(s0, s1), i = 1, 2, we have

V1,2 ϕ = y1(s0, s1), V2,1 ϕ = y2(s0, s1), (24)

s0, s1 ∈ Ω(1) =
N+1
∪

k=1
Ω(1)

k (N(s0, s0 − s1)),

where Ω(1)
k (N(s0, s0 − s1)) = {M(p, q) : s1 ≤ q ≤ p ≤ s0, N(s0, s0 − s1) ∈ ∆k}, ∆k(

k = 1, N + 1
)

are given by (23). Equations (21) and (22) in the new notation can be
rewritten as:
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ϕ(M) =
N+1
∑

i=1
(y1)

′′
s0s1

∣∣∣∣
N∈∆i

+

+
N+1
∑

i=1

(
ϕ(i−1)(s0, s1 − h) + ϕ(i−1)(s0 − h, s1)− ϕ(i−1)(s0 − h, s1 − h)

)
, M ∈ Ω(1),

(25)

ϕ

(
¯
M
)
=

N+1
∑

i=1
(y2)

′′
s0s1

∣∣∣∣
N∈∆i

+

+
N+1
∑

i=1

(
ϕ(i−1)(s1 − h, s0) + ϕ(i−1)(s1, s0 − h)− ϕ(i−1)(s1 − h, s0 − h)

)
,

¯
M ∈ Ω(2),

(26)

Ω(2) =
N+1
∪

k=1
Ω(2)

k (N(s0, s0 − s1)),

where Ω(2)
k (N(s0, s0 − s1)) =

{
¯
M(p, q) : s1 ≤ p ≤ q ≤ s0, N(s0, s0 − s1) ∈ ∆k

}
, so

that the pair (25) and (26) determines the solution for (24), (19), (20) ((18)–(20)) in the
whole domain Ω = ∪N+1

k=1 Ωk = Ω(1) ∪Ω(2).

Lemma 1. Let ϕ =
N+1
∑

i=1
ϕ(i) be a solution to (24) on Ω with prehistory ϕ(0) (19), (20), continuous

on Ω0(N(s0, s0 − h)), N(s0, s0 − h) ∈ ∆0, and let the functions yj(s0, s0 − s1), j = 1, 2, satisfy
the conditions (

yj
)′′

s0s1

∣∣∣
N(s0,s0−s1)

∈ CΩ, j = 1, 2, (27)

(y1)
′′
s0s1

∣∣∣
N(s0,s0−h)

= ϕ(0)(s0, h)− ϕ(0)(s0, 0)− ϕ(0)(s0 − h, h) + ϕ(0)(s0 − h, 0), (28)

(y2)
′′
s0s1

∣∣∣
N(s0,s0−h)

= ϕ(0)(h, s0)− ϕ(0)(0, s0)− ϕ(0)(h, s0 − h) + ϕ(0)(0, s0 − h) (29)

Then
lim
ε→0

ϕ(0)(s0, h− ε) = ϕ(i)(s0, h),

lim
ε→0

ϕ(0)(h− ε, s0) = ϕ(i)(h, s0), N(s0, s0 − h) ∈ ∆i, i = 1, N + 1,

lim
ε→0

ϕ(i−1)(s0 − ε, s1 − ε) = ϕ(i)(s0, s1),

lim
ε→0

ϕ(i−1)(s1 − ε, s0 − ε) = ϕ(i)(s1, s0), N(s0, s0 − s1) ∈ ∆i, i = 2, N + 1.

Proof of Lemma 1. Lemma conditions (27)–(29) are standard conditions for the smoothness
of the input data. Focusing on the geometric image of the domains ∆k, we will illustrate
the boundaries between the domains Ωk for the first values of k = 0, 1, 2 (see Figure 5).
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By analogy, it is easy to clarify the boundaries between the domains Ωk for other
values of k. The proof is not particularly difficult, it can be carried out according to the
scheme given in [49], and follows from geometric considerations. �

Theorem 1. The Equations (27)–(29),

y1(s0, s0) = y2(s0, s0) (= y(s0, s0)), s0 ∈ [h, T], (30)

y(h, h) =
h∫

0

dλ1

h∫
0

ϕ(0)(λ1, λ2)dλ2, (31)

(y1)
′′
s0s1

∣∣∣
s0=s1=s

= (y2)
′′
s0s1

∣∣∣
s0=s1=s′

s ∈ [h, T] (32)

are necessary and sufficient conditions for the existence of a solution for (19), (20), (24) in the
class CΩ.

