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Abstract: In this work, we address an interesting problem in studying the oscillatory behavior of
solutions of fourth-order neutral delay differential equations with a non-canonical operator. We
obtained new criteria that improve upon previous results in the literature, concerning more than one
aspect. Some examples are presented to illustrate the importance of the new results.
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1. Introduction

We direct our attention during this work to studying the oscillatory behavior of the
solutions of the neutral delay differential equation (NDDE):(

a ·
(
(u + p · (u ◦ τ))′′′

)β
)′

(t) +
(

q · (u ◦ σ)β
)
(t) = 0, t ≥ t0 (1)

in the non-canonical case, that is, when:

A0(t0) :=
∫ ∞

t0

a−1/β(κ)dκ < ∞.

Furthermore, we assume that β is a ratio of odd positive integers, a, τ, σ, p and q are
in C[t0, ∞), a is positive, a′, p and q are non-negative, p < 1, q 6= 0 on any half line [t∗, ∞)
for all t∗ ≥ t0, τ(t) ≤ t, σ(t) ≤ t, limt→∞ τ(t) = ∞, limt→∞ σ(t) = ∞, ( f ◦ g)(t) = f (g(t))
and:

Ak(t) :=
∫ ∞

t
Ak−1($)d$, for k = 1, 2,

A solution u of the Equation (1) means a function in C([t∗, ∞),R), which satisfies:

u + p · (u ◦ τ) ∈ C3[t∗, ∞), a ·
(
(u + p · (u ◦ τ))′′′

)β
∈ C1[t∗, ∞),

and also satisfies (1) on [t∗, ∞). We will only consider solutions that are not identically
zero eventually. A solution u of (1) is called oscillatory if it is neither positive nor negative,
ultimately; otherwise, it is called non-oscillatory.

Differential equations with a neutral argument have interesting applications in prob-
lems of real-world life. In the networks containing lossless transmission lines, the neutral
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differential equations appear in the modeling of these phenomena as is the case of high-
speed computers. In addition, second order neutral equations appear in the theory of
automatic control and in aeromechanical systems in which inertia plays an important role.
Moreover, second order delay equations play an important role in the study of vibrating
masses attached to an elastic bar, as the Euler equation, see: [1–3].

To the best of our knowledge, the number of works dealing with the study of higher-
order neutral differential equations in the non-canonical case is much smaller than those
that deal with equations in the canonical case (see [4–16]). On the other hand, it is easy to
find many works that have dealt with non-canonical higher-order equations with delay
but not neutral (see for example [17–20]).

When studying the oscillation of the NDDEs in (1) in the non-canonical case, one of the
most interesting goals is to find criteria that ensure the non-existence of Kneser solutions
(solutions which satisfy (−1)k(u + p · (u ◦ τ))(k)(t) > 0 for k = 0, 1, 2, 3, t ∈ [t0, ∞)). This
is because most of the relationships commonly used are not valid in this case.

For second-order equations, in an interesting work, Bohner et al. [21] addressed this
problem, obtaining the following restriction for the solution and a related function:

u >

(
1− p · A0 ◦ τ

A0

)
,

where u is a Kneser-type solution. This relationship allowed the authors to find many
new criteria that simplified and improved their previous results in the literature. The first
interesting problem was how to extend Bohner’s results in [21] to the even-order equations.

Recently, by using comparison techniques, Li and Rogovchenko [22] studied the
oscillatory behavior of the even-order neutral delay differential equation:(

a ·
(
(u + p · (u ◦ τ))(n−1)

)α)′
(t) +

(
q · (u ◦ σ)β

)
(t) = 0, (2)

where n ≥ 4 is an even number. However, the results in [22] depend on the existence of
three unknown functions that satisfy certain conditions, and there is no general rule on
how to choose these functions. So another interesting problem is how to find criteria that
do not include unknown functions.

