
mathematics

Article

Statistical Analysis of the Evolutive Effects of Language
Development in the Resolution of Mathematical Problems in
Primary School Education

M. M. Rodríguez-Hernández 1 , R. E. Pruneda 2,* and J. M. Rodríguez-Díaz 3

����������
�������

Citation: Rodríguez-Hernández, M.

M.; Pruneda, R.E.; Rodríguez-Díaz,

J.M. Statistical Analysis of the

Evolutive Effects of Language

Development in the Resolution of

Mathematical Problems in Primary

School Education. Mathematics 2021,

9, 1081. https://doi.org/10.3390/

math9101081

Academic Editor: Antonio Rodríguez

Fuentes

Received: 13 April 2021

Accepted: 4 May 2021

Published: 11 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Didactics of Mathematics and Experimental Sciences, University of Salamanca,
05003 Ávila, Spain; mercedes.rodriguez@usal.es

2 Department of Mathematics, IMACI, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
3 Department of Statistics, IUFFyM, University of Salamanca, 37008 Salamanca, Spain; juanmrod@usal.es
* Correspondence: rosa.pruneda@uclm.es

Abstract: For primary school students, the difficulty in solving mathematical problems is highly
related to language capacity. A correct solution can only be achieved after being able to deal with
different abstract concepts through several stages: comprehension, processing, symbolic represen-
tation and relation of the concepts with the right mathematical operations. A model linking the
solution of the mathematical problems (PS) with the mental representation (MR) of the problem
statement, while taking into account the level of the students (which has influence in the linguistic
abilities), is presented in this study. Different statistical tools such as the Analysis of Covariance
(ANCOVA), ROC curves and logistic regression models have been applied. The relation between
both variables has been proved, showing that the influence of MR in PS is similar in the different
age groups, with linking models varying just in the constant term depending on the grade level. In
addition, a cutoff in the mental representation test is provided in order to predict the student’s ability
in problem resolution.

Keywords: ANCOVA; classification problem; mental representation; problem solving; ROC curves

1. Introduction

International programs for evaluating mathematical literacy are based on a common
conceptual and methodological framework. They provide indicators that help in the de-
velopment of educational policies. The relative position of each country according to
the average score obtained in these tests is one of the most significant indexes for public
opinion. In the last fifty years, the ranking position in these tests has become a factor that
encourages governments to adopt educational policies similar to the countries that appear
at the top of it [1,2]. In addition, European Union members have expressed their political
commitment to reduce the number of low achievers in this area.

Several organizations such as NAEP (National Assessment of Educational Progress),
PISA (Program for International Students Assessment) or TIMSS (Trends in International
Mathematics and Sciences Study) report that school performance in general, and prob-
lem solving skills in particular, are poor and unsatisfactory in most of the countries.
Furthermore, the mechanisms of evaluation at regional, city or school level reveal the
same conclusions.

Regarding the evaluation of mathematical learning, the studies designed by these
international organizations are mainly focused on different aspects. The principal goal of
TIMSS is to evaluate “what they know”, while the purpose of PISA is to determine “what
they can do with their knowledge”. The TIMSS report is based on the curriculum designed
by each country or educational system. They collect data to evaluate the curriculum
achievements of the students and how the teachers accomplish the objectives [3]. By
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contrast, The PISA report does not focus directly on any particular aspect of the curriculum
but instead tries to check whether a 15-year-old student is able to apply the mathematical
knowledge in real situations.

The National Council of Teachers of Mathematics (NCTM) has established that prob-
lem solving should be the core of school mathematics instruction [4]. This concern is also in
the Cockcroft report [5], which is a vision of the educational system in England and Wales
commissioned by the British Ministry of Education in the early 1980s. This report notes
that learning mathematics requires a lot of work and practice. It establishes that students
have to spend time on discussion and comprehension before being ready to address the
simplest problems. Even at that time, the Cockcroft report is concerned about the reduction
of the time assigned to teach mathematics at schools due to the introduction of new fields
in the curriculum. In the conclusions and recommendations, the report establishes that, at
any level, the teaching of mathematics must include:

• Theoretical teacher explanation.
• Discussion among the teacher and the students.
• Appropriate practical work.
• Consolidation and practice of basic skills and routines.
• Troubleshooting, including the application of mathematics to real-life situations.