Proof of Theorem 1.
Necessity. Let ϕ(M) ∈ CΩ be a solution to (19), (20), (24). Then

y1(s0, s1) =

s0∫
s0−h

dλ1

s1∫
s1−h

ϕ(λ1, λ2)dλ2, (33)

y2(s0, s1) =

s1∫
s1−h

dλ1

s0∫
s0−h

ϕ(λ1, λ2)dλ2. (34)

From (29) and (33), it follows (30):

y1(s0, s0) = y2(s0, s0) =

s0∫
s0−h

dλ1

s0∫
s0−h

ϕ(λ1, λ2)dλ2,
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whence for N(s0, 0) ∈ ∆1, we have

s0∫
h

dλ1

s0∫
h

ϕ(λ1, λ2)dλ2 = y(s0, s0)−
h∫

s0−h

dλ1

h∫
s0−h

ϕ(0)(λ1, λ2)dλ2−

−
h∫

s0−h

dλ1

s0∫
h

ϕ(0)(λ1, λ2)dλ2 −
s0∫

h

dλ1

h∫
s0−h

ϕ(0)(λ1, λ2)dλ2 ≡ ŷ1(s0, s0).

It can be seen that at the initial point t0 = h

ŷ1(h, h) ≡ y(h, h)−
h∫

0

dλ1

h∫
0

ϕ(0)(λ1, λ2)dλ2 = 0,

whence (31) follows immediately. Thus, the solution for (33) and (34) can be obtained by
differentiating concerning s0, s1. Indeed,

ϕ(M) = (y1)
′′
s0s1

∣∣∣
N(s0,s0−s1)

+ ϕ(0)(s0 − h, s1) + ϕ(0)(s0, s1 − h)− ϕ(0)(s0 − h, s1 − h),

M ∈ Ω(1)
1 (N(s0, s0 − s1)),

ϕ

(
¯
M
)
= (y2)

′′
s0s1

∣∣∣
N(s0,s0−s1)

+ ϕ(0)(s1 − h, s0) + ϕ(0)(s1, s0 − h)− ϕ(0)(s1 − h, s0 − h),

¯
M ∈ Ω(2)

1 (N(s0, s0 − s1)).

The continuity of ϕ on Ω1 = Ω(1)
1 ∪Ω(2)

1 gives (27) and (32), and the continuity of ϕ(0)

on Ω0 additionally implies (28) and (29). We denote ϕ for N(s0, s0 − s1) ∈ ∆1 by ϕ(1). Now,
let N(s0, s0 − s1) ∈ ∆2. For s1 = s0 we have:

s0∫
2h

dλ1

s0∫
2h

ϕ(λ1, λ2)dλ2 = y(s0, s0)−
2h∫

s0−h

dλ1

2h∫
s0−h

ϕ(1)(λ1, λ2)dλ2−

−
2h∫

s0−h

dλ1

s0∫
2h

ϕ(1)(λ1, λ2)dλ2 −
s0∫

2h

dλ1

2h∫
s0−h

ϕ(1)(λ1, λ2)dλ2 ≡ ŷ2(s0, s0).

Since

ŷ2(2h, 2h) ≡ y(2h, 2h)−
2h∫

h

dλ1

2h∫
h

ϕ(1)(λ1, λ2)dλ2 = 0,

then the solution for (33) and (34) can be obtained by differentiation concerning s0,
s1, namely:

ϕ(M) = (y1)
′′
s0s1

∣∣∣
N(s0,s0−s1)

+ ϕ(1)(s0 − h, s1) + ϕ(1)(s0, s1 − h)− ϕ(1)(s0 − h, s1 − h),

M ∈ Ω(1)
2 (N(s0, s0 − s1)),

ϕ

(
¯
M
)
= (y2)

′′
s0s1

∣∣∣
N(s0,s0−s1)

+ ϕ(1)(s1 − h, s0) + ϕ(1)(s1, s0 − h)− ϕ(1)(s1 − h, s0 − h),

¯
M ∈ Ω(2)

2 (N(s0, s0 − s1)).