Theorem 1 ([22] Theorem 6). Let n ≥ 4 be even and 0 < α = β ≤ 1. Assume that 0 ≤ p(t) ≤
p0 < ∞ for some constant p0:

τ′ ≥ τ∗ > 0 and τ ◦ σ = σ ◦ τ (3)

and there exist three functions η1, η2, η3 ∈ C([t0, ∞),R) such that:

η1(t) ≤ σ(t) ≤ η2(t), η1(t) ≤ τ(t) ≤ t < η2(t), η3(t) ≥ σ(t), η3(t) > t

and:
lim
t→∞

η1(t) = ∞.

Suppose also that:

τ∗
(

τ∗ + pβ
0

)−1

((n− 1)!)β
lim inf

t→∞

∫ t

τ−1(η1(t))
Q(s)

(
(η1(s))

n−1

a1/β(η1(s))

)β

ds >
1
e

,

τ∗
(

τ∗ + pβ
0

)−1

((n− 2)!)β
lim inf

t→∞

∫ η2(t)

t

(
Q(s)

(
σn−2(s)

)β
(A0(η2(s)))

β
)

ds >
1
e
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and:

τ∗
(

τ∗ + pβ
0

)−1

((n− 3)!)β
lim inf

t→∞

∫ η3(t)

t

(
Q(s)

(∫ ∞

η3(s)

(
(η − η3(s))

n−3 A0(η)
)

dη

)β
)

ds >
1
e

,

where Q(t) = min{q(t), q(τ(t))}. Then, every solution of (2) is oscillatory.

In this work, we will address all the interesting problems above by obtaining a new
relationship between the solution and a related function (as an extension of Bohner’s results
in [21]). Furthermore, the new criteria ensure the oscillation of all the solutions of (1), and
are distinguished by the following:

- They do not require unknown functions;
- They do not need condition (3).

In order to prove our main results, we will use the following lemmas.

Lemma 1 ([23] Lemma 2.2.1). Let φ ∈ Cn([t0, ∞), (0, ∞)) and φ(n)(t) be of constant sign on
[t1, ∞) with t1 ≥ t0. Then, there exists an integer κ ∈ [0, n], with n + κ even if φ(n)(t) ≥ 0, or
n + κ odd if φ(n)(t) ≤ 0, such that:

κ > 0 yields φ(j)(t) > 0 for j = 0, 1, ..., κ − 1,

and
κ ≤ n− 1 yields (−1)κ+jφ(j)(t) > 0 for j = κ, κ + 1, ..., n− 1.

Lemma 2 ([17]). Assume that φ ∈ Cm([t0, ∞),R+), φ(m) is not identically zero on a subray of
[t0, ∞) and φ(m) is of fixed sign. Suppose that φ(m−1)φ(m) ≤ 0 for t ∈ [t1, ∞), where t1 ≥ t0 is
large enough. If limt→∞ φ(t) 6= 0, then there exists a tλ ∈ [t1, ∞) such that:

φ ≥ λ

(m− 1)!
tm−1

∣∣∣φ(m−1)
∣∣∣,

for every λ ∈ (0, 1) and t ∈ [tλ, ∞).

Lemma 3 ([21] Lemma 2.6). Assume that Ki is a real number for i = 1, 2, 3, K2 > 0, and β is a
ratio of odd positive integers. Then, for all w ∈ R :

K1w− K2(w− K3)
(β+1)/β ≤ K1K3 +

ββ

(β + 1)β+1

Kβ+1
1

Kβ
2

.

2. Main Results

First, we will proceed to classify the set of positive solutions of (1) according to the
behavior of its derivatives. To facilitate the calculations, we adopt the following notations:
z := u + p · (u ◦ τ), and:

Q(t) := q(t)
(

1− p(σ(t))
A2(τ(σ(t)))

A2(σ(t))

)β

.

We assume that u is a positive solution of (1). Note that from the definition of z,

we have that z(t) > 0; moreover, from (1) it is
(

a(t)(z′′′(t))β
)′
≤ 0. This implies that

a(t)(z′′′(t))β is non-increasing and of constant sign, and thus, since a(t) > 0, we have that
(z′′′(t))β is of constant sign, and so is z′′′(t).