In the first years of school, students are still learning and acquiring vocabulary, which
causes a difficulty understanding the semantic structure of the mathematical problems
statements. It is clear that a lower language comprehension reduces the ability to correctly
solve mathematical problems. At that development stage, children are able to solve real
world problems [6], but academic language is acquired slowly, long after the children
develop the domain of practical everyday language [7].

A problem can be defined as a situation that presents difficulties for which there are no
obvious solutions. More specifically, in [8], a problem is defined as a quantitative situation
(or not) that needs a solution where the individuals involved in its resolution do not know
the specific way to achieve it. For the authors of [9], the real meaning of problem resolution
is applying the knowledge previously acquired.

Arithmetic problems are defined as those where the data are represented by quantities
and relationships between them. In these problems, the questions refer to one or more
quantities or the numerical connection among them. These problems are the first to appear
in the mathematics curriculum at schools, and they are essential throughout their entire
school life; therefore, primary school teachers are concerned about the good understanding
of them.

The degree of difficulty of the problem statement varies according to several factors,
for example, the type of language (academic or colloquial), the presence of irrelevant data,
the scale of the quantities, the need to carry out more than one operation for reaching the
solution, the comprehension of the vocabulary, etc.

However, it also depends on the orientation of the statement. For instance, consider
the three following problems:

P1. In a vase there are three red flowers and five yellow flowers. How many flowers are
there in the vase?

P2. Mary has taken three flowers from a vase, and Peter five. How many flowers have
they taken?

P3. Peter took three wilted flowers from a bouquet of Mary. Now the bouquet has five
flowers; how many flowers did the bouquet have at the beginning?

Although the solution is a identical simple sum in the three problems, students resolve
P2 and P3 correctly one or two years later than P1.

1.1. Classification of Additive Problems

Additive problems are those for which the solution is attained by addition and/or
subtraction operations. In this paper, the analysis will focus on problems that require just
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one operation to reach the correct solution. Additive problems are characterized by their
syntactic, logical and semantic structure. Concerning this structure, the problems can be
essentially classified in three types, namely change, combination and comparison [10–16].
However, some authors, such as [17], distinguish a fourth category called equality. Then,
we deal with various types of problems. In the mathematical tests the students passed, the
following four types of problems were considered:

• Change. These problems are characterized by an action that produces a change
(increase or decrease) in an initial amount. If the problem is based on the sum
operation, a + b = c, it leads to three different types of problems depending on which
variable is the unknown: a, b or c. In a similar way, when a subtraction operation is
involved, a− b = c, there are three other different types of problems also depending
on which variable is the unknown.

• Combination. In these problems, there are two amounts that can be considered
isolated or being a part of a whole without any action between them. We distinguish
two types of problems: when the question is about the set (the union or total) and
when the question is about a subset.

• Comparison. These are problems where there is a comparative action between two
different quantities. The problem could be either to compute the difference between
them or to find an unknown quantity related to the other. When using the words
“more” or “less” in the statement of the problem, two different problems (one with
“more” and the other with “less”), asking either for the difference, the comparison or
the reference quantity appear. This means six different problems for this case.

• Equality. This category involves elements from change and comparison problems.
The statement of the problems includes an implicit action based on the comparison of
two different quantities. As in previous cases, six different problems are obtained.

The interpretation of the problems requires a series of linguistic skills that implies
the comprehension and assimilation of a set of concepts, their symbolic representation
and the application of general rules translated into mathematical language. A low level of
problem resolution is related with the inability of the students to understand and represent
the mathematical concepts and to select the appropriate mathematical operations. The
translation from natural to mathematical language is not straightforward: comprehension
and knowledge of the relationships between the two languages are needed. The stage of
formal operations is regarded as the highest level of human reasoning [18–20]. More recent
studies such those in [21] confirm that the use of formal thought is low in general.

The relationship between levels of thinking and performance on mathematical prob-
lem solving is explored by the authors of [22]. They conducted an experiment mixing
two glasses of water at different temperatures, and the students had to predict the final
temperature of the water. In order to respond correctly to this question, it the use of certain
mathematical strategies is necessary, and they found that the ability to use them increases
with age.