The solution ϕ for N(s0, s0 − s1) ∈ ∆2 is denoted by ϕ(2). The continuity of ϕ on
Ω1 ∪ Ω2 implies conditions (27)–(29), (32). Repeating this process N times, we obtain
(27)–(29), (32) on the entire domain Ω, since Ω = ∪N+1

k=1 Ωk.
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Sufficiency. Let conditions (27)–(32) be satisfied. Let us show that

ϕ(s0, s1) = (y1)
′′
s0s1

∣∣∣
N(s0,s0−s1)

+ ϕ(s0, s1 − h) + ϕ(s0 − h, s1)− ϕ(s0 − h, s1 − h)

and

ϕ(s1, s0) = (y2)
′′
s0s1

∣∣∣
N(s0,s0−s1)

+ ϕ(s1 − h, s0) + ϕ(s1, s0 − h)− ϕ(s1 − h, s0 − h)

define a continuous on Ω solution ϕ of the pair Equation (24) with prehistory (19) and
(20). Indeed, the continuity of ϕ on Ω follows from (27)–(29), (32) [49]. Considering that
s0 ∈ [h, T], s1 ≥ h, then we should consider the situations when s0 6= s1 and s = s0 = s1
separately, since in the second case V1,2 ϕ = V2,1 ϕ and so

s∫
s−h

dλ1

s∫
s−h

ϕ(λ1, λ2)dλ2 =
s∫

s−h
dλ1

s∫
s−h

ϕ(λ2, λ1)dλ2 =

= 1
2

s∫
s−h

s∫
s−h

(ϕ(λ1, λ2) + ϕ(λ2, λ1))dλ1dλ2.
(35)

For s0 6= s1, i.e., s0 > s1 we have:

V1,2 ϕ =
s0∫

s0−h
dλ1

s1∫
s1−h

(
(y1)

′′
λ1λ2

+ ϕ(λ1, λ2 − h) + ϕ(λ1 − h, λ2)− ϕ(λ1 − h, λ2 − h)
)

dλ2 =

= y1(s0, s1)− y1(s1 − h, s1)− y1(s0, s1 − h) + y1(s0 − h, s1 − h)+

+
s0∫

s0−h
dλ1

s1∫
s1−h

ϕ(λ1, λ2 − h)dλ2 +
s0∫

s0−h
dλ1

s1∫
s1−h

ϕ(λ1 − h, λ2)dλ2−

−
s0∫

s0−h
dλ1

s1∫
s1−h

ϕ(λ1 − h, λ2 − h)dλ2 = y1(s0, s1),

since

y1(s0 − h, s1) =

s0∫
s0−h

dλ1

s1∫
s1−h

ϕ(λ1 − h, λ2)dλ2, (36)

y1(s0, s1 − h) =
s0∫

s0−h

dλ1

s1∫
s1−h

ϕ(λ1, λ2 − h)dλ2, (37)

y1(s0 − h, s1 − h) =
s0∫

s0−h

dλ1

s1∫
s1−h

ϕ(λ1 − h, λ2 − h)dλ2. (38)

Using equalities similar to (36)–(38) for y2(s0 − h, s1), y2(s0, s1 − h), y2(s0 − h, s1 − h),
it is easy to obtain V2,1 ϕ = y2(s0, s1). Let us turn further to the case . Taking into account
(35), we have:

V1,2 ϕ(s, s) = V2,1 ϕ(s, s) = 1
2

s∫
s−h

s∫
s−h

[
(y1)

′′
λ1λ2

+ (y2)
′′
λ1λ2

]
dλ1dλ2+

+
s∫

s−h

s∫
s−h

[ϕ(λ1, λ2 − h) + ϕ(λ1 − h, λ2)− ϕ(λ1 − h, λ2 − h)]dλ1dλ2 =

= 1
2 y1(s, s) + 1

2 y2(s, s) = y(s, s)

(at the end of the chain, we used condition (30) and equalities like (36)–(38)), which was to
be proven. �
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Theorem 2. Let the conditions of Theorem 1 be satisfied and, in addition, the equalities

yj(0, 0) = 0, j = 1, 2, (39)

y1(s0, s1) = y2(s1, s1 − s0), (40)

y2(s0, s1) = y1(s1, s1 − s0), (41)

(y1)
′
s1

∣∣∣
s0=s1=s

= (y2)
′
s0

∣∣∣
s0=s1=s′

(42)

(y1)
′
s0

∣∣∣
s0=s1=s

= (y2)
′
s1

∣∣∣
s0=s1=s′

s ∈ [h, T], (43)

hold. Then, the solution to Equations (24), (19), and (20) in the class CΩ is unique.