Mathematics 2021, 9, 1114 4 of 10

According to Lemma 1 with n = 3, there exists an integer κ with:

κ =

{
1 or 3 if z′′′(t) > 0;
0 or 2 if z′′′(t) < 0.

Thus, we get that:

z′′′ > 0
{

(1) κ = 1, z > 0, z′ > 0, z′′ < 0
(2) κ = 3, z > 0, z′ > 0, z′′ > 0

z′′′ < 0
{

(3) κ = 0, z > 0, z′ < 0, z′′ > 0
(4) κ = 2, z > 0, z′ > 0, z′′ > 0

Moreover, if z′′′(t) > 0, a′(t) > 0 and
(

a(t)(z′′′(t))β
)′
≤ 0, then z(4)(t) < 0. Then,

we eventually obtain the following three exclusive cases:

D1 : z(i)(t) > 0 for i = 0, 1, 3, and z(4)(t) < 0;
D2 : z(i)(t) > 0 for i = 0, 1, 2, and z(3)(t) < 0;
D3 : z(i)(t) > 0 for i = 0, 2, and z(j)(t) < 0 for j = 1, 3 (note that in this case u is a

Kneser solution).

Lemma 4. If u(t) is a Kneser solution of (1), then the function z/A2 is increasing, eventually.

Proof. Based on the positivity of the solution u, it follows from (1) that a(t)(z′′′(t))β is
non-increasing. Then, taking into account that we are in case D3, we have that:

− z′′(t) ≤
∫ ∞

t

1
a1/β($)

a1/β($)z′′′($)d$ ≤ a1/β(t)z′′′(t)A0(t), (4)

which leads to: (
z′′(t)
A0(t)

)′
=

A0(t)z′′′(t) + a−1/β(t)z′′(t)
A2

0(t)
≥ 0.

Therefore, we have that z′′/A0 is an increasing function, and thus:

−z′(t) ≥
∫ ∞

t

z′′($)
A0($)

A0($)d$ ≥ z′′(t)
A0(t)

A1(t),

which implies that: (
z′(t)
A1(t)

)′
=

A1(t)z′′(t) + A0(t)z′(t)
A2

1(t)
≤ 0.

By using a similar approach, it is easy to conclude that −A1(t)z(t) ≤ z′(t)A2(t), and
so z(t)/A2(t) is an increasing function.

Theorem 2. Assume that there exist some t1 ≥ t0 such that A2(t) > p(t)A2(τ(t)) for t ≥ t1.
If there exists a function θ ∈ C([t0, ∞), (0, ∞)) such that:

lim sup
t→∞

Aβ
2 (t)

θ(t)

∫ t

t1

(
θ(h)Q(h)− 1

(β + 1)β+1
(θ′(h))β+1

θβ(h)Aβ
1 (h)

)
dh > 1, (5)

then, the Equation (1) has no Kneser solutions.
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Proof. We proceed by contradiction. Assuming that u is a Kneser solution of (1) on [t1, ∞),
where t1 ≥ t0. As in the proof of Lemma 4, we arrive at (4). Integrating (4) from t to ∞ and
taking into account the behavior of the derivatives of z, we obtain:

z′(t) ≤ a1/β(t)z′′′(t)A1(t), (6)

and integrating again, we obtain:

z(t) ≥ −a1/β(t)z′′′(t)A2(t). (7)

By Lemma 4, we have that z(t)/A2(t) is an increasing function, and hence z(τ(t)) ≤
(A2(τ(t))/A2(t))z(t). Thus, it follows from the definition of z that:

u(t) ≥ z(t)
(

1− p(t)
A2(τ(t))

A2(t)

)
,

which together with (1) gives:(
a(t)

(
z′′′(t)

)β
)′
≤ −Q(t)zβ(σ(t)). (8)

Now, we define the function:

T(t) := θ(t)

(
a(t)(z′′′(t))β

zβ(t)
+

1

Aβ
2 (t)

)
.