Two important factors contribute to the correct resolution of the problems. In first
place is the ability to understand the statement of the problem; that is, the students must
be able to construct a mental representation of the relevant elements in it [23–25]. This
mental representation is essential in planning the steps to reach the correct solution and
to execute the appropriate mathematical operations. The second important skill needed
to solve problems successfully is the influence of mental representation [25–27]. Reading
comprehension, and therefore semantic-linguistic abilities, are especially helpful in dealing
with problem resolution [13,23,28,29]. The problems of linguistic comprehension appear, for
example, when the students have difficulties connecting the problem statement described
as “less than” and its solution when this last one is attained by a sum operation.

Taking this fact into account, in this work, we propose a test of additive problems using
expressions close to practical everyday language in order to facilitate the understanding of
the problems. With the collected data the main goals are the following:
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• To study the influence of mental representation in the resolution of additive problems
for children from 6 to 12 years old.

• To find a model relating language skills and academic course with problem resolution
(one-operation problems with either addition or subtraction).

• To quantify the influence of mental representation of problems separately from the
cognitive level of the students according to their grade.

• To provide a cutoff in the mental representation test score as a tool for teachers to
predict the ability of the students in solving additive problems correctly.

The materials and methods used in the study are described in Section 2, that is, a
description of the participants and a mathematical background of the models used for the
analysis presented in Section 3; finally, a discussion and some conclusions are shown in
Sections 4 and 5, respectively.

2. Materials and Methods

In this work, the relation between mental representation and problem solving in
6–12-year-old children (which corresponds to the first to sixth courses) will be studied, as
well as the evolution of this relationship with age.

A population of 178 students from a Spanish public school with medium-low socio-
economic level was tested. It is well known that the reading level, along with the knowledge
acquired in previous courses and mental-representation capacity, have a great influence
in problem resolution. Since the subjects were collected from different levels, it would be
sensible to consider these blocks in the model when studying the relationship between
Problem-Solving (PS )and Mental Representation (MR) variables. The sample includes
students from first to sixth grade (6 to 12 years old), and thus, three groups of students
were considered. The first group, G1, includes the youngest students (6 to 8 years old) who
are learning to read and acquiring abilities of mental representation and understanding
the operations of addition and subtraction. It has a size of 74. The group G2 contains
40 students from third and fourth grade (8 to 10 years old), who are able to read and
perform operations without difficulties. In fact, they also understand problems with
multiplication and division operations. G3 comprises students from fifth and sixth grade
(10 to 12 years old), totaling 64. In this group, the students should have the skills to
transcript the statement of the problems to mathematical language.

In order to measure the abilities of the students in solving additive problems, a test
composed of twenty different types of problems was produced, following the additive
problem classification in Section 1.1 and the type of problems described in [30]. The students
were asked complete the test in 50 min sessions, and the grading was focused in:

• Identifying non-redundant data.
• Identifying the question.
• Operating and expressing the solution correctly.

The test score ranged from 0 to 10, and two variables were produced: PS, which
measures the correct resolution of the problem, and MR, which represents the ability of
understanding the statement of the problem. It evaluates the correct writing of the problem
statement and the choice of the right mathematical operation, even if the final solution
is incorrect. Figure 1 and Table 1 show a summary of these variables. It can be seen that
PS shows many outliers, mainly in group G1, and that the groups in MR could follow a
linear trend, which indicates that they are not linearly independent and this is one of the
requirements of ANCOVA.

2.1. Mathematical Background

To achieve the objectives of this study, the mathematical background to determine
a model linking problem solving and mental representation according to the age of the
students is presented in Section 2.2. In Section 2.3, a practical tool for teachers to predict
the problem-solving skills of a student from their score in the mental representation test
is provided.
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2.2. Influence of Mental-Representation Level in Problem-Solving

Analysis of covariance (ANCOVA) allows the analysis of the effects of nominal vari-
ables (factors) and quantitative variables (covariables) on a quantitative dependent variable
(response variable). It is a combination of linear regression and classical analysis of variance
that detects the portion of variability of the model explained by the factors [31,32]. In the
analysis carried out in this paper, the dependent variable, Y, is the ability of the students
to solve problems correctly; the covariable, X, is the score in mental representation of the
problems; and the factor, G, defines the groups of students.

(a) Problem solving (PS)

Figure 1. Problem Solving and Mental Representation box plots.

Table 1. Summary of Problem-Solving (PS) variables.