Proof of Theorem 2. To prove Theorem 2, it suffices to show that the homogeneous
equation (

ψj
)′′

s0s1
= 0, j = 1, 2, (44)

for the functions y1, y2,satisfying, in addition to (27)–(32), also (39)–(43), has only a trivial
solution. Let us verify that (44) has only a trivial solution. The general solution of (44) is
ψj(s0, s1) = ηj(s0) + ξ j(s1), j = 1, 2, where ηj, ξ j are arbitrary functions of the class C2.

Differentiate ψj(s0, s1) concerning s0 and s1:

(ψ1)
′
s0
= η′1(s0), (ψ1)

′
s1
= ξ ′1(s1), (ψ2)

′
s0
= ξ ′2(s0), (ψ2)

′
s1
= ξ ′2(s1).

Hence, taking into account (42) and (43), we have ξ ′1(s1)
∣∣
s1=s = η′2(s0)|s0=s and

η′1(s0)
∣∣
s0=s = ξ ′2(s1)

∣∣∣
s1=s

, so

ξ1(s)− η2(s) = c1, η1(s)− ξ2(s) = c2, (45)

where c1, c2 are some constants. According to (40) and (41),

η1(s0) + ξ1(s1) = η2(s1) + ξ2(s1 − s0),

η2(s0) + ξ2(s1) = η1(s1) + ξ1(s1 − s0),

whence for s0 = s1 = s, we have the equalities:

η1(s) + ξ1(s)− η2(s) = ξ2(0),
η2(s) + ξ2(s)− η1(s) = ξ1(0),

(46)

which in view of (45) give

η1(s) = ξ2(0)− c1, η2(s) = ξ1(0) + c2.

Therefore, ηj(s) = ηj are constants for any s, j = 1, 2. Then it follows from (46) that
ξ j(s) = ξ j are also constants for arbitrary s and j = 1, 2. Finally, taking into account (39),
we obtain that ηj + ξ j = 0 and ψj(s0, s1) ≡ 0, j = 1, 2. �

Remark 1. It is important to note that conditions (39)−(43) are not onerous. Indeed, if Equations
(19), (20), and (24) are solvable in the class CΩ, then (39)–(43) are automatically satisfied. In other
words, if a solution to (19), (20), (24) exists in the class CΩ, then it is unique.

Integral Equation (12) arises in the problem of identifying Volterra kernels when
constructing mathematical models in the form of the Volterra polynomial. The theory of the
Volterra series is widely used to describe nonlinear dynamic systems of the “input-output”
type [51]. Numerical algorithms for (12), implemented in [52] based on the product
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integration method, have shown their effectiveness in modeling the dynamics of heat
exchanger element.

5. Conclusions

The paper discusses applying the integral model of developing systems to determine
strategies for the development of a large (aggregated) electric power system using the
example of the Unified Energy System of Russia. The elements of the system belong to
several age groups. We described two types of models that take into account the dynamics
of the aging of elements in different ways. In model 1, from the system origin until the
moment T1, all elements of the system belong to the same group and work with the
same efficiency. Each time at Ti, the age group (i + 1) appears. In model 2, the elements
of the system from the system origin are divided into age groups that function with
different efficiencies.

Calculations for two models on real-life data are presented. The results show that
the proposed integral model can be used for a qualitative assessment of the strategies of
system development. The developed model is designed to analyze the long-term forecast
of the commissioning of generating capacities of a large EPS with various strategies for
dismantling the generating equipment.

The existence and uniqueness theorem for the solution of the two-dimensional Volterra
integral equation of the first kind with variable limits of integration is formulated and
proven. The developed technique for obtaining a solution can be extended to the case of
n-dimensional integral equations. The grid analogue of the two- and three-dimensional
integral equations of the considered class was studied in connection with the identification
of integrals of Volterra kernels using the product integration method [53].
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