It follows readily from (7) that T(t) ≥ 0 for t ≥ t1. Moreover, we have that:

T′(t) =
θ′(t)
θ(t)

T(t) + θ(t)


(

a(t)(z′′′(t))β
)′

zβ(t)
− a(t)(z′′′(t))β

zβ+1(t)
βz′(t) +

βA1(t)

Aβ+1
2 (t)

.

Now, using the inequalities in (6) and (8), we obtain that:

T′(t) ≤ θ′(t)
θ(t)

T(t) + θ(t)

(
−Q(t)

zβ(σ(t))
zβ(t)

− βa1+1/β(t)A1(t)
(

z′′′(t)
z(t)

)β+1

+
βA1(t)

Aβ+1
2 (t)

)

≤ θ′(t)
θ(t)

T(t)− θ(t)Q(t)− β
A1(t)

θ1/β(t)

(
T(t)− θ(t)

Aβ
2 (t)

)1+1/β

+ θ(t)
βA1(t)

Aβ+1
2 (t)

. (9)

Using Lemma 3 with K1 := θ′/θ, K2 := βA1θ−1/β, K3 := θA−β
2 and w :=T, we obtain:

T′(t) ≤ −θ(t)Q(t) +
1

(β + 1)β+1
(θ′(t))β+1

θβ(t)Aβ
1 (t)

+
θ′(t)

Aβ
2 (t)

+ θ(t)
βA1(t)

Aβ+1
2 (t)

= −θ(t)Q(t) +
1

(β + 1)β+1
(θ′(t))β+1

θβ(t)Aβ
1 (t)

+

(
θ(t)

Aβ
2 (t)

)′
.
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Integrating the above inequality from t1 to t, we have:

∫ t

t1

(
θ(h)Q(h)− 1

(β + 1)β+1
(θ′(h))β+1

θβ(h)Aβ
1 (h)

)
dh ≤

(
θ(h)

Aβ
2 (h)

− T(h)

)∣∣∣∣∣
t

t1

= −θ(h)
a(h)(z′′′(h))β

zβ(h)

∣∣∣∣∣
t

t1

≤ −θ(t)
a(t)(z′′′(t))β

zβ(t)
. (10)

From (7), we see that −a(z′′′)βz−β ≤ 1/Aβ
2 and so (10) becomes:

Aβ
2 (t)

θ(t)

∫ t

t1

(
θ(h)Q(h)− 1

(β + 1)β+1
(θ′(h))β+1

θβ(h)Aβ
1 (h)

)
dh ≤ 1. (11)

The obtained inequality (11) conflicts with the condition (5), and this contradiction
ends the proof.

3. Discussion and Examples

In the following theorem, we present sufficient conditions for the oscillation of all
solutions of (1).

Theorem 3. Assume that there exist some t1 ≥ t0 such that A2(t) > p(t)A2(τ(t)), and that for
some constant λ0 ∈ (0, 1), the first-order delay differential equation:

ψ′(t) +
(

λ0

6
σ3(t)

)β G(t)
a(σ(t))

ψ(σ(t)) = 0 (12)

is oscillatory, and that for some constant λ1 ∈ (0, 1), it is:

lim sup
t→∞

∫ t

t1

(
λ

β
1

(2!)β
σ2β(h)G(h)Aβ

0 (h)−
ββ+1a−1/β(h)

(β + 1)β+1 A0(h)

)
dh = ∞, (13)

where G := q(1− p(σ))β, for t ≥ t1. If (5) holds, then every solution of (1) is oscillatory.

Proof. Assume that (1) has a positive solution u. From (1), we have:(
a(t)

(
z′′′(t)

)β
)′

= −q(t)uβ(σ(t)) ≤ 0. (14)

According to Lemma 1 and taking into account the order of the equation in (1),
we eventually obtain the following three exclusive cases D1–D3.