PS G1 G2 G3

Mean 1.165 2.537 3.757
Standard Deviation 1.962 2.865 2.686
Number of students 74 40 64

From now on, a linear relationship between the covariates and the response variable
will be assumed (a variable transformation could be made in other case). In order to
determine the relationship between the variables, three models are considered:

M1: Simple linear regression model. Using all the data but not taking into account the
existence of groups:

Y = a + bX + ε. (1)

M2: Multiple linear regression model including a categorical variable. A multiple linear
regression model adding fictitious variables (Gi) accounting for the effects of the
different groups. This is the right model when the relationship between X and Y is
identical for all the groups, but for a scalar difference from the mean response:

Y = a + bX + c1G1 + c2G2 + · · ·+ ck−1Gk−1 + ε, (2)

where k is the number of groups and Gi takes the value 1 when Y belongs to group i
and 0 otherwise. This is equivalent to the independence between covariate X and
treatment G.

M3: Simple linear regression models in each group. This is the appropriate model when
the relationship between X and Y is different in each group beyond the intercept
term, that is, when the coefficients bi are different:

YGi = ai + biXGi + εGi , i = 1, . . . , k. (3)
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The most suitable model for the data is decided through the following steps:

• Step 1 (Compare M1 to M3): The first test compares the variance explained by models
M1 (without groups) and M3 (the most complex model that takes the groups into
account) in order to determine whether the groups are significant or not in the rela-
tionship between the two quantitative variables. The null and alternative hypotheses
of the test are, respectively:

H0: The groups are non significant; that is, the gain of variability explained when
considering different linear regressions in the groups is small.

H1: It is necessary to take the groups into account.

The F-statistic to conduct this test, F1→3, is described in (4).
• Step 2 (Select model) If the test in Step 1 is not significative, model M1 should be

selected, and finishing the groups is not needed . Otherwise we conclude that the
existence of the groups is important for the variability, and since there are two models
that take into account the groups (M2 and M3), they should be compared in order to
decide which one is the most convenient (Step 3).

• Step 3 (Compare M2 versus M3): In the case of rejecting the null hypothesis in Step 1,
it should be checked whether the M2 model is enough for fitting the data or if the
individual linear models in M3 are necessary. The test hypotheses are in this case as
follows:

H0: The relation between the quantitative variables Y and X is the same in every
group; that is, the coefficient of X in the model, b, does not depend on the groups.
M2 is the right model.

H1: There is interaction between the groups and the regressor X; that is, the coefficient
of X in the regression line varies with the groups. Thus, model M3 is the best one.

That is, the coefficient of X in the regression line varies with the groups. Thus, model
M3 is the best one.
The F-statistic to conduct this test, F2→3, is described in (4).

• Step 4 (Select model): If the test in Step 3 is significant, then model M3 should be
chosen; otherwise, model M2 should be chosen.

The F-statistics for the tests are

Fi→3 =
(RSSi − RSS3)/(gli − gl3)

RSS3/gl3
, (4)

where RSSi is the sum of squares of the residuals of model i (that is, the non-explain vari-
ability) and gli is the degrees of freedom of these residuals. Fi→3 follows an F-distribution
with (gli − gl3) and gl3 degrees of freedom.

In addition, the data should verify the following requirements:

• Both the dependent and the explanatory variables should be continuous.
• The grouping factor is composed of two or more categories of independent groups.
• The observations must be independent, for example, selecting different people.
• There should not be significant atypical values; this could have a negative effect on

the validity of the results.
• For each category of the independent variable, the residuals should follow a normal

distribution. This hypothesis may be violated in a certain way while the tests still
provide valid results. In order to check normality, Shapiro–Wilk or Kolmogorov–
Smirnov tests and P–P or Q–Q charts can be made.

• Homoscedasticity (similar variances of the dependent variable for the different groups)
is assumed. This requirement can be checked, for instance, by the Levene test. Even
when the hypothesis is violated, the above tests are still reliable provided that the
groups sizes do not differ very much (none of the groups is twice the size of any
other one).
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• The relationship between X and Y should be linear. This assumption can be tested by
a simple linear regression analysis between the covariate X and the response Y.

2.3. Predicting Problem-Solving Ability

When the aim is predicting whether or not the student will pass the Problem-Solving
test (PS) from the corresponding mark in the Mental-Representation test (MR), such a
problem falls into the field of classification problems. In these studies, the objective is
dividing the students into groups, depending on the score on a univariate continuum. In
this case, there will be two groups: the students who are expected to pass the PS test and
the ones who will probably not.

The final aim is to construct a score function S(X) such that members of the two
classes have distinctly different sets of scores, thereby enabling the classes to be clearly
distinguished. It will be assumed that the scores have been designed in such a way that
members of class P (Positive, passing the PS test) tend to have large scores and members of
class N (Negative, failing the PS test) tend to have small scores. The class assignment or
classification is then made by comparing this score with a threshold: if the score is above
the cutoff, the students are assigned to one class, and when the score is below the threshold
to the other. Objects with scores that are precisely equal to the threshold (not a common
occurrence for continuous data) can be assigned arbitrarily.

In the situation studied here, the MR test, X ranging from 0 to 10 is used, and a logistic
regression model plays the role of the function S. The logistic regression model has a
discrete response variable and a continuous independent variable. The binary response
variable, Y, takes the value 1 if the student passes the PS test and 0 in the other case. The
prediction of a student passing or not passing the PS test from the value obtained in the MR
test X will be made in terms of probability, p = Prob(Y = 1|X), using a logistic function

p = Prob(Y = 1/X) =
1

1 + e−(β0+β1x+ε)
. (5)

After estimating model (5), in order to distinguish whether a student is classified in
any of the groups, a probability cutoff is needed. Once this threshold has been fixed and the
predictions made, every datum can be classified as Positive/Negative and Real/Prediction
as in Table 2, where A and D are the number of the students of each type correctly classified,
and B, C count the wrong predictions.

Table 2. Summary of training data classification.

Real Value

Prediction Positive Negative
Positive A B

Negative C D

Thus, the true positive rate given by the model, Sensitivity, is A/(A + C) and the true
negative rate, Specificity, is D/(B + D).

The Receiver Operating Characteristic (ROC) curve (see Figure 2) is a graphical
representation of Sensitivity against (1-Specificity) [33,34] for every possible cutoff value.

The standard criterion for evaluating the performance of the logistic classification
model is measuring the area under the curve (AUC), in grey in Figure 2, which indicates
the level of separation of the two groups of data. The AUC may vary from 0.5, which means
a random classification model represented by a diagonal ROC curve in the unit square,
to AUC = 1, which corresponds to a perfect classification model. An AUC index between
0.5 and 0.7 is considered a poor discrimination, between 0.7 and 0.8 is acceptable and
greater than that is excellent [35]. The optimal classification threshold is often chosen to be
the Youden index, which is defined as the maximum difference between the true positive
rate and the false positive rate, that is, between Sensitivity and (1-Specificity). It can be
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interpreted as the maximum difference between populations N and P, and graphically
speaking, it corresponds to the maximum vertical distance between the ROC curve and
the diagonal.
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Figure 2. ROC curves and area under curve (AUC).

3. Results
3.1. Models Relating PS with MR

A study trying to model the students problem-solving capability with the results
obtained in the Mental Representation test was performed. First of all it was necessary to
screen the data at disposal, since from the preliminary results, it seems that the information
in Group 1 was somehow unclear. Moreover, Figure 3 shows the scatterplot of PS vs. MR
by groups, including the (tentative) regression line for each group. The heterogeneity in G1
is very high, showing many outliers as noted above. This group comprises the period in
which more differences of level among students are noticed, for various reasons including
maturity, origin and educational background, producing many outliers, great variability
and thus low representability of the measures of central tendency. The asymmetry (see
Figure 1) and the presence of many zero values are clear indications of lack of normality as
well. Therefore, from now on, group G1 will be discarded, and the study will be performed
for G2 and G3, totaling 104 observations.

0 2 4 6 8 10

0
2

4
6

8
10

P
S

MR

G1
G2
G3

Figure 3. Problem Solving (PS) versus Mental Representation (MR).
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Considering only the data in these two groups, let us note the following:

• The dependent variable and covariate are continuous.
• The independent variable, MR, has two independent categories. The observations are

independent since the groups are disjoint.
• There are no atypical values in the G2 and G3 groups.
• The residuals of linear models are approximately normal for groups G2 and G3.
• The Levene test for checking homocedasticity returns a p-value of 0.419, and thus the

homogeneity of variances cannot be rejected.
• The assumption about the linear relationship between PS and MR is corroborated by

a simple linear regression analysis.