First, suppose that case D1 holds. From the definition of z, we have:

u(t) = z(t)− p(t)u(τ(t)) ≥ (1− p(t))z(t). (15)

Using (14) in (15) gives:(
a(t)

(
z′′′(t)

)β
)′
≤ −q(t)(1− p(σ(t)))βzβ(σ(t)). (16)

Using Lemma 2 with m = 4, we have:

z(t) ≥ λt3

3!
z′′′(t), (17)
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for every λ ∈ (0, 1). From (16) and (17), we obtain:

(
a(t)

(
z′′′(t)

)β
)′

+ G(t)
(

λσ3(t)
6

)β(
z′′′(σ(t))

)β ≤ 0.

Letting ψ(t) = a(t)(z′′′(t))β. Clearly, ψ is a positive solution of the first-order delay
differential inequality:

ψ′(t) + G(t)
(

λσ3(t)
6a1/β(σ(t))

)β

ψ(σ(t)) ≤ 0. (18)

It follows from [24] [Theorem 1] that the corresponding differential Equation (12) also
has a positive solution for all λ ∈ (0, 1), which is a contradiction.
We then assume that case D2 holds. We define the function Φ by

Φ(t) =
a(t)(z′′′(t))β

(z′′(t))β
. (19)

Then, Φ(t) < 0 for t ≥ t1. Noting that a(t)
(

z(n−1)(t)
)β

is decreasing, we have:

a1/β(s)z′′′(s) ≤ a1/β(t)z′′′(t), s ≥ t ≥ t1. (20)

Multiplying (20) by a−1/β(s) and integrating it on [t, ∞), we obtain:

0 ≤ z′′(t) + a1/β(t)z′′′(t)A0(t),

that is:

− a1/β(t)z′′′(t)A0(t)
z′′(t)

≤ 1.

From (19), we see that:
−Φ(t)Aβ

0 (t) ≤ 1. (21)

Differentiating (19), we have:

Φ′(t) =

(
a(t)(z′′′(t))β

)′
(z′′(t))β

− βa(t)(z′′′(t))β+1

(z′′(t))β+1 ,

which, in view of (1) and (19), becomes:

Φ′(t) = − q(t)uβ(σ(t))

(z′′(t))β
− βΦ(β+1)/β(t)

a1/β(t)
. (22)

Taking into account the fact that z′(t) > 0 and the definition of z(t), we deduce
that (15) holds. Hence, (22) becomes:

Φ′(t) ≤ − q(t)(1− p(σ(t)))βzβ(σ(t))

(z′′(t))β
− βΦ(β+1)/β(t)

a1/β(t)
. (23)

Using Lemma 2 with m = 2, we find:

z(t) ≥ λt2

2!
z′′(t),
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for all sufficiently large t and for every λ ∈ (0, 1). Then, (23) becomes:

Φ′(t) ≤ −q(t)(1− p(σ(t)))β
(

λσ2(t)
2!

)β
(z′′(σ(t)))β

(z′′(t))β
− βΦ(β+1)/β(t)

a1/β(t)
.

Since t ≥ σ(t) and z′′(t) is decreasing, we have:

Φ′(t) ≤ −q(t)(1− p(σ(t)))β
(

λσ2(t)
2!

)β

− βΦ(β+1)/β(t)
a1/β(t)

. (24)

Multiplying (24) by Aβ
0 (t) and integrating it into [t1, t], we obtain:

0 ≥ Aβ
0 (t)Φ(t)− Aβ

0 (t1)Φ(t1) +
∫ t

t1

βAβ−1
0 (s)

a1/β(s)
Φ(s)ds +

∫ t

t1

βAβ
0 (s)

a1/β(s)
Φ(β+1)/β(s)ds

+
∫ t

t1

q(s)(1− p(σ(s)))β
(

λσ2(s)
2!

)β

Aβ
0 (s)ds.