Following the reasoning in Section 2.1, the following models for data in groups G2
and G3 were obtained.

M1: Simple linear regression model.

PS = −0.982 + 0.798 MR, (6)

with gl1 = 102 degrees of freedom, residual sum of squares, RSS1 = 326.311 and
determination coefficient R2

1 = 0.594.

M2: Multiple linear regression model including a categorical variable.

PS = −0.55 + 0.789 MR− 0.995 G2, (7)

with gl2 = 101 degrees of freedom, RSS2 = 302.019 and R2
2 = 0.628. As explained

in (2), G2 is a dummy variable taking values 1 for group G2 and 0 for G3; thus, the
resulting model has the same slope for both groups, 0.789, a but different intercept
term (−1.545 and −0.55, respectively). Therefore, the mean response for samples in
G2 is 0.995 points lower than for G3.

M3: Simple linear regression model by group.

A linear regression model in each one of the groups is computed.

M3G2 : Model 3 in G2 group:

PS = −1.811 + 0.840 MR, (8)

with 38 degrees of freedom, RSS = 134.282 and R2
3,2 = 0.581.

M3G3 : Model 3 in G3 group:

PS = −0.402 + 0.762 MR, (9)

with 62 degrees of freedom, RSS = 166.673 and R2
3,3 = 0.633, totaling gl3 = 62+ 38 =

100 degrees of freedom and RSS3 = 134.282 + 166.673 = 300.955.

Now, let us choose the most suitable model following the procedure described in
Section 2.1.
Step 1 (Compare M1 versus M3): Computing the test in (4)

F1→3 =
(RSS1 − RSS3)/(gl1 − gl3)

(RSS3)/gl3

=
(326.311− 300.955)/2

300.955/100
=

12.678
3.009

= 4.213 ,

and comparing with a Snedecor-F distribution with 2 and 100 degrees of freedom, the p-
value of the test is p = 1− F2,100(4.212) = 0.0175 < 0.05. Consequently, the null hypothesis
can be rejected, and we can conclude that the groups are important and should appear
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in the model describing the data. Now, the question is to decide how they influence the
response variable (Step 3).
Step 3 (Compare M2 versus M3): The statistic test (4)

F2→3 =
(RSS2 − RSS3)/(gl2 − gl3)

(RSS3)/gl3

=
(302.019− 300.955)/1

300.955/100
=

1.064
3.009

= 0.354

produces a p-value of 0.5532 > 0.05 and shows that there is no significative gain in using
model 3; thus, model 2 in (7) is finally selected.

The ANOVA for checking independence between covariate and factor G is not significa-
tive (p = 0.594), which agrees with the results obtained. Table 3 shows the mean, standard
deviation and number of students in each of the groups for the explanatory variable.

Table 3. Descriptive statistics of the variable mental representation for groups 2 and 3.

G2 G3

E[X] 2.537 3.757
s 2.865 2.686
N 40 64

3.2. Classification Models for the Groups

From the Mental Representation test marks, logistic regression models for every group
were computed (LR Models in Table 4). In Figure 4, the LR models and the MR variable
histograms for the students that have passed the PS test (top) and for those who do not
(bottom) are shown. In a variable with two separated classes, the histograms would not be
overlapped and an MR value in between them would determine a cutoff. However, as this
is not the case, the ROC technique is used to choose a cutoff by maximizing the number of
students correctly classified. The coordinates of the ROC functions are the percentage of
students correctly classified by the logistic models for different cutoffs (Figure 5).

The first coordinate is, for each threshold, the percentage of students passing the PS
test who are correctly classified according to the model (true positive rate, sensitivity), and
the second one is the percentage of the students not passing the PS test who are wrongly
classified (false positive rate, 1-specificity). The optimum maximizing these quantities is
shown in Figure 5 and in Table 4.

Table 4. Logistic regression models.

Group LR Model AUC MR Cutoff

G1 p(MR) =
1

1 + exp(18.2310−2.4040MR)
99.11 6.5

G2 p(MR) =
1

1 + exp(14.3667−1.8461MR)
97.07 6.5

G3 p(MR) =
1

1 + exp(7.4048−0.9952MR)
90.06 7.2

Groups G1 and G2 have a cutoff of 6.5; i.e., it is supposed that a student obtaining
6.5 or a greater score in the MR test will probably pass the PS test. Nevertheless, the
percentage of students passing the PS test in groups G1 and G2 is low. In group G3, the
MR cutoff is 7.2, higher than in previous cases. The area under the ROC curve (AUC) is a
widely used measure that gives the probability of classifying data correctly. All the models
present an AUC over 90% which denotes a good discrimination (Table 4).
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All the computations were made with R version 3.2.3 and the ROC curves using pROC
package [36].

Figure 4. Logistic Regression Models.

Figure 5. ROC graphs.
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4. Discussion

The relationship between reading comprehension and capacity for solving mathemat-
ical problems has long been considered and studied, mainly from the educational and
organizational point of view. In the present work, some models relating both variables in
primary school students were discussed from a statistical point of view for children in the
last four levels. The study of the particular case of the smallest students, the origin of their
heterogeneity and the design of specific tests that can measure the potential influence of
new variables opens a new line of research. This is a work in progress.

In the case of restraints on the observations that can be taken, or an observational cost
(time, money) and a limiting budget that prevents obtaining information from the whole
population under study, a convenient choice of the “most informative” experimental units
could be performed before taking samples, employing Optimal Design of Experiments
techniques (see, for instance, [37]). For instance, when the population is composed of a great
number of schools, teachers in the respective schools are not available for this task, and
there is a reduced number of persons in charge of making the study, it might be unfeasible to
get results from every place. The same could be applied to different classrooms in the same
school, or even different students within the same class, when the tests cannot be performed
at the same time for every student and there is a limited time to carry out the study. In such
situations, a previous filter of the experimental units (schools/classrooms/students) should
be made in order to choose the ones that are expected to provide more information. There
are different optimality criteria, and the choice of a specific one depends on the objectives
of the practitioners, but it is well known that usually, for a linear regression model such as
the one shown in this work, the most informative points are those in the extremes of the
observational interval. Therefore, in a study similar to the one performed here, in the case
that it is not possible to get information for every experimental unit of the population, it
would be advisable to choose those that are expected to produce the highest and smallest
marks in the tests. Since usually the ‘best’ (and ‘worst’) institutes/classrooms/students
get good (and bad) marks in most disciplines, the level of the experimental units can be
estimated from the scores obtained in other courses and from this estimation select the
extreme cases for the study.

5. Conclusions

A model relating the ability for problem solving (PS) and mental representation (MR)
of primary school students has been studied. From an initial cohort with ages ranging
from 6 to 12 years, three groups were initially considered, but after some preliminary
tests, the group containing the youngest ones was discarded due to huge differences in
the problem-solving scores of children of that age, differences that could be explained by
another set of variables such as maturity and preliminary education.

The study of the remaining two groups has shown a significant relationship between
the two variables in both groups. The main characteristic of the final model is that the
division of groups influences just the mean value, but it has no interaction with the
explanatory variable MR, and therefore, the coefficient of this variable is the same for the
regression lines in both groups. As expected, the oldest students (group 3) have better
scores in problem solving, approximately 1 point higher than group 2 on average. These
results are interesting since they prove the influence of mental representation in the ability
for problem solving, showing that age has a logically increasing influence on the average
level of problem-solving, but not in the type of relationship between the two variables.

In addition, regarding the problems of teachers and institutions struggling with the
usual failure of students in problem solving tasks, a tool for predicting the probability of
success in this subject is given. A binary classification logistic regression model combined
with ROC curve techniques returns a cutoff of the MR variable predicting a high probability
of success in PS. The analysis reveals that passing the MR test does not guarantee passing
the PS test. Specifically, students successfully passing the PS test usually obtain in the MR
test a score higher than 6.5 for groups 1 and 2, and even greater, 7.2, for group 3. The results
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show that the number of students who pass the PS test is higher in group 3 than in the
other two, which is expected because of a higher evolution of language, and according to
the classification tool provided, these students obtain on average a higher MR score. All
this information can be used to detect the group of students who could have problems
in reaching the objectives of learning in problem solving and, on that basis, to design a
specific program and methodology to prevent this.
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