Setting A = Aβ
0 (s)/a1/β(s), B = Aβ−1

0 (s)/a1/β(s) and w = −Φ(s), and using
the inequality:

Bw− Aw(α+1)/α ≤ αα

(α + 1)α+1
Bα+1

Aα

we obtain:

∫ t

t1

(
λ

β
1

(2!)β
σ2β(h)G(h)Aβ

0 (h)−
ββ+1a−1/β(h)

(β + 1)β+1 A0(h)

)
dh ≤ Φ(t1)

A−β
0 (t1)

+ 1,

which contradicts (13).
Finally, we suppose that case D3 holds. From Theorem 2, we obtain a contradiction.

The proof of the theorem is complete.

Corollary 1. Assume that there exist some t1 ≥ t0 such that A2(t) > p(t)A2(τ(t)),
and (5), (13) hold for some constant λ1 ∈ (0, 1) and for t ≥ t1. If:

lim inf
t→∞

∫ t

σ(t)

(
λ0

6
σ3(h)

)β G(h)
a(σ(h))

dh >
1
e

, (25)

then every solution of (1) is oscillatory.

Proof. Using Theorem 2.1.1 in [25], we obtain that Equation (12) is oscillatory under the
condition (25). Therefore, the proof is the same as that of Theorem 3.

Example 1. Consider the fourth-order equation:

(t4(u(t) + p0u(λt))′′′)′ + q0u(µt) = 0, t ≥ 1, (26)

where λ, µ ∈ (0, 1), p0 ∈ (0, λ) and q0 > 0. It is easy to verify that A0(t) = 1
3t3 , A1(t) = 1

6t2

and A2(t) = 1
6t . Using Theorem 2 and choosing θ(t) = A2(t), we have that Equation (26) has no

Kneser solutions if:

lim sup
t→∞

∫ t

t1

(
q0

(
1− p0

λ

)1
6
− 1

4

)
1
h

dh > 1,

and this is satisfied when:

q0 >
6λ

4(λ− p0)
. (27)
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Remark 1. It is easy to see that the results in [22] are difficult to apply, because there are no clear
rules or guidelines for selecting the unknown functions ηi which must meet a set of conditions.
However, by choosing η3 = 1+ λ in Theorem 8 in [22], we deduce that Equation (26) has no Kneser
solutions if:

q0 >
6(λ + p0)(λ + 1)
λe ln(1 + 1/λ)

. (28)

In the special case where λ = 1/2 and p0 = 1/4, the conditions (27) and (28) become
q0 > 3.0 and q0 > 4.5206, respectively. Therefore, our new results provide more precise criteria for
the non-existence of Kneser solutions.

Example 2. Consider the fourth-order equation:(
eβt
(
(u(t) + p0u(t− τ0))

′′′
)β
)′

+ q0eβtuβ(t− σ0) = 0, (29)

where τ0, σ0, q0 > 0 and p0 ∈ [0, e−τ0). It is easy to verify that Ak(t) = e−t for k = 0, 1, 2, and:

Q(t) := q0eβt(1− p0eτ0)β.

Note that (13) and (25) are directly satisfied. Finally, taking θ(t) = e−βt, it is a simple task to
check that condition (5) is true whenever:

q0(1− p0eτ0)β >
ββ+1

(β + 1)β+1 . (30)

Thus, from Corollary (1), every solution of (29) is oscillatory if (30) holds.

Remark 2. In Example 2, in the non-neutral case, that is, p0 = 0, the oscillation condition of the
Equation (29) becomes:

q0 >
ββ+1

(β + 1)β+1 ,

which is the same condition obtained in [18,19].

4. Conclusions

In this work, a new criterion was established to determine the non-existence of the
so-called Kneser solutions of a class of even-order NDDEs. Using this criterion, some
conditions to ensure the oscillation of all solutions of the studied equation were established.
The conditions obtained do not use unknown functions and provide more precise results
than those presented in [22]. Moreover, by studying the non-canonical case, our results
complement the results in [4–7,14].